
Lossy Compression of Packet Classifiers

Ori Rottenstreich
Princeton University

orir@cs.princeton.edu

J’anos Tapolcai
MTA-BME Future Internet Research Group,

Budapest University of Technology and
Economics (BME)

tapolcai@tmit.bme.hu

ABSTRACT
Packet classification is a building block in many network ser-
vices such as routing, filtering, intrusion detection, account-
ing, monitoring, load-balancing and policy enforcement. Com-
pression has gained attention recently as a way to deal with
the expected increase of classifiers size. Typically, compres-
sion schemes try to reduce a classifier size while keeping
it semantically-equivalent to its original form. Inspired by
the advantages of popular compression schemes (e.g. JPEG
and MPEG), we study in this paper the applicability of
lossy compression to create packet classifiers requiring less
memory than optimal semantically-equivalent representa-
tions. Our objective is to find a limited-size classifier that
can correctly classify a high portion of the traffic so that
it can be implemented in commodity switches with classi-
fication modules of a given size. We develop optimal dy-
namic programming based algorithms for several versions
of the problem and describe how a small amount of traffic
that cannot be classified can be easily treated, especially in
software-defined networks. We generalize our solutions for
a wide range of classifiers with different similarity metrics.
We evaluate their performance on real classifiers and traffic
traces and show that in some cases we can reduce a classifier
size by orders of magnitude while still classifying almost all
traffic correctly.

1. INTRODUCTION
Packet classification is a core function behind many net-

work services such as routing, filtering, intrusion detection,
accounting, monitoring, load-balancing and policy enforce-
ment. In recent years there has been a rapid growth in
the size of classifiers and routing tables resulting in a scal-
ability problem [1, 2]. In commodity switches, classification
often relies on TCAMs. TCAMs are used to perform very-
high-speed, hardware accelerated table lookups for IP pre-
fixes but are expensive, power hungry, and often of a limited
size [3–5].

Measurements show that Internet traffic tends to follow
the Zipf distribution [6] and that a large portion of the traffic
comes from a small number of flows [7,8]. Accordingly traffic
matches the classification rules in a biased distribution such
that some of the classifier information is very seldom use-
ful. This observation has motivated adapting cache-based
scheme for classifiers [9, 10] similar to those used in CPU
caching.

Huffman coding [11] and the Lempel-Ziv-Welch algo-
rithm [12] are well known lossless compression schemes.
Lossless compression of packet classifiers has been deeply
investigated in the last decades [13–19]. The ORTC algo-
rithm [20] achieves an optimal representation with a mini-

mal number of prefix rules. Ideally lossless compressions can
reach the entropy bounds [21], but for a practical memory-
efficient classifier in commodity switches we need to go be-
yond these bounds.

Lossy compression is a methodology for achieving higher
compression ratios at the cost of losing some information
about the represented object. Lossy representations can be
smaller than the lower bounds for a lossless compression.
Implementations of lossy compression schemes can be found
in popular standards and applications such as JPEG (for
images), MPEG (for videos) and MP3 (for audio) [22–24].

In the paper, we study the applicability of lossy com-
pression for packet classifiers. We would like to implement
within a limited-size module a classifier that is similar under
different metrics to the required one while satisfying various
constraints. To the best of our knowledge, this is the first
time that lossy compression techniques have been suggested
in the context of packet classifiers. In the main scheme of
our approach a unique action must be returned for all pack-
ets that cannot be classified due to the lossy representation
of the classifier. For the unclassified packets we can then cal-
culate the classification in an alternative slower module. We
answer the question how to optimally determine the content
of the fast classifier to maximize the traffic portion it can
classify. We also provide a toy scheme that serves as a base-
line for better understanding of the main scheme. In this toy
scheme false classifications are allowed and can occur for a
portion of the traffic. We define optimization problems for
finding limited-size encodings for the two schemes. We gen-
eralize the problems and present algorithms that optimally
solve them.

To illustrate the lossy compression schemes, we consider
a classifier with five rules presented in Fig. 1a. An equiva-
lent representation with the minimal number of prefix rules,
four in this case, is the ORTC representation. It appears in
Fig. 1b and maps the corresponding action to every header
with a width of W = 3 bits. Assume that the 2W = 8 head-
ers appear according to a uniform distribution U and that
only n = 3 rules are allowed in a limited-size memory.

The first (toy) scheme, called Approximate Classification
(illustrated in Fig. 1c), uses only three rules to classify cor-
rectly 7 of the 8 possible headers. With this encoding, only
the header 101, which appears with probability 0.125, is
mapped to an incorrect action of 1 instead of to the action
4. We say that this scheme achieves an approximation ratio
of 7/8 = 0.875. In the second (main) scheme, Cached Clas-
sification (in Fig. 1d), all headers that cannot be classified
correctly are indicated by the special action ‘?‘. With the
same number of rules (three), this scheme correctly classifies
six of the eight headers, obtaining an approximation ratio

978-1-4673-6633-5/15/$31.00 © 2015 IEEE 39



prefix/length action
100/3 3
101/3 4
01/2 2
00/2 1
11/2 1

(a) LPM Classifier, 5 rules

prefix/length action
100/3 3
101/3 4
01/2 2
-/0 1

(b) ORTC exact represen-
tation [20], 4 rules

prefix/length action
100/3 3
01/2 2
-/0 1

(c) Approximate Classifica-
tion, approximation ratio
of 0.875 for n = 3 rules

prefix/length action
10/2 ‘?‘
01/2 2
-/0 1

(d) Cached Classification,
approximation ratio of 0.75
for n = 3 rules

Figure 1: Illustration of the suggested encodings for limited size classifiers with a width of W = 3 bits and 2W = 8 uniformly-
distributed headers. (a) shows an LPM-based classifier with 5 rules and (b) presents its ORTC compressed representation [20]
with 4 rules. (c) describes an Approximate Classification encoding of the classifier given n = 3 rules. All headers besides
101 are classified correctly, yielding an approximation ratio of 7/8 = 0.875. (d) illustrates the Cached Classification encoding
given n = 3 rules. The headers 100, 101 are mapped to the unique action ‘?‘ (unclassified) while all other headers are classified
correctly, yielding an approximation ratio of 6/8 = 0.75.

of 6/8 = 0.75, and gives a special indication for the two
headers (100 and 101) that it does not classify correctly.

The suggested solutions do not directly rely on the TCAM
architecture. We consider encodings of classifiers composed
of prefix rules which are common especially in the context of
longest prefix match (LPM) classifiers where in the case of
several matching rules, a priority is given to the most specific
one. Indeed, our approach can be useful to deal with limited
number of allowed rules in additional architectures that im-
plement LPM other than TCAM, e.g. in the BST (Binary
Search Tree) memory of Intel’s FlexPipe architecture that
supports LPM with up to 64K rules [25].

Paper outline: In Section 2 we explain the terminology of
the paper. Next, in Section 3 we define the two schemes of
Approximate Classification and Cached Classification and
point on their important properties in Section 4. Then in
Section 5 and Section 6, respectively, we present optimal
algorithms for the two problems. Generalizations of the ap-
proach are described in Section 7 for classifiers with numer-
ical classification values and for two-dimensional classifiers.
In Section 8 we discuss ways for coping with incorrect classi-
fications and non-classified traffic as well as the applicability
of the approach to a wide range of problems. Experimental
results that demonstrate the potential of the lossy compres-
sion approach are given in Section 9. Related work can be
found in Section 10. Proofs of the main results appear in
the Appendix.

2. MODEL AND NOTATION
We first formally define the terminology of this paper.

Definition 1. A packet header x = (x1, · · · , xW ) ∈
{0, 1}W is defined as a W -bit string that serves as an input
to the classification process.

