
Rethinking Packet Classification for Global
Network View of Software-Defined Networking

Takeru Inoue∗, Toru Mano∗, Kimihiro Mizutani∗, Shin-ichi Minato†, Osamu Akashi∗,
∗NTT Network Innovation Laboratories, Yokosuka 239–0847, Japan

Email: takeru.inoue@ieee.org
†Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060–0814, Japan

Abstract—In software-defined networking, applications are
allowed to access a global view of the network so as to provide
sophisticated functionalities, such as quality-oriented service
delivery, automatic fault localization, and network verification.
All of these functionalities commonly rely on a well-studied
technology, packet classification. Unlike the conventional classifi-
cation problem to search for the action taken at a single switch,
the global network view requires to identify the network-wide
behavior of the packet, which is defined as a combination of
switch actions. Conventional classification methods, however, fail
to well support network-wide behaviors, since the search space
is complicatedly partitioned due to the combinations.

This paper proposes a novel packet classification method that
efficiently supports network-wide packet behaviors. Our method
utilizes a compressed data structure named the multi-valued
decision diagram, allowing it to manipulate the complex search
space with several algorithms. Through detailed analysis, we
optimize the classification performance as well as the construction
of decision diagrams. Experiments with real network datasets
show that our method identifies the packet behavior at 20.1 Mpps
on a single CPU core with only 8.4 MB memory; by contrast,
conventional methods failed to work even with 16 GB memory.
We believe that our method is essential for realizing advanced
applications that can fully leverage the potential of software-
defined networking.

Index Terms—packet classification, software-defined network-
ing, decision diagrams

I. INTRODUCTION

Software-Defined Networking (SDN) [1] is a new paradigm

that separates the control and forwarding planes in a network.

The control plane, which is operated by a logically centralized

controller, provides a global view of the distributed network

state. This global view allows SDN applications running on

the control plane to readily identify network-wide packet
behaviors, e.g., which path the packet traverses, whether the

packet is discarded in the network, and what actions the packet

is subjected to at middle boxes. Many applications have been

developed that utilize the network-wide packet behavior to

offer sophisticated functionalities.

• In quality-oriented services [2] and an upcoming infras-

tructural paradigm called “network fabric” (separation of

intelligence from the network core) [3], [4], the network

edge is assumed able to determine the network-wide

behavior for every incoming packet.

• Reference [5] proposed an automatic fault localization

technique that exploits the differences between actual

packet behavior monitored in the network and the the-

oretical behavior estimated from the global view.

• References [6]–[11] estimate the network-wide packet

behavior from the network status, in order to verify

conformity with a network policy.

An method that can efficiently determine the network-wide

behavior of a packet is essential to successfully implementing

these advanced applications; they cannot work if only the

action to be taken at a single switch can be identified.

A. Summary and Limitations of Prior Art

Packet classification [12]–[20], a functionality that deter-

mines the action taken on a packet based on multiple header

fields, has been a key technology in modern networks to pro-

vide services beyond basic packet forwarding, such as access

control, quality of services, and traffic monitoring and analysis.

Packet classification has been extensively studied in the past

fifteen years, and the state-of-the-art method [16] looks up

large classifiers with tens of thousands of rules very efficiently.

These well-studied methods are, however, easily overwhelmed

by the complexity of handling network-wide behaviors. This

is because, as shown in Fig. 1, network-wide behavior is

defined as the combinations of switch actions. Our preliminary

experiments on the Stanford backbone network [10], which is a

medium-scale network with 16 switches, 757,170 forwarding

rules, and 1,584 ACL rules, revealed that the classification

method of [16] fails to construct a classifier of the network-

wide behaviors, exhausting the available computer memory

of 16 GB. The main cause of this failure is that the search

space defined by the packet header was partitioned into a huge

number of blocks; 652 million rules were required to express

the complicated space, but the conventional methods baulk at

this number.