In the main part of the paper we assume a simple case in
which the classification is performed on a single field, e.g.
the source or the destination IP address. Note that the
typical values for W are 32 for IPv4 addresses, and 128 for
IPv6. We later discuss a more general case.

Definition 2. A prefix rule, denoted by S → a, is de-
fined as a string S = s1 . . . sk ∈ {0, 1}k of length k ≤ W
associated with an action a among a set of actions A. A
packet header x = x1 . . . xW is said to match a rule S, if
and only if for all i ∈ [1, k], si = xi.

Definition 3. A classification function defines the
mapping of each header to an action a ∈ A.

Definition 4. A prefix classifier Cφ = (S1 →
a1, ..., Sn → an) is an ordered set of prefix rules. It encodes
a classification function φ such that for any packet header
x ∈ {0, 1}W we have φ(x) = aj, where Sj → aj is the prefix
rule with the longest length that matches x. We also refer
to a classifier as an encoding.

To guarantee that the classification function of every en-
coding is well defined, we assume a default action a− ∈ A
to which headers that do not match any of the rules are
mapped. We refer to a classifier that implements a function
φ by Cφ.

Definition 5. We assume during the classification the
packets appear according to a header distribution P ,
where px denotes the probability of a header x.

A classification function α and a header distribution P
are the input of the problems discussed in this paper. The
classification function can be described by a corresponding
classifier Cα. In practice the exact header distribution might
be unknown and instead it is only estimated by traffic sam-
pling. Eventually, this estimation might result in some per-
formance degradation, which is examined in the simulation
section.

For a given classification function α we say that a classi-
fier is an exact representation if it implements exactly the
same function. A classifier is an exact representation of only
one classification function. Note that the same classification
function can be represented by several classifiers, possibly
with different number of rules. As mentioned, an exact rep-
resentation with the smallest number of prefix rules can be
computed with the ORTC algorithm [20]. For a given α, we
denote this minimal number of rules by n0.

This paper studies a scenario in which the classification
module can store fewer rules than the minimal number re-
quired for an exact representation. For instance, in the ex-
ample from Fig. 1, with fewer than four rules we cannot
guarantee correct classification for all inputs.

3. OPTIMIZATION PROBLEMS

3.1 Formal Definitions
We first define a metric that estimates the similarity of a

classifier to a given classification function.

Definition 6. Let α be a classification function and P a
header distribution. Let φ be a second classification function.

40



The approximation ratio of a classifier that implements
φ, denoted by RP (α, φ), is the probability of a header drawn
according to the header distribution P to be classified to the
same action in α and in φ. Formally,

RP (α, φ) =
∑

x∈{0,1}W |α(x)=φ(x)

px.

In the first optimization problem, we would like to find
an encoding with a limited number of rules that achieves a
maximal approximation ratio.

Problem 1 (Approximate Classification). For a
given classification function α, a header distribution P and
a given number of prefix rules n, find a classifier Cφ with
at most n rules that obtains a maximal approximation ratio

G(n, α, P ) = max
Cφ,|Cφ|≤n

RP (α, φ).

Note that in the Approximate Classification problem a
header that is not classified correctly can be mapped to an
arbitrary action.

We denote by G(n, α, P ) the optimal (maximal) value of
the above function. We refer to a legal encoding (with at
most n rules) that obtains this approximation ratio as an
approximation-optimal encoding. We also define the error
ratio of a classifier that implements φ as 1−RP (α, φ).

In typical network applications, incorrect classification
can be harmful. It can be more useful to avoid any wrongly
classified packets by leaving some packets unclassified. We
define an indication for headers that cannot be classified cor-
rectly by a given encoding. We denote this unique action by
‘?‘ and by A∗ the generalized set of actions A∗ = A∪ {‘?‘}.
We would look for a classifier that for every header either
returns the correct classification value or the indication ‘?‘.
Upon receiving such an indication, the classification can be
completed, e.g. by using a slower module, in mechanism
similar to memory caching.

We can now define the main optimization problem, where
we look for an encoding that obtains a maximal approxima-
tion ratio while returning the action of ‘?‘ for all headers
that are not classified correctly.

Problem 2 (Cached Classification). For a given
classification function α, a header distribution P and a given
number of prefix rules n, find a classifier Cφ with at most
n rules that obtains a maximal approximation ratio while
satisfying ∀x ∈ {0, 1}W ,

(φ(x) = α(x)) OR (φ(x) = ‘?‘).

We denote by H(n, α, P ) the optimal (maximal) approxi-
mation ratio that can be obtained while satisfying this addi-
tional condition and we say that an encoding that achieves
this is a cache-optimal encoding. In the context of this prob-
lem, we define the quantity 1−RP (α, φ) as the cache miss
ratio. This is the fraction of headers mapped to ‘?‘.

Note that for both problems the rules in an optimal en-
coding are not necessarily a subset of the rules in an exact
classifier.

3.2 A Real-Life Illustrative Example
A classifier with prefix rules is often represented as a la-

beled binary prefix tree. Each node of the tree corresponds
to a prefix rule, given by the transition bits along the path

from the root node. A node that corresponds to a rule in the
classification is labeled with the rule action. Fig. 2 shows
an example of a binary tree which is a small branch of the
tree for a real classifier. The left arc corresponds to a 0
bit transition, and the right to a bit of 1. Fig. 2(a) shows
the ORTC compressed prefix tree. Here, ORTC requires 10
rules in total and guarantees 100% classification. The ac-
tions appear with labels in the tree and the probability of
a header to have a longest match in a rule according to a
real-life trace is illustrated. These probabilities rely on the
header distribution of the captured traffic traces.

In Fig. 2(b) the probability that a given header is in-
cluded within a given subtree appears next to the subtree
such that in each subtree all headers have a match in the
same rule. Subtrees without such numbers have a negligi-
ble probability. The result shown for optimal Approximate
Classification with 3 rules can classify correctly 97.84% of
the packets, and obtains false classifications for the rest. The
subtrees from which headers are not classified correctly are
drawn with dotted circles. The corresponding encoding has
the prefix rules 01101/5 → 0, 1100/4 → 1 and −/0 → 2.
Fig. 2(c) shows the results of optimal Cached Classification
with 7 rules. It can correctly classify 98.52% of the packets.
It returns ‘?‘ for headers that cannot be classified correctly
and there is no false classification. Table 1 shows for both
schemes how the approximation ratio increases by allowing
more rules.

4. PROPERTIES
Before solving these two problems, we would like to dis-

cuss some of their properties. First, to better understand
the expected performance of solutions for the problems we
discuss the values of the optimal approximation ratio in each
of the problems.

The first observation compares the optimal values of the
approximation ratios of the two problems for the same num-
ber of rules. Intuitively, the requirement in the Cached Clas-
sification problem for a special indication on the headers
that cannot be classified correctly results in a lower optimal
ratio than that of the Approximate Classification problem.

Observation 1. For (n, α, P ), the optimal approxima-
tion ratio of the Approximate Classification problem equals
at least the optimal approximation ratio of the Cached Clas-
sification problem and the ratios are equal only if an exact
representation exists. I.e.,

H(n, α, P ) < G(n, α, P ) < 1 or

H(n, α, P ) = G(n, α, P ) = 1.

Indeed, in some cases G(n, α, P ) can be much larger than
H(n, α, P ). Consider for instance a classifier (with a classi-
fication function α) that maps a single header with an ar-
bitrarily small but positive probability to the action 1 and
all other headers to the action 2. Assume a default action
that is not one of these two actions. For n = 1, an Approx-
imate Classification encoding of −/0 → 2 classifies almost
all headers correctly and G(n = 1, α, P ) is close to 1. Any
Cached Classification encoding with a single rule must be
−/0 → ‘?‘. This encoding has an approximation ratio of
H(n = 1, α, P ) = 0.

Before presenting more observations, we define the popu-
larity of a prefix rule in a classifier.

41



2.0002

0
.02

0

.0005

0
.015

2.3602

1
.04

3.006

0.0001

2
.008

2 .55

0 1

(a) The minimal exact classifier requires
10 rules computed by ORTC [20]. The
rule popularities are also drawn.

0
.02

2

.015
.36

1
.04

.006
.008

.1

.45

0 1

(b) Optimal Approximate Classification
given 3 rules, G(3, α, P ) = 97.84%. The
leaf probabilities are drawn (with negli-
gible probabilities of the leaves without
values). Headers in dotted leaves are in-
correctly classified.

0

‘?‘

0

2

1
2

2

0 1

(c) Optimal Cached Classification
given 7 rules, H(7, α, P ) = 98.52%.
Headers matching the dashed leaves
cannot be classified.

Figure 2: An illustrative example of a branch of a real classifier. The action of a prefix rule is drawn as a node label.

Definition 7. The prefix rule popularity of a rule in
a classifier C is defined as the sum of the probabilities of all
headers that have a longest match with the rule. For a rule
Sj → aj we denote this popularity by pj. Formally,

pj =
∑

x∈{0,1}W |Sj LPM x

px ,

where px denotes the probability for a header x to appear.

See also Fig. 2(a) as an example of prefix rule popularities
drawn next to the nodes along with the probabilities of each
leaf drawn on Fig. 2(b).

We now present a general property of the classifiers. Intu-
itively, the contribution of a rule to the approximation ratio
is limited by its popularity.

Lemma 1. Let Cφ be a classifier. By removing a rule
Sj → aj from the classifier the approximation ratio of the
Approximate Classification problem is decreased by at most
pj, where pj denotes the rule popularity according to Defini-
tion 7.

The next observation suggests a lower bound for the opti-
mal approximation ratio for the first problem. The bound is
obtained as the ratio achieved by a classifier with a subset of
the rules in the input classifier. Without adding additional
rules, a header with a longest match in the input classifier
in a selected rule will have such a match also in the smaller
classifier.

Theorem 1. Let Cψ = (S1 → a1, ..., Sn0 → an0) be a
classifier with a minimal number n0 of prefix rules for a
given classification function α. Assume a header distribu-
tion P . Let pi be the prefix rule popularity of Si → ai when
the rules are ordered in a non-increasing order of their pop-
ularities. By relying on a classifier composed of the n rules
with the largest popularities, the optimal approximation ratio
satisfies

G(n, α, P ) ≥
∑

j∈[1,n]

pj + 1−
∑

j∈[1,n0]

pj ≥ n/n0.

This intuitively leads to a simple greedy algorithm for
Approximate Classification which selects the n rules with
highest rule popularity (see also Table 1(a) as an example).

We can also derive a lower bound for the optimal approx-
imation ratio for the Cached Classification problem based
on the ratio obtained by such a classifier.

Observation 2. Let n0 denote the minimum number of
rules needed for the exact classifier of classification function
α. Let us sort the prefix rules according to a non-increasing
order of their lengths. For n ∈ [1, n0], the optimal approxi-
mation ratio of the Cached Classification problem satisfies

H(n, α, P ) ≥ Σj∈[1,n−1]p
j .

Similarly this leads to a simple greedy algorithm for
Cached Classification which selects the n − 1 longest rules
and adds a last rule of −/0→ ‘?‘ (see also Table 1(b) as an
example).

5. APPROXIMATE CLASSIFICATION
In this section we present algorithms that obtain opti-

mal solutions for the Approximate Classification problem
as defined in Problem 1. We see the Approximate Clas-
sification scheme as a baseline scheme that can help with
the understanding of the Cached Classification which is the
main scheme of the paper. We first assume a simple case
in which the given classifier is represented by rules with dis-
tinct actions and present an immediate solution for this case.
Later, we describe a more general algorithm of a classifier
with arbitrary actions. This algorithm relies on dynamic
programming.

5.1 The Case of Distinct Actions
We now consider the case in which all rules of a classifier

have distinct actions and that these actions differ from the
default action a−. Our first observation is that removing the
jth rule decreases the approximation ratio by exactly pj ; all
traffic that previously matched this rule is now not classified
correctly. Thus to maximize the approximation ratio, we
should include the rules with the highest popularity.

Observation 3. Let C be a classifier with n0 rules with
distinct actions that also differ from the default action a−.

42



rule rule pop. n greedy optimal
approx. ratio G(n, α, P )

011/3→ 2 .55 1 0.55 0.55
10/2→ 2 .3602 2 0.9102 0.9584

1100/4→ 1 .04 3 0.9502 0.9784
01101/5→ 0 .02 4 0.9702 0.9934
10100/5→ 0 .015 5 0.9852 0.9994
01010/5→ 2 .008 6 0.9932 0.9996

001110/6→ 3 .006 7 0.9992 0.9997
−/0→ 0 .0005 8 0.9997 0.9998

001/3→ 2 .0002 9 0.9999 0.9999
00110/5→ 0 .0001 10 1 1

(a) Approximate Classification

rule rule pop. n greedy optimal
approx. ratio H(n, α, P )

001110/6→ 3 .006 1 0 0
01101/5→ 0 .02 2 .006 0.45
10100/5→ 0 .015 3 .026 0.81
01010/5→ 2 .008 4 .041 0.91
00110/5→ 0 .0001 5 .049 0.95
1100/4→ 1 .04 6 .0491 0.97
011/3→ 2 .55 7 .0891 0.9852
001/3→ 2 .0002 8 .6391 0.9932
10/2→ 2 .3602 9 .6393 0.9993
−/0→ 0 .0005 10 .9995 1

(b) Cached Classification. In the greedy algorithm the last nth

rule is always −/0→ ‘?‘.

Table 1: Illustration of the greedy algorithms for the two schemes on the example of Fig. 2: rules are considered in different
orders based on their popularities and lengths. For a number of rules n the obtained greedy approximation ratio is compared
with the optimal ratio.

For n ∈ [1, n0], an optimal approximation ratio for the Ap-
proximate Classification problem is composed of n rules with
the highest popularity among the n0.

5.2 Arbitrary Actions
We now describe a dynamic programming based algorithm

to find an approximation optimal encoding, according to the
header distribution P , for a classifier with arbitrary actions.
Our solution calculates encodings for nodes in the tree such
that each encoding comprises a limited number of rules and
includes a specific last rule.

Let r be the root of the complete binary tree of 2W leaves
that includes all headers. For a node x (represented by a
corresponding prefix) in the complete binary tree, we con-
sider an encoding with a maximal number of rules n ∈ N+

satisfying that its last rule (among the n) is of the form
x→ a for an action a ∈ A. We define the function g(x, n, a)
as the maximal ratio of headers from the subtree x that can
be classified correctly by such an encoding. Let φ(x, n, a)
be an encoding with the above properties that achieves this
ratio.

The next lemma relates the optimal approximation ratio
G(n, α, P ) to a value of the function g(x, n, a). It relies on
the value of the function for the root r with a specific number
of rules and last action.

Lemma 2. The optimal approximation ratio satisfies
G(n, α, P ) = g(r, n+ 1, a−) where r is the root node and a−

is the default action. Likewise, an approximation-optimal
encoding is given by the first n rules in φ(r, n+ 1, a−).

We start by setting the values of g(x, n, a) for a leaf
(header) x assuming a classifier with a classification func-
tion α. Since there exists an encoding with n rules all of the
form x→ α(x) we have

g(x, n, a) = px for n ≥ 1 if a = α(x).

Recall that px is the probability of a header to have the
value of x. In addition,

g(x, 1, a) = 0 for a 6= α(x) and,

g(x, n, a) = px for n ≥ 2.

We can have an encoding with two rules (x→ α(x), x→ a)
that classifies x correctly for any action a.