In order to efficiently handle such a complicated partitioned

space, some network verifiers [6]–[8] employ Binary Decision

Diagrams (BDDs) [21], which are a compressed data structure

designed to represent Boolean functions. Due to the great

space efficiency of BDDs, only 6.6 MB memory was required

to represent the Stanford backbone in our experiments. How-

ever, a behavior must be looked up by linear search which is

impractically slow; considering the several Boolean functions

represented in BDDs, each of which maps the header space

exclusively to a network-wide packet behavior, these functions

must be tested individually to determine the packet behavior978-1-4799-6204-4/14$31.00 c©2014 IEEE

2014 IEEE 22nd International Conference on Network Protocols

978-1-4799-6204-4/14 $31.00 © 2014 IEEE

DOI 10.1109/ICNP.2014.52

296

Field1� Field2� Action�
*� [3,4]� Drop�
[4,5]� *� A1�
[6,7]� *� A3�
[0,3]� *� A2�

A1�

Field1�

Fi
el

d2
�

0� 7�
0�

7�

Drop�

A2� A1� A3�

Actions at switches�

Network-wide packet behaviors�

B�
A2�

A3�

Field1� Field2� Action�
[0,3]� [2,5]� B2�
[4,5]� *� B1�
[7,7]� [1,3]� B3�
*� *� Drop�

Field1� Field2� Action�
[2,2]� [1,3]� C2�
[4,5]� *� C1�
[6,7]� *� C3�
*� *� Drop�

Example network�

B1�
B2�

B3�
C3�

C2�

C1�

A� B� C�

A� C�

I�

Field1�

Fi
el

d2
�

0� 7�
0�

7�

B2�
B3�

Field1�

Fi
el

d2
�

0� 7�
0�

7�

C
2�

C1�C3�

Drop� Drop�

Field1�

Fi
el

d2
�

0� 7�
0�

7� Drop�

B1�

I�
II�
III�IV�

V�
VI�

VII�

VIII�

IX�

X�
XI�

XII�

A� B� C�II�

A� B� C�III�

XII�

:�

A� B� C�

Fig. 1. Search space defined by packet header and network-wide packet
behaviors. The example network at the top includes three switches (A, B,
and C), each of which has three ports. Each switch has a table that maintains
several rules, and each rule associates two header fields (field1 and field2 of
3-bit) with actions. The two-field header space (a square) is divided into only
seven blocks at switch A, but it is partitioned into 17 blocks for the twelve
network-wide behaviors as shown in the bottom.

(e.g., in Fig. 1, twelve Boolean functions have to be tested

one by one). In our experiments on the Stanford backbone,

which has 1,093 network-wide behaviors, only 5.78 Kpps was

achieved with BDDs. Classification throughput should exceed

10 Mpps in order to examine packets at line rate on 10 Gbps

links.

As discussed so far, no method has been introduced that can

identify network-wide packet behavior with the necessary time

and space efficiency. This deficiency imposes the following

limitations on the SDN applications discussed earlier on.

• Quality-oriented services and network fabric cannot be

realized in a complex network like the Stanford back-

bone, whose complicated network-wide packet behaviors

cannot be maintained by network edge switches using

conventional classification methods.

• Reference [5] only employs predefined test packets for

failure detection, since it is hard for conventional methods

to identify the theoretical network-wide behavior for arbi-

trary packets; this restriction might hinder the resolution

of faulty behaviors of production traffic.

• References [6]–[11] can test only a few properties every

few msec, which may cause serious policy violations to

be overlooked if a lot of properties have to be checked

in real-time.

Similar limitations are faced by other applications. In addition,

the limitations will hinder the advent of more advanced SDN

applications. To remove the limitations and leverage the full

potential of SDN, it is imperative to develop a new clas-

sification method satisfying the following requirements; the

complicated header space of network-wide packet behaviors

should be represented compactly enough to fit within a fast

cache memory, and packets at the rate of beyond 10 Mpps

should be classified based on their network-wide behavior.

Rapid construction and update of classifiers are also appre-

ciated.

B. Our Contributions
This paper proposes a novel packet classification method

that meets the above requirements. Our idea is simple but

very effective. Boolean functions, each of which is associated

with a single behavior, are unified into a single multi-valued
function representing a whole classifier by itself. This multi-

valued function is represented by a data structure named the

multi-valued decision diagram (MDD) [22], a variant of BDD.

Since this unification removes the slow linear search from the

classification process, the throughput can be greatly improved

while maintaining the space-efficiency of BDDs.
Our method is two-fold.

• An efficient algorithm that constructs the MDD from a

set of BDDs representing Boolean functions, is presented.

The construction process is analyzed and optimized by

reducing it to Huffman coding. Upon receipt of a new

packet behavior, the MDD can be incrementally updated

in a short time.

• A very simple and fast algorithm examines the MDD

to classify packets based on their behaviors. Another

algorithm further accelerates the classification process by

regarding a bunch of header bits as a single variable.

The time-space tradeoff entailed in the bit aggregation is

analyzed.

Our method is evaluated with three real network configura-

tions: Internet21, Stanford backbone network [10], and Purdue

campus network [23]. In the case of Stanford, the MDD

only requires 8.4 MB of memory, which fits within fast CPU

cache. The classification throughput is 20.1 Mpps on a single

CPU core, nearly 3,500 times faster than conventional BDD

methods. The MDD is constructed in 0.93 sec, and a new

behavior can be added just in 29 msec2.
Our method does not require any special hardware support

like TCAMs, and can be applied to any use case without signif-

icant difficulties. In this paper, our method is implemented as

a fully software-based classifier assuming its use in software-

based SDN applications, but it is so simple that it can be

realized as a hardware-based system.

1http://vn.grnoc.iu.edu/Internet2/fib/
2Simple applications like a MAC learning switch, which is often used as

an example of OpenFlow applications, are required to update flow tables in a
shorter interval by reacting a packet. We, however, consider 29 msec is well
acceptable for packet classification on multiple header fields, since flow tables
are ruled by more complicated policies in this case on a longer time-scale.

297

The rest of this paper is organized as follows. After defining

our problem in Section II, Section III reveals deficits of con-

ventional methods. Section IV designs our method, and Sec-

tion V elaborates algorithms used in the method. Section VI

reports the experiments and their results, and Section VII

discusses application aspects. Section VIII summarizes related

work, and Section IX concludes this paper.

II. PROBLEM STATEMENT

The logical search space defined by the L-bit packet header

is denoted by X = {0, 1}L, and is called the header space [10]

(e.g., a square in Fig. 1 represents a header space of L = 3+3).

Packet header x corresponds to a point in the header space,

x ∈ X . The protocol-specific semantics of the packet header

are ignored in our method, and a packet header is considered

as a flat sequence of bits.

The header space is partitioned into equivalent subspaces,

each of which corresponds exclusively to a single behavior

(e.g., the bottom square of Fig. 1 has twelve equivalent

subspaces). An equivalent subspace is not necessarily contin-

uous, and can consist of several blocks, where block is used

to specify a continuous subspace. Let Xi be an equivalent

subspace that maps to the i-th behavior, the subspace is defined

as,

Xi = {x ∈ X : fi(x) = �},
where fi(x) is a Boolean function indicating whether a packet

with header x follows the i-th behavior, fi : X → {⊥,�},
and ⊥ is false and � is true. Since equivalent subspaces are

mutually exclusive, Xi ∩ Xj = ∅ (i �= j), and collectively

exhaustive,
⋃

i Xi = X , they form a partition of header space

X , P , as follows,

P = {XI, XII, · · · , X|P |}.
The equivalent subspaces, Xi’s, and corresponding Boolean

functions, fi’s, are obtained by utilizing switch actions as

follows [8]. Given P1 and P2 as arbitrary partitions of X ,

we define operation ⊗ as,

P1 ⊗ P2 = {X ∩ Y : X ∈ P1, Y ∈ P2, X ∩ Y �= ∅}.
Using this operation, the whole header space is then parti-