More generally, for a given classifier consider the first
matching rule for the 2W headers represented by leaves in
the binary tree of size 2W . Consider a recursive partition
of the set of leaves into halves until each subset of consec-
utive leaves contains headers that have a first match in the
same rule. This partition divides the headers into disjoint
monochromatic subtrees. As explained in [26] the number of
these monochromatic subtrees equals at most W · n0 where
n0 is the number of rules in the classifier.

Let y be a prefix that represents such a monochromatic
subtree, i.e. a subtree in which all headers have the first
matching in the same rule. Let ay denote the action of that
rule. The above formulas for a leaf can be generalized for
such a subtree as follows.

g(y, n, a) = py for n ≥ 1 if a = ay

where py is the probability of a header to be included in the
subtree represented by y. Likewise,

g(y, 1, a) = 0 for a 6= ay and,

g(y, n, a) = py for n ≥ 2.

The next lemma suggests a recursive formula for the value
of g(x, n, a) for a node x that is not a leaf. Similarly, the
encoding φ(x, n, a) is calculated based on the two encodings
for the left and right subtrees of x according to the value
that is selected among the detailed cases.

Lemma 3. For a non-leaf node x and number of rules
n ≥ 1, the function g(x, n, a) satisfies
g(x, n, a) = max max

m∈[1,n]
g(xL,m, a) + g(xR, n−m+ 1, a),

max
m∈[1,n−1],a1∈A

g(xL,m, a1) + g(xR, n−m,a1)

 ,

where xL and xR are the left child and the right child of the
node x.

The algorithm works as follows. Based on the rules in
the given classifier, we divide the complete binary tree into
monochromatic subtrees. After setting the function values
for the corresponding nodes, we calculate based on the re-
cursive formulas from Lemma 3 the function values and the
corresponding encodings for internal nodes. An optimal en-
coding is obtained by Lemma 2 as the encoding for specific
parameter values for the root of the complete binary tree.

43



Theorem 2. The described algorithm obtains an optimal
solution for the Approximate Classification problem.

Theorem 3 describes the time and space complexity of the
algorithm. This analysis simply relies on the above descrip-
tion of the algorithm.

Theorem 3. The Approximate Classification problem
can be optimally solved in O(W · n0 · |A| · n2) time and
O(W 2 · n0 · |A| · n2) space, where n0 is the number of rules
in an exact encoding of the classifier.

The linear dependency of the time complexity and the
quadratic dependency of the memory complexity in the
header width W guarantee that the algorithm remains prac-
tical also for IPv6.

6. CACHED CLASSIFICATION
In this section we present an algorithm that obtains an

optimal solution for the Cached Classification problem as
defined in Problem 2. This algorithm is also based on dy-
namic programming.

Recall that we define the generalized set of actions A∗
as A∗ = A ∪ {‘?‘}. Here, we only consider encodings that
for any header x either return the correct action α(x) or
the action ‘?‘. We define h(x, n, a) as the maximal ratio of
correctly classified headers in such an encoding with n ∈ N+

rules with a last rule of x → a. In order to avoid illegal
encodings, we use the function value of −∞ if there does
not exist an encoding that satisfies the above requirements.
We also denote by ψ(x, n, a) an example of an encoding that
obtains this ratio.

As in the first problem we can deduce the optimal ap-
proximation ratio and an optimal encoding for the Cached
Classification problem as follows.

Lemma 4. The optimal approximation ratio satisfies
H(n, α, P ) = h(r, n+ 1, a−) where r is the root node and a−

is the default action. Likewise, an approximation-optimal
encoding is given by the first n rules in ψ(r, n+ 1, a−).

Again, let y be a monochromatic subtree that its headers,
with a total probability of py, all have a first match in the
same rule with an action ay. For this problem, the encodings
(y → ay) and (y → ‘?‘) are both legal but only the first of
them classifies headers in y correctly. Accordingly,

h(y, 1, a) = py if a = ay and,

h(y, 1, ‘?‘) = 0.

On the contrary, an encoding of the form (y → a) is illegal
if a 6= ay and a 6= ‘?‘. Thus

h(y, 1, a) = −∞ if a /∈ {ay, ‘?‘}.

For any action a ∈ A∗ the encoding (y → ay, y → a) is legal
and classifies all headers in y correctly. Thus

h(y, n, a) = py for n ≥ 2, a ∈ A∗.

For a non-leaf node x the values of h(x, n, a) and the cor-
responding encoding ψ(x, n, a) should be calculated recur-
sively as for g. Notice that if the two encodings for a left
child xL and a right child xR are both legal, then the merged
encoding for x is legal as well. Accordingly, the proof of the
next lemma is similar to the proof of Lemma 3.

Lemma 5. For a non-leaf node x, and number of rules
n ≥ 1, the function h(x, n, a) satisfies
h(x, n, a) = max max

m∈[1,n]
h(xL,m, a) + h(xR, n−m+ 1, a),

max
m∈[1,n−1],a1∈A∗

h(xL,m, a1) + h(xR, n−m,a1)

 .

With the described changes in the initial values of the
function, the dynamic programming algorithm is the same
as for Approximate Classification, and its optimality can be
also deduced from the above discussion.

Theorem 4. The described algorithm achieves an opti-
mal solution for the Cached Classification problem.

The time and space complexity of the algorithm is essen-
tially the same as described in Theorem 3. Putting together
Lemma 4 and 5 we have the following theorem.

Theorem 5. The Cached Classification problem can be
optimally solved in O(W · n0 · |A| · n2) time and O(W 2 · n0 ·
|A| · n2) space, where n0 is the number of rules in an exact
encoding of the classifier.

As stated in Observation 1, requiring an encoding for the
Cached Classification problem to assign a special indication
to every header that cannot be classified correctly has a cost
of potential lower performance. In Section 9 we compare the
optimal approximation ratios of the two problems.

7. MORE GENERAL CLASSIFIERS
In this section, we generalize our novel approach of lossy

compression to additional types of classifiers.

7.1 Numerical Classification
We describe new metrics to capture the notion of simi-

larity between classifiers. Then, we define new optimization
problems for finding limited-size classifiers and explain how
the previously mentioned algorithms can be modified to ob-
tain optimal results for the new problems.

In the new described problems, we distinguish between
two classifiers, even if they incorrectly classify the same set
of headers, based on the exact values of the actions for the
incorrectly classified headers. Assume a classifier in which
the possible classification results (thus far called actions)
are among a set of numerical values, i.e. A ⊆ R. Then, the
difference a1−a2 and the absolute difference |a1−a2| of two
actions a1, a2 ∈ A are well defined. For instance, in such a
numerical classification a header of a flow can be mapped to
its required QoS level or to its allowed traffic rate.

The following problem generalizes the Approximate Clas-
sification problem. Here, we limit the encoder to classify a
header to a value not smaller than the correct one.

Problem 3 (One-Sided Approximate). For
a classification function α, a header distribution P and a
number of prefix rules n, find a classifier Cφ with at most n
rules that obtains a maximal approximation ratio RP (α, φ)
while satisfying ∀x ∈ {0, 1}W

φ(x) ≥ α(x).

To solve Problem 3, we define b(y, n, a) as the maximal
approximation ratio in an encoding with n rules for headers

44



in a subtree rooted by a node y such that the last rule is
y → a. Again, let py be the probability of a header to be
included in the subtree represented by y and let B(n, α, P )
be the optimal value of the approximation ratio in this con-
strained problem. Our algorithm is based on the follow-
ing lemma. The initial values of the function b(y, n, a) for
monochromatic trees enforce the restriction on the classifi-
cation values for any header. The optimal approximation
ratio again can be calculated based on the root node r.

Lemma 6. The function b(y, n, a) satisfies
(i) For a monochromatic node y with a corresponding

action ay: b(y, 1, ay) = py, b(y, 1, a) = 0 for a > ay,
b(y, 1, a) = −∞ for a < ay. Likewise, b(y, n, a) = py for
n ≥ 2, a ∈ A.

(ii) B(n, α, P ) = b(r, n+ 1, a−) and for a non-leaf node y,
b(y, n, a) = max max

m∈[1,n]
b(yL,m, a) + b(yR, n−m+ 1, a),

max
m∈[1,n−1],a1∈A

b(yL,m, a1) + b(yR, n−m,a1)

 .

In Problems 4 and 5, our goal is to find a classifier
that minimizes the average difference between the requested
actions and the obtained one. Given a classifier with a
classification function α, we define the dissimilarity of a
classifier with a classification function φ as ∆P (α, φ) =∑
x∈{0,1}W px · |α(x)− φ(x)|. While in the next problem,

there are no constraints on the obtained actions for a specific
header, in the later problem every header must be classified
to a value not smaller than its corrected value.

Problem 4 (Unconstrained Dissimilarity). For
a classification function α, a header distribution P and a
given number of prefix rules n, find a classifier Cφ with at
most n rules that minimizes the dissimilarity ∆P (α, φ).

Problem 5 (One-Sided Dissimilarity). For
a classification function α, a header distribution P and a
given number of prefix rules n, find a classifier Cφ with at
most n rules that minimizes the dissimilarity ∆P (α, φ) while
satisfying ∀x ∈ {0, 1}W φ(x) ≥ α(x).

Notice that Problem 4 and Problem 5 are minimization
problems, unlike the previously described problems.

We derive dynamic programming based solutions also for
these problems. We define U(n, α, P ),O(n, α, P ) as the op-
timal (minimal) dissimilarity values that can be obtained for
the last two problems with n rules given α and P .

To solve Problem 4, we define u(y, n, a) as the minimal
possible dissimilarity value obtained in an encoding for head-
ers in a subtree rooted by a node y with n rules such that
the last rule is y → a. Again, let py be the probability of a
header to be included in the subtree represented by y.

Lemma 7. The function u(y, n, a) satisfies
(i) For a monochromatic node y with a corresponding ac-

tion ay: u(y, 1, a) = |a−ay| ·py and u(y, n, a) = 0 for n ≥ 2.
(ii) U(n, α, P ) = u(r, n+ 1, a−) and for a non-leaf node y,

u(y, n, a) = min min
m∈[1,n]

u(yL,m, a) + u(yR, n−m+ 1, a),

min
m∈[1,n−1],a1∈A

u(yL,m, a1) + u(yR, n−m,a1)

 .

Similarly we define the function o(y, n, a) for Problem 5
and have the following.

Lemma 8. The function o(y, n, a) satisfies
(i) For a monochromatic node y with a corresponding ac-

tion ay: If a ≥ ay then o(y, 1, a) = |a−ay| ·py and if a < ay

then o(y, 1, a) =∞. In addition, o(y, n, a) = 0 for n ≥ 2.
(ii) O(n, α, P ) = o(r, n+ 1, a−) and for a non-leaf node y

o(y, n, a) = min min
m∈[1,n]

o(yL,m, a) + o(yR, n−m+ 1, a),

min
m∈[1,n−1],a1∈A

o(yL,m, a1) + o(yR, n−m,a1)

 .

The dynamic programming algorithms can be easily derived
from the above formulas. The analysis of their time and
memory complexities is the same as for the previously men-
tioned algorithms.

7.2 Two-Dimensional Classifiers
We briefly discuss how all the presented algorithms can

be generalized for two-dimensional prefix classifiers, a pop-
ular class of classifiers in which rules are defined on two
fields such as the source IP and the destination IP ad-
dresses. A two-dimensional prefix rule is composed of two
one-dimensional prefixes and allows headers that match in
both fields. In order for the LPM-based matching to be
unambiguous, we assume as in [26] that the given classifier
is consistent. In such a classifier, any two rules are either
disjoint or nested, i.e. either the set of matching headers in
one rule is a subset of the set in the second or these sets are
disjoint.

With a limited number of allowed rules, our goal is to
find a classifier that achieves a maximal approximation ra-
tio based on a known distribution of the two-dimensional
headers. For a prefix x in the first field and a prefix y in
the second, we calculate an optimal encoding of the head-
ers in the rectangle (x, y). Such a rectangle represents the
Cartesian product of the two subtrees that correspond to
the prefixes x, y in the two fields. The algorithms for all
discussed problems can be generalized in a similar way. The
key observation is that an optimal encoding for the rectan-
gle is obtained by splitting it into two halves along one of
the fields. A similar claim appears in [26] regarding exact
representations of classifiers.

8. DISCUSSION
Dealing with incorrect classifications and cache

misses: The choice of Approximate Classification vs.
Cached Classification and the method for handling incor-
rect classification and cache misses depend on the applica-
tion. For instance, with classification errors loops can oc-
cur in a routing application, and an application designed to
filter illegal traffic might erroneously allow unwanted pack-
ets. Hence, Cached Classification would be more suitable
for these applications. In some applications, e.g. load bal-
ancing among servers in a data center network, incorrect
classification for a small fraction of the traffic might be tol-
erable. In the Cached Classification scheme, upon receiving
‘?‘ we have several choices how to obtain a correct classifi-
cation. First, we can calculate the classification in a slower
path, i.e. by accessing a second-level larger memory or, in
software defined networks, by sending one packet header of
a flow that cannot be classified to the network controller.

45



Fast Classifier Slow Classifier
‘?‘

a ∈ A

Optimization module

header

periodical updatesampling

Figure 3: Block diagram of the prototype for the Cached
Classification scheme.

Generality of the solutions: We have described al-
gorithms that obtain the optimal classifier with a limited
number of rules for the Approximate Classification prob-
lem, the Cached Classification problem, and for additional
problems related to numerical classifiers. The algorithms
differ in the initial values of the recursive formulas for the
monochromatic subtrees. In all problems, the function value
of a node for a possible limited-size encoding is given by
the sum of the values of its two subtrees. As mentioned,
the number of rules in an encoding achieved by combin-
ing two encodings for two adjacent subtrees does not de-
pend on a specific metric. Let the function I(·) be the in-
dicator function that takes the value of 1 if the condition
that it receives as an argument is satisfied, and 0 other-
wise. The algorithms can be generalized to any metric in
which the value of an encoding that implements a func-
tion φ is given by

∑
x∈{0,1}W F(α(x), φ(x), px) for an ar-

bitrary function F , and the constraints of the function φ
can be also expressed based on the values for each header.
In such cases, the similarity of the functions is separa-
ble for the different headers. In particular, for the de-
scribed problems we have for Approximate Classification
F(α(x), φ(x), px) = px · I(α(x) = φ(x)), for Cached Classifi-
cation it can be px ·I(α(x) = φ(x))−1·I(φ(x) /∈ {α(x), ‘?‘}).
Here, an incorrect classification of a single header decreases
the function value for the complete binary tree by at least
one and guarantees that its value will not be positive.
Likewise, for One-Sided Approximate the function can be
px · I(α(x) = φ(x)) − 1 · I(α(x) > φ(x)), for Unconstrained
Dissimilarity the function is px · |α(x)− φ(x)| and for One-
Sided Dissimilarity it is px · |α(x)− φ(x)|+ I(α(x) > φ(x)).
This family of algorithms can be presented as an extension
of the algorithm from [26] for the special case of exact en-
coding. An exact encoding can be obtained with a function
F of the form 1− I(α(x) = φ(x)). Then an exact encoding
exists for a value of n for which a zero value of F exists for
the complete binary tree.