tioned into equivalent subspaces as follows,

P =
⊗
j

Pj , (1)

where Pj is a partition defined by the actions of the j-th

switch (e.g., a square in the middle of Fig. 1)3. This operation

divides the header space into several blocks, which become

combinatorially finer (e.g., the bottom square is much finer

than middle squares in Fig. 1). In other words, intersecting

rules of different switches spawn new blocks to distinguish

network-wide behaviors, while rules on a single switch are

simply masked by higher-priority rules if intersected.

3Note that these partitions, Pj ’s, might be given for each port as well as
each switch, depending on network configuration.

Multi-valued function F is defined by,

F : X → {nil, I, II, · · · , |P |},
where F (x) = i if and only if header x is in the i-th equivalent

subspace, x ∈ Xi. A multi-valued function that cannot be “nil”

is called a complete multi-valued function, and can be used as

a packet classifier.
Our goal in this paper is to construct an efficient data

structure representing a complete multi-valued function, F ,

given a set of Boolean functions, fi’s.

III. INEFFICIENCIES OF CONVENTIONAL PACKET

CLASSIFICATION METHODS

This section identifies why conventional packet classifica-

tion methods fail to support network-wide packet behaviors.

There are two major conventional approaches; algorithmic

methods [12]–[16] usually construct a decision tree to repre-

sent the header space, while architectural methods [17]–[20]

often try to reduce the number of rules to fit them in space-

limited TCAMs. These conventional methods commonly de-

pend on the following assumption; the header space is a multi-

dimensional space defined by each header field (not each bit

like our definition), and it is covered by a set of hypercubes,

where a hypercube is a convex block defined by a range

or prefix in each field. To resolve possible conflicts among

hypercubes, they are given an overall total order. Normally,

hypercubes are specified by a list of “5-tuple” rules (i.e.,

source/destination IP, source/destination port, and protocol).
The computational complexity of both conventional ap-

proaches depends on the number of hypercubes, as follows.

• In a decision tree, the root node represents the whole

header space, which is recursively divided at every in-

termediate node until a few rules are left at a leaf

node. The space complexity is known as O(ND) for

O(logN) classification time [24], where N is the number

of hypercubes and D is the number of header fields.

The required space in practice could be smaller than this

worst-case bound, but it still depends on the number of

hypercube rules because the decision tree must be large

enough to divide the rule set into several subsets with a

few rules.

• Rule reduction methods reduce the number of hypercube

rules by merging those of the same action into a single

large hypercube; in the following example, the left set of

hypercube rules is reduced to the right set.
IP destination Action
0.0.0.0/3 Drop
32.0.0.0/3 A1
64.0.0.0/2 Drop
128.0.0.0/1 Drop

IP destination Action
32.0.0.0/3 A1
0.0.0.0/0 Drop

The time complexity of TCAM razor, the most-

cited rule reduction method, is roughly considered

to be O(DNAL2), where A is the number of ac-

tions/behaviors, since it performs dynamic programming

of O(NAL2) [25] for each header field.

The number of hypercubes, N , is examined for the three

real networks (the statistics are given in Section VI). To our

298

knowledge, there is no technique that can calculate a set

of hypercubes to represent a header space of network-wide

behavior, and so hypercubes are extracted from BDDs of fi’s.

Internet2 Stanford Purdue
of hypercubes 35,700 652,115,821 834,648,394

The numbers for Stanford and Purdue networks are extremely

large. This is because Stanford and Purdue include multi-

field rules, which incurs the curse of dimensionality [26].

Internet2 dataset includes single-field rules only, and so it has

a moderate number of hypercubes.