We have assumed that the classification function α in the
input is represented by an (exact) prefix classifier. The al-
gorithms can find optimal solutions with prefix rules also for
an arbitrary function α. However, in this case the number of
monochromatic trees can be much larger resulting in larger
time complexity of the algorithms.

9. EXPERIMENTAL RESULTS
We performed extensive simulations to validate the pro-

posed approaches on a workstation with a 2.50GHz Intel
Core i5 CPU. Since the effectiveness of the proposed ap-
proach depends on the correlation between the header dis-

Table 2: Description of FIBs examined with the number
of distinct actions, the number of leaves and nodes in their
original representations, and the number of ORTC rules.

FIB Name #actions #leaves #nodes #rules
(ORTC)

SFR-HMS 27 235624 471247 71802
AS1221 4 261889 523777 94231
AS4637 3 105234 210467 35872
AS6447 36 375261 750521 160835
AS6730 186 336828 673655 140481
HBONE 195 284716 569431 107739
TAZ 4 150095 300189 49285

tribution and the input classifiers, ideally they should be
collected together at the same time in the same network
component. We could arrange one such measurement in a
campus network. In addition to the documentation of the
corresponding Forwarding Information Base (FIB), a full
day traffic capture was performed on December 22, 2014.
The measured link was a 10Gigabit Ethernet port of a Cisco
6500 Layer-3 switch which transfers the traffic of two build-
ings on a campus site to the core layer of the local network.
We refer to this measurement as the BME FIB and trace.
As additional classifiers, we used 7 access and core FIB in-
stances taken from [21], as summarized in Table 2. We used
real Internet traffic traces to calculate the header distribu-
tion measured at four Tier 3 Internet Service Providers (ISP)
on 8 different routers. Each trace was captured for 2-4 min-
utes with WireShark inlcuding at least 2 million packets.
For each FIB we used each traffic trace to compute the ex-
act header distribution, that in total resulted 7× 8 problem
instances. Note that, in practice the exact header distribu-
tion is not known in advance, but instead it can be estimated
according to some historical data.

We implemented a prototype of the Cached Classifica-
tion scheme. The prototype has a fast classifier with a
small memory and a slower classifier without memory lim-
its. The fast classifier corresponds to a wire speed hardware
device, while the slow classifier to a software-based com-
ponent. Note that, the hardware component can be 10 to
100 times faster than the second component. Fig. 3 shows
the block diagram of the prototype. A packet first reaches
the fast classifier and is either classified correctly, or the in-
dication ‘?‘ is obtained and the packet is sent also to the
slower classifier. The prefix rules in the fast classifier are
updated periodically once in an update period. At the end
of each period a new set of rules is computed for the fast
classifier according to the measured header distribution in
the current period. The header distribution is measured by
sampling the incoming packets. We examined several sam-
pling rates 1 : x, for which one among x consecutive packets
is used to compute the header distribution. The new rule set
is loaded to the fast classifier for the next period after some
delay. This delay is modeled as the computational time of
the algorithm plus a fixed loading time that represents the
time it takes to load a new set of rules in the fast classifier.

Fig. 4 shows the probability of a header to be included in
each of the leaves in the ORTC representation of the BME
FIB according to the BME traffic trace truncated to different
time periods. See also Fig. 2 as an illustration, where the
probability of each leaf is drawn next to the leaves. We sort
the leaves in non-increasing order of the probabilities and

46



0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

C
D

F

Number of leafs in the trie

1 sec
10 sec
1 min

10 min

Figure 4: The probabilities to
be included in a leaf in the BME
FIB according to the BME traffic
trace.

0.001

0.01

0.1

1

25 100 250 1000 5000

1
−

a
p

p
ro

x
im

a
ti

o
n

ra
ti

o

Number of prefix rules (n)

(a) Various traffic traces on the same
HBONE FIB for Cached Classification.

0.001

0.01

0.1

1

25 100 250 1000 5000

1
−

a
p

p
ro

x
im

a
ti

o
n

ra
ti

o

Number of prefix rules (n)

SFR-HMS
AS1221
AS4637
AS6447
AS6730

HBONE
TAZ

(b) Various FIBs on the same traffic trace.

Figure 5: The sensitivity of the input data.

Fig. 4 shows the empirical cumulative distribution function
(CDF) as a function of the length of the truncated traffic
trace. Note that roughly 50% of the traffic is mapped to a
single leaf. This illustrates how biased is the distribution we
are facing in the classification process.

9.1 FIB Caching at Tier 3 Networks with Ex-
act Header Distribution

On the axes of Fig. 5-7 the logarithmic scale is used. We
plot 1 − approximation ratio, which is also called the error
ratio or the cache miss ratio for the Approximate Classifi-
cation or the Cached Classification problems, respectively.

Fig. 5(a) shows the results of Cached Classification of
HBONE FIB where the prefix popularities are computed
with 8 different traffic traces. As detailed in Table 2, 107K
rules are required for exact classification with ORTC, and
surprisingly with 25 rules an approximation ratio of 30-95%
is reached for the 8 traces. A ratio of 99% requires 250-
1800 rules, and that of 99.9% 1300-4500 rules. On average,
with exact knowledge of the header distribution, roughly
1% (1077) of the rules required by ORTC was sufficient to
classify 99% of the traffic by the fast classifier.

In Fig. 5(b) all the FIBs were evaluated with a single
traffic trace which is one of the 8 traces mentioned above.
This trace has 2, 206, 097 packets captured in 163 sec in a
rate of 13, 300 packet/sec on backbone link with an average
bandwidth of 105 MBit/sec. The same FIB and traffic trace
pair is drawn with thick lines on Fig. 5(a) and (b). Here,
an approximation ratio of 99% requires 100-700 rules for the
same traffic trace depending on the FIB.

Fig. 6 shows the average error ratio for Cached and Ap-
proximate Classification over all the FIBs and traffic traces.
It is an average of the 7× 8 instances. The 95% confidence
interval is also plotted as a shadow of the curves of the opti-
mal algorithms. On average Cached Classification required
2.77 times more rules than Approximate Classification for
the same approximation ratio. This factor decreases as we
have a larger approximation ratio and the same number of
rules is required to for an approximation ratio of 1. The
figure also shows the results of the greedy heuristics intro-
duced in Section 4 (see also Table 1 as an example). The

0.001

0.01

0.1

1

25 100 250 1000 5000

1
−

a
p

p
ro

x
im

a
ti

o
n

ra
ti

o

Number of prefix rules (n)

Cached (greedy)
Dependent-Set

Cached (opt)
Appr. (greedy)

Appr. (opt)

Figure 6: The error ratio and the cache miss ratio vs. the
number of rules. The average over 7 × 8 problem instances
with all FIBs and data traces. The 95% confidence interval
is also plotted.

greedy algorithm for Approximate Classification provides a
decent performance compared to the optimal encoding ob-
tained by the dynamic program; however, the performance
of the corresponding greedy algorithm for Cache Classifica-
tion is not acceptable. The figure also shows the results of
the algorithm Dependent-Set from [27] that also relies on
rule caching. It is important to indicate that their solution
is more general and supports also non-prefix classifiers. We
used the ORTC rule set as the input to that algorithm.

9.2 The Effect of Imprecision in the Header
Distribution

The described prototype has 3 parameters: the update
period, the sampling rate and the loading time. Fig. 7(a)
shows the approximation ratio as a function of the length
of the update period for the BME trace and FIB. We used
32, 128 and 512 for the rule limit of the fast classifier. As a
reference we also added the theoretical optimum for the ap-
proximation ratio, which is computed with the exact header

47



0.001

0.01

0.1

0.5

1 10 100

C
a
ch

e
m

is
s

ra
ti

o

Update period (sec)

(a) For different size of classifiers and
update periods (sampling 1:10, load
time 0.1 sec). The filled marks shows
the results using the exact header dis-
tribution.

0.01

0.1

0.5

prompt .01 sec 1 sec 1 min

C
a
ch

e
m

is
s

ra
ti

o

Delay (sec)

(b) For different delays (update period
30sec, sampling 1:10). Prompt means the
new rule set is computed and loaded in
zero time.

0.01

0.1

0.5

1:1 1:10 1:100 1:1000

C
a
ch

e
m

is
s

ra
ti

o

Sampling rate

n = 32 n = 128 n = 512

(c) For different sampling rate (load time
0.1 sec, update period 5 sec).

Figure 7: The performance of the classifier prototype on BME FIB and trace.

distribution and shown with filled marks. In general longer
update periods always results in lower approximate ratio.

We also investigated the effect of the load time of the fast
classifier. We model the delay as the sum of the rule compu-
tation time and the time it takes to load a new set of rules
to the fast classifier. Fig. 7(b) shows the approximation
ratio as a function of the delay. Longer delays result in per-
formance degradation as the header distribution changes in
time. In our observation the prototype was little sensitive
to the time of loading a new rule set to the fast classifier.
Fig. 7(c) illustrates how the sampling rate affects the per-
formance. Larger but reasonable cache miss ratios can be
observed also for low sampling rates.

10. RELATED WORK
Compression of packet classifiers as well as of Forwarding

Information Bases (FIBs) is a well studied problem. The
problem was considered for a wide range of memories. The
ORTC algorithm [20] obtains an optimal representation of
a longest prefix match (LPM) classifier in the minimal pos-
sible number of prefix rules. A similar approach called FIB
aggregation [28] suggests aggregating rules with the same
action. Similar techniques are described in [29,30]. Entropy
bounds on the size of an LPM-based classifier and algorithms
to obtain them were presented in [21]. [14] discussed how to
reduce the width of a classifier by eliminating some of its
fields. Codes for fixed-width memories have been described
in [31,32].

In particular, the problem of dealing with the limited size
of TCAMs has been well studied. A wide range of memory-
efficient representations of classifiers in TCAMs have been
suggested [33–37]. For instance, the compression can be
achieved by eliminating redundant rules [13], by learning
the interactions between different rules [14, 15], or by per-
forming block permutation [16]. There is a special interest in
developing efficient TCAM coding schemes for range-based
classification rules [17–19,38–40].

The concept of using slow and fast classifiers for rule
caching is not new [9, 10]. In an LPM-based classification,
the existence of a matching rule for an incoming packet
among the set of cached rules does not necessarily mean

that this is the correct rule, since there might exist a longer
matching rule among the non-cached rules. [41] described
schemes for selecting a subset of rules that avoids this phe-
nomenon, known as the cache hiding problem. [42] tackled
the same problem by introducing rule caching for fast line
cards wakeup. [27] described a system that caches the most
popular rules in a small TCAM while handling the others
in software. A recent approach suggested distributing the
rules of a classifier among several limited-size TCAMs in the
network [43–45].

11. CONCLUSIONS
In this paper, we have described a lossy compression ap-

proach for limited-size classification modules, in particular
TCAMs. We have presented different similarity metrics for
classifiers and developed algorithms that find optimal clas-
sifiers under different constraints. In particular, we have
presented a scheme in which a special indication is always re-
turned for headers that cannot be classified correctly. Then,
a correct classification can be achieved by accessing the net-
work controller or another memory level. We have explained
how the approach can be applied to a wide range of classifiers
within different modules. Extensive experiments showed a
significant reduction in the size of real classifiers based on
real campus traffic.

12. ACKNOWLEDGMENT
We thank our shepherd Srinivas Kadaba, the anony-

mous reviewers, Ronaldo A. Ferreira, Jennifer Gossels, Isaac
Keslassy, Gabor Rétvári, Jennifer Rexford, Muhammad
Shahbaz for their helpful suggestions as well as to Péter
Megyesi for setting up the measurements.

APPENDIX
Proof of Observation 1: An exact representation obtains an
approximation ratio of 1 for both problems. If such an exact
representation does not exist (n < n0), consider an optimal
encoding for the second problem. It must include at least
one rule with ‘?‘ that matches at least one header. Based on
this encoding, we can simply obtain a solution for the first

48



problem that achieves a larger approximation ratio. To do
so, we replace the action of ‘?‘ in such a rule by an action in
A that corresponds to one of the headers with a first match
in that rule. Such a change does not affect any header that
was originally classified correctly, while at least one header
previously mapped to ‘?‘ is now classified to its required
action.

Proof of Lemma 1: Any header that had a longest match
in one of the rules other than Sj → aj will have a longest
match in the same rule after removing rule Sj → aj .

Proof of Theorem 1: In such a classifier, a header that was
classified correctly by having a longest match in a selected
rule will have again a longest match in the same rule and will
be classified correctly again. In addition, all headers that
had no much in any of the n0 will again have no much in the
subset of rules. Such rules are mapped to the default action
in both cases. The last lower bound is deduced by a simple
lower bound on the average of the largest n popularities and
the consideration of the probability that a header does not
match any rule.

Proof of Observation 2: Consider an encoding with n rules
S1 → a1, . . . , Sn−1 → an−1,−/0→ ‘?‘ composed of the n−1
longest rules in the encoding of Cα and a last default rule
that returns ‘?‘. It classifies correctly all headers matching
one of these n − 1 longest rules in the exact encoding with
n0 rules and therefore achieves an approximation ratio of
Σi∈[1,n−1]p

i. This encoding is legal since it returns ‘?‘ for
any other header.

Proof of Lemma 2: Consider an encoding φ(r, n + 1, a−)
that obtains the approximation ratio g(r, n+1, a−). In such
an encoding the last rule of the form r → a− is redundant
since a− is the default action. By eliminating this rule we
can have an encoding of n rules that achieves the same ratio
and therefore G(n, α, P ) ≥ g(r, n+ 1, a−). Likewise, for any
encoding with n rules that obtains G(n, α, P ) we can add
a rule of the form r → a− while still obtaining the same
approximation ratio. This is a legal encoding for g(r, n +
1, a−). Thus we also have that G(n, α, P ) ≤ g(r, n + 1, a−)
and the equality is satisfied.

Proof of Lemma 6: For a monochromatic node y an en-
coding of the form y → a is legal if a ≥ ay and achieves
an approximation ratio greater than zero only if a = ay.
Likewise, a legal encoding for a non-leaf node y can be com-
bined by the merging of legal encodings for the two subtrees
regardless of the specific optimization function.

Proof of Lemma 7: The proof is similar to the proof of the
previous lemma with the following change: For a monochro-
matic node y the encoding y → ay with a single rule has a
dissimilarity of 0, while an encoding of the form y → a for
a 6= ay has a dissimilarity of |a− ay| · py.

Proof of Lemma 8: Again, the proof is similar to the pre-
vious proofs. To avoid an illegal encoding of the form y → a
for the monochromatic node y when a < ay, we set the value
of the function o(y, 1, a) to be ∞.

A. REFERENCES
[1] Igor Gashinsky. Datacenter scalability panel. In North

American Network Operators Group, NANOG 52, 2011.

[2] Dave Meyer, Lixia Zhang, and Kevin Fall. Report from the
IAB Workshop on Routing and Addressing. In RFC 4984,
IETF, 2007.

[3] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese,
Nick McKeown, Martin Izzard, Fernando Mujica, and Mark
Horowitz. Forwarding metamorphosis: Fast programmable

match-action processing in hardware for SDN. In ACM
SIGCOMM, 2013.

[4] Kostas Pagiamtzis and Ali Sheikholeslami.
Content-addressable memory (CAM) circuits and
architectures: A tutorial and survey. IEEE Journal of
Solid-State Circuits, 41(3):712–727, 2006.