Against these networks, we evaluate three conventional

methods: two decision tree methods, HyperCuts [12] and

HybridCuts [16], and one rule reduction method, TCAM

razor [18]. Open-source implementations were available for

HyperCuts4 and HybridCuts5, while our own implementation

was developed for TCAM razor. As shown in the following

table, the single success was achieved by HybridCuts for

Internet2; otherwise, the conventional methods exhausted 16

GB memory or did not finish in a half hour.

Internet2 Stanford Purdue
HyperCuts fail (memory) fail (memory) fail (memory)
HybridCuts success fail (memory) fail (memory)
TCAM razor fail (timeout) fail (timeout) fail (timeout)

To recap, although the header space of network-wide be-

havior requires a huge number of hypercube rules to represent

it, the computational complexity of conventional methods

is directly dependent on the number. In order to remove

this dependency, our method should be constructed from a

compressed representation like BDDs where individual rules

do not need to be examined.

IV. ABSTRACT PROCEDURE OF PROPOSED METHOD

This section describes the abstract procedure of our method;

algorithms to implement the procedure are given in Section V.

Our method, first, builds incomplete multi-valued function

Fi from the Boolean function of the i-th behavior, fi. Function

Fi maps the header space to just the i-th behavior, as follows,

Fi : X → {nil, i},
where Fi(x) = i if fi(x) = �, or Fi(x) = nil otherwise.

Since two equivalent subspaces, Xi and Xj (i �= j), are

mutually exclusive, two incomplete multi-valued functions, Fi

and Fj , never define behaviors for the same packet header;

i.e., ∀x ∈ X , Fi(x) = nil∨Fj(x) = nil. These two incomplete

multi-valued functions can be unified into a single one without

conflict, by introducing the following unification operation,

Fi(x) � Fj(x) =

⎧⎪⎨
⎪⎩
Fi(x) if Fj(x) = nil,

Fj(x) if Fi(x) = nil,

undefined otherwise.

(2)

This operation is clearly associative and commutative.

4http://hypercuts.masicek.net/, by Charles University.
5http://github.com/lwj4333765/HybridCuts, by the authors of HybridCuts.

F�

Construction� fI� fII� ...� f|P|�

Functions� Representations�

FI� FII� ...� F|P|�� F � F � F

F(K)�

Unification�

Bit aggregation�

Update�

BDDs�

MDDs�

f ’�

F ’�

F’ (K)�� F(K)�

(new rule)� BDDs�

MDDs�Bit aggregation�

Fig. 2. Flowchart of classifier construction and update in our method.

Performing this operation over multi-valued functions of all

the behaviors yields the multi-valued function of classifier,

F (x), as follows,

F (x) =

|P |⊎
i=I

Fi(x). (3)

Since the equivalent subspaces are collectively exhaustive,

F (x) is complete, that is, ∀x ∈ X , F (x) �= nil.
To incrementally update classifier F , we consider that rules

of another multi-valued function, F ′, would be inserted above

the original rules. More formally, F (x) is overwritten by

F ′(x) just in the subspace X ′ in which F ′(x) is defined,

∀x ∈ X ′, F ′(x) �= nil. This update operation is defined as,

F ′(x)� F (x) =

{
F ′(x) if F ′(x) �= nil,

F (x) otherwise.
(4)

Note that update operation � is equivalent to unification

operation � when the latter operation is defined, but this paper

distinguishes them for clarity.

In order to accelerate the packet classification process, a

multi-valued function in which continuous K bits are aggre-

gated into a single variable is defined as follows,

F (K) : {0, 1, · · · , 2K − 1} L
K → {nil, I, II, · · · , |P |}.

Necessarily, F (K)(x) = F (x), ∀x ∈ X . This paper uses F (K)

only when it has to be specified by K, or uses simply F
otherwise.

Last, the construction and update procedures of our method

are summarized as a flowchart in Fig. 2.

• In classifier construction, Boolean functions mapped to

behaviors, fi’s, are converted to multi-valued functions,

Fi’s, which are unified into the multi-valued function

299

of classifier, F , and further converted to F (K) by bit

aggregation.