[5] Yadi Ma and Suman Banerjee. A smart pre-classifier to
reduce power consumption of TCAMs for multi-dimensional
packet classification. In ACM SIGCOMM, 2012.

[6] Nadi Sarrar, Steve Uhlig, Anja Feldmann, Rob Sherwood,
and Xin Huang. Leveraging Zipf’s law for traffic offloading.
Computer Communication Review, 42(1):16–22, 2012.

[7] Chuck Fraleigh, Sue Moon, Bryan Lyles, Chase Cotton,
Mujahid Khan, Deb Moll, Rob Rockell, Ted Seely, and S. C.
Diot. Packet-level traffic measurements from the Sprint IP
backbone. IEEE Network, 17(6):6–16, 2003.

[8] Marina Fomenkov, Ken Keys, David Moore, and KC Claffy.
Longitudinal study of Internet traffic in 1998-2003. In
WISICT, 2004.

[9] Huan Liu. Routing prefix caching in network processor
design. In ICCCN, 2001.

[10] Bryan Talbot, Timothy Sherwood, and Bill Lin. IP caching
for terabit speed routers. In IEEE Globecom, 1999.

[11] David Huffman. A method for the construction of minimum
redundancy codes. Proc. IRE, 40(9), 1952.

[12] Jacob Ziv and Abraham Lempel. Compression of individual
sequences via variable-rate coding. IEEE Transactions on
Information Theory, 24(5):530–536, 1978.

[13] Alex X. Liu, Chad R. Meiners, and Yun Zhou. All-match
based complete redundancy removal for packet classifiers in
TCAMs. In IEEE Infocom, 2008.

[14] Kirill Kogan, Sergey I. Nikolenko, Ori Rottenstreich,
William Culhane, and Patrick Eugster. Exploiting order
independence for scalable and expressive packet classification.
IEEE/ACM Trans. Netw., 2015.

[15] Eric Norige, Alex X. Liu, and Eric Torng. A ternary
unification framework for optimizing TCAM-based packet
classification systems. In ACM/IEEE ANCS, 2013.

[16] Rihua Wei, Yang Xu, and H. Jonathan Chao. Block
permutations in boolean space to minimize TCAM for packet
classification. In IEEE Infocom Mini-Conference, 2012.

[17] Hao Che, Zhijun Wang, Kai Zheng, and Bin Liu. DRES:
Dynamic range encoding scheme for TCAM coprocessors.
IEEE Trans. Computers, 57(7):902–915, 2008.

[18] Anat Bremler-Barr and Danny Hendler. Space-efficient
TCAM-based classification using Gray coding. IEEE Trans.
Computers, 61(1):18–30, 2012.

[19] Yeim-Kuan Chang, Chun-I. Lee, and Cheng-Chien Su.
Multi-field range encoding for packet classification in TCAM.
In IEEE Infocom Mini-Conference, 2011.

[20] Richard Draves, Christopher King, Srinivasan
Venkatachary, and Brian Zill. Constructing optimal IP
routing tables. In IEEE Infocom, 1999.

[21] Gábor Rétvári, János Tapolcai, Attila Korösi, András
Majdán, and Zalán Heszberger. Compressing IP forwarding
tables: towards entropy bounds and beyond. In ACM
SIGCOMM, 2013.

[22] Gregory K. Wallace. The JPEG still picture compression
standard. Commun. ACM, 34(4):30–44, 1991.

[23] Didier Le Gall. MPEG: A video compression standard for
multimedia applications. Commun. ACM, 34(4):46–58, 1991.

[24] Michael Nilsson. The audio/Mpeg Media Type. RFC 3003,
2000.

[25] Recep Ozdag. Intel R©Ethernet Switch FM6000
Series-Software Defined Networking. Intel Coroporation, 2012.

[26] Subhash Suri, Tuomas Sandholm, and Priyank Ramesh
Warkhede. Compressing two-dimensional routing tables.
Algorithmica, 35(4):287–300, 2003.

[27] Naga Katta, Omid Alipourfard, Jennifer Rexford, and
David Walker. Rule-Caching algorithms for Software-Defined
Networks. Technical report, Princeton University, 2014.

49



[28] Xin Zhao, Yaoqing Liu, Lan Wang, and Beichuan Zhang.
On the aggregatability of router forwarding tables. In IEEE
Infocom, 2010.

[29] Zartash Afzal Uzmi, Markus Nebel, Ahsan Tariq, Sana
Jawad, Ruichuan Chen, Aman Shaikh, Jia Wang, and Paul
Francis. SMALTA: practical and near-optimal FIB
aggregation. In ACM CoNEXT, 2011.

[30] Yaoqing Liu, Xin Zhao, Kyuhan Nam, Lan Wang, and
Beichuan Zhang. Incremental forwarding table aggregation. In
IEEE Globecom, 2010.

[31] Ori Rottenstreich, Marat Radan, Yuval Cassuto, Isaac
Keslassy, Carmi Arad, Tal Mizrahi, Yoram Revah, and
Avinatan Hassidim. Compressing forwarding tables for
datacenter scalability. IEEE Journal on Selected Areas in
Communications (JSAC), 32(1):138 – 151, 2014.

[32] Ori Rottenstreich, Amit Berman, Yuval Cassuto, and Isaac
Keslassy. Compression for fixed-width memories. In IEEE
ISIT, 2013.

[33] Chad R. Meiners, Alex X. Liu, and Eric Torng. TCAM
Razor: A systematic approach towards minimizing packet
classifiers in TCAMs. In IEEE ICNP, 2007.

[34] Chad R. Meiners, Alex X. Liu, and Eric Torng. Bit
Weaving: A non-prefix approach to compressing packet
classifiers in TCAMs. IEEE/ACM Trans. Networking,
20(2):488–500, 2012.

[35] Anat Bremler-Barr, David Hay, Danny Hendler, and Boris
Ferber. Layered interval codes for TCAM based classification.
In IEEE Infocom, 2009.

[36] Chad R. Meiners, Alex X. Liu, and Eric Torng. Topological
transformation approaches to TCAM-based packet
classification. IEEE/ACM Trans. Networking, 19(1):237–250,
2011.

[37] Alexander Kesselman, Kirill Kogan, Sergey Nemzer, and
Michael Segal. Space and speed tradeoffs in TCAM
hierarchical packet classification. J. Comput. Syst. Sci.,
79(1):111–121, 2013.

[38] Ori Rottenstreich and Isaac Keslassy. On the code length
of TCAM coding schemes. In IEEE ISIT, 2010.

[39] Ori Rottenstreich and Isaac Keslassy. Worst-case TCAM
rule expansion. In IEEE Infocom Mini-Conference, 2010.

[40] Ori Rottenstreich, Isaac Keslassy, Avinatan Hassidim,
Haim Kaplan, and Ely Porat. Optimal In/Out TCAM
encodings of ranges. IEEE/ACM Trans. Netw., 2015.

[41] Yaoqing Liu, Syed Obaid Amin, and Lan Wang. Efficient
FIB caching using minimal non-overlapping prefixes.
Computer Communication Review, 43(1):14–21, 2013.

[42] Tian Pan, Ting Zhang, Junxiao Shi, Yang Li, Linxiao Jin,
Fuliang Li, Jiahai Yang, Beichuan Zhang, and Bin Liu.
Towards zero-time wakeup of line cards in power-aware
routers. In IEEE Infocom, 2014.

[43] Yossi Kanizo, David Hay, and Isaac Keslassy. Palette:
Distributing tables in software-defined networks. In IEEE
Infocom, 2013.

[44] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David
Walker. Optimizing the ”one big switch” abstraction in
software-defined networks. In ACM CoNEXT, 2013.

[45] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia

Wang. Scalable flow-based networking with DIFANE. In ACM

SIGCOMM, 2010.

50