• To incrementally update classifier F (K), new rule f ′ is

converted into F ′(K) through bit aggregation, and then

inserted to the classifier.

V. ALGORITHMS IN PROPOSED METHOD

Given a set of BDDs representing Boolean functions, fi’s,

which are obtained using existing techniques like [8], the

algorithms proposed in this section construct the MDD of

F (K). After reviewing decision diagrams in Section V-A,

Section V-B analyzes the unification and update operations

performed on MDDs. Section V-C introduces the bit aggrega-

tion algorithm, and Section V-D proposes a search algorithm

for the packet classification.

A. Decision Diagrams

As shown in Fig. 3 (left), a BDD [21] is an acyclic directed

graph with a single root node and two terminal nodes, ⊥ and

�. Each non-terminal node is labeled as b-th bit in the header,

b ∈ [0, L−1], and it has two labeled arcs, 0-child and 1-child,

each of which indicates the b-th bit is 0 or 1. A path from the

root to a terminal corresponds to a packet header, x, or a set

of headers (a hypercube) when some bits are skipped (e.g.,

the red BDD path in Fig. 3, on which the fifth bit is skipped,

expresses a hypercube of 01011∗). The terminal node at the

end of path indicates the value of f(x). The maximum height,

or the longest path, is L. Common prefix and suffix are shared

among paths for compression (e.g., two paths, 00 ∗ 11∗ and

01111∗, share their prefix 0 and suffix 11∗ in Fig. 3); it is

believed that BDDs are well compressed for most practical

functions [27]. The size of BDD is defined as the number of

non-terminal nodes in it, and the size is denoted by ||f || if the

BDD represents function f .

An MDD [22], which is shown in Fig. 3 (right), is also an

acyclic directed graph with a single root, but it can have more

than two terminal nodes, nil, I, II, · · · , |P |. Each non-terminal

node is labeled by aggregated bits, and it can have more than

two children arcs, 0, 1, · · · , 2K − 1. The maximum height is

L/K. Other properties are the same as those of BDD.

In our method, a BDD is used to represent a Boolean

function that maps the header space to a single packet be-

havior, while an MDD is used to express a multi-valued

function. BDD of fi(x) is easily converted to MDD of Fi(x),
by replacing ⊥- and �-terminals with nil- and i-terminals,

respectively. The time complexity of this operation is clearly

constant, O(1). MDD size is obviously the same as BDD size,

i.e., ||Fi|| = ||fi||.

B. Unification and Update Operations

1) CASE Algorithm: Reference [22] defines an efficient

algorithm named CASE that performs arbitrary operations over

two operand MDDs and constructs the resulting MDD. This

CASE algorithm allows our method to apply operations � and

� to multi-valued functions so as to calculate (2) and (4).

FIV�FV�

6�||Fi|| = �

FVI�FXI�

6� 6� 6�

FVII�FVIII�

7�

FXII�FI�

7� 7� 9�

FII� FIII�

9�

FX� FIX�

9� 9� 10�

F(x)�

� FFIV� FV�

(FIV� FV)� (FVI� FXI)�� F � F � F

Fig. 4. Huffman tree representing the optimal calculation order of (3) for
Fig. 1. Leaf nodes are MDDs of Fi’s, while internal nodes represent �
operations. The MDD sizes, ||Fi||’s, are shown at the bottom.

The worst-case MDD size can be quite large, ||A�B|| ≤
||A|| · ||B||, where A and B are multi-valued functions and

� is an arbitrary operator. However, the size is usually

considerably smaller than this worst-case upper bound, closer

to ||A|| + ||B|| [28]; in our experiments, the size was never

greater than the total size of operands, though impractical

counter examples can be considered. This observation yields

the following assumption.

Assumption 1. The size of MDD performing a single opera-
tion is less than or equal to the total size of operand MDDs,

||A�B|| ≤ ||A||+ ||B||. (5)

The time complexity of CASE algorithm is defined by the

number of nodes and that of children per node [22], and so it

is fixed with Assumption 1 as follows,

O(2K(||A||+ ||B||)), (6)

where the algorithm involves ||A|| + ||B|| node creations, at

each of which 2K children are set. Note that A and B must

share a common K to apply CASE algorithm.

2) Unification: The MDD size and time complexity of (3)

is analyzed. Using (5), the MDD size is bounded as follows,

||F || ≤
|P |∑
i=I

||Fi||. (7)

Since operation � is associative and commutative, opera-

tions in (3) can be performed in an arbitrary order. In addition,

the time complexity of each operation in (3) varies depending

on the size of operand MDDs. We can, therefore, optimize the

calculation order.

Theorem 1. The time complexity of (3) optimized with Huff-
man coding is given by,

O

(
2K

|P |∑
i=I

�(Fi)||Fi||
)
, (8)

where �(Fi) is the path length from the root to leaf Fi on the
Huffman tree.

Proof: Since each operation takes only two operands at

a time in the CASE algorithm, the calculation order can be

illustrated as a binary tree, like Fig. 4. Every function Fi on

300

01

1

2

4

3

5 5

4

5

6

123 4 5 6 7 8 910 11 12

1,2

3,4

0

3,4

1

3,4

2

3,4

3

5,6

02

5,6

13 2 1 3

5,6

0

5,6

0 2

5,6

1 3

5,6

0

5,6

1 3

5,6

2

0 123 2310 0 3 2 1 01 2 3 1 2 3 0 01 23 1230 0 3 1 2

BDD of fI� MDD of F(2)�

0� 1�

III� II� I� IV� V� VI� VII� VIII� X� IX� XI� XII�

0�

1�

2�

3�3�

4� 4� 4�

5�

0,1�

2,3� 2,3� 2,3� 2,3�

4,5� 4,5� 4,5� 4,5� 4,5� 4,5� 4,5� 4,5�

Fig. 3. BDD (left) and MDD of K = 2 (right). The BDD represents the Boolean function mapped to behavior “I” of Fig. 1, while the MDD represents the
multi-valued function mapped to all twelve behaviors of Fig. 1. Since consecutive two-bits are aggregated in the MDD, non-terminal nodes are labeled by
the two-bits while arcs are labeled by 0- to 3-child. A packet header of x = 010111 is indicated by the red paths in the both diagrams.

a leaf is used at each internal node up to the root, and so the

time complexity of (3) is bounded by (8) using (6).

The optimal calculation order is given as a binary tree

minimizing (8); this optimization can be regarded as Huffman

coding [29], as leaf MDDs and their sizes are replaced with

symbols and their weights (frequencies), respectively. This

binary tree is also known as a Huffman tree. Note that the

time complexity ignores Huffman tree construction, since it is

negligible compared with MDD operations.

C. Bit Aggregation

This subsection defines the bit aggregation algorithm that

accelerates packet classification. Algorithm 1 constructs the

MDD of F (K) from that of F , by aggregating continuous K
bits into a single variable. Note that in Algorithm 1, F or

F (K) refers to the root node of MDD representing function F
or F (K), not to the function itself. This algorithm recursively

creates MDD nodes by finding their 2K children at K bits

ahead from the node; x′ means K continuous bits from F.b,
where F.b is the smallest bit number labeling node F (e.g.,

F.b = 0 at the root of MDD in Fig. 3). To avoid repeatedly

visiting the same node, visited nodes are cached; this algorithm

assumes that all terminal nodes would have been set to the

cache in advance. The time complexity of this algorithm is

O(2K ||F ||).
Since the maximum height of MDD is shrunk to L/K by bit

aggregation, the worst-case search path length is also reduced

by a factor of K. This is a great acceleration, but there is

a tradeoff between the search time and memory space, as

follows.

We set the following assumption about MDD size.

Assumption 2. The bit aggregation algorithm (Algorithm 1)

Algorithm 1: Aggregate

Input: F
Output: F (K)

if F is non-terminal or F not found in cache then
create F (K)

for x′ ← 0 to 2K − 1 do // x′ is K-bit from F.b
F ′ ← descendant reached by x′ from F
F (K).child[x′]← Aggregate(F ′) // set x′-th
child

cache[F]← F (K)

return cache[F]

shrinks the MDD size by a factor of K,

||F (K)|| ≈ ||F (1)||
K

, (9)

assuming that MDD nodes are roughly equally distributed over
each run of K bits (i.e., bits between [Ki,K(i + 1) − 1],
i ∈ [0, L/K − 1]).

Since the memory requirement of MDD F (K) is given by

the product of MDD size and memory requirement of each

node [30], it is derived with Assumption 2 as follows,

||F (1)||
K

(|b|+ 2K |child|), (10)

where |b| is the width of bit numbers and |child| is that of

child IDs. Given |b| = |child|, the memory requirement is

minimized at K = 2, and increases exponentially for K > 2.

The memory requirement might be reduced by introduc-

ing heterogeneous MDDs [30], in which non-terminal nodes

are allowed to maintain a different number of children and

different number of bits. This heterogeneity is also utilized

301

Algorithm 2: Search

Input: F (K), pkt // pkt is in K-bit array
Output: packet behavior ∈ {I, II, · · · , |P |}
while F (K) is non-terminal do

x′ = pkt[F (K).b/K] // get K-bit from F (K).b

F (K) = F (K).child[x′] // go to next node

return F (K) // terminal node of behavior

by conventional decision tree methods. However, it prevents

efficient MDD traversal introduced in the next subsection, and

so we only use MDDs of uniform K in our method.

D. Packet Classification

Algorithm 2 presents the search algorithm that identifies

the network-wide behavior of a given packet. It simply fol-

lows a path based on the packet. The time complexity is

determined just by the maximum height of F (K), that is,

O(L/K), because this algorithm includes no operation other

than MDD traversal; in contrast, conventional decision tree

methods usually involve linear search at a leaf node to select

a single rule.

This algorithm is also very efficient in terms of imple-

mentation. A packet header is represented as an array of

K-bit elements; i.e., i-th K-bit element on the header can

be accessed by index i, like pkt[i]. The array element itself

becomes a child index without fixing numbers of children

and bits, which makes this algorithm very efficient in actual

implementation. Our algorithm directly handles the raw bit

sequence of the packet header by a K-bit array, and so

the packet does not need to be pre-processed at all; other

implementations might assume that the header fields of interest

would be extracted in advance6.

VI. EXPERIMENTS

This section evaluates our method in terms of memory usage

in Section VI-A, construction and update time in Section VI-B,

and classification throughput in Section VI-C.

Our method was implemented in C++. The parameter of

bit aggregation, K, was chosen from 1, 2, 4, and 8, in order

to align K-bit array elements with bytes. The widths of bit

numbers and child IDs, |b| and |child|, were defined as 32

bits. Our method was compared with HybridCuts [16] as well

as a classification method utilizing BDDs [8]. For HybridCuts,

parameters “binth” and “spfac” were set to eight and four,

which showed the best performance in terms of memory usage

and throughput. Search process was added to the original

implementation by us. The BDD classification method relies

on a set of BDDs of fi’s to determine the network-wide

behavior. It was also implemented in C++ by us.

Configuration datasets of the three real networks, Internet2,

Stanford backbone network [10], and Purdue campus net-

work [23], were employed in the experiments. The network

6For instance, http://www.arl.wustl.edu/∼hs1/PClassEval.html and http://
hypercuts.masicek.net/

TABLE I
STATISTICS OF THREE REAL NETWORKS

Internet2 Stanford Purdue
of switches 9 16 1,646
of ports used 56 58 2,736
of rules (FIB) 126,017 757,170 0
of rules (ACL) 0 1,584 3,605
of header bits of interest 32 88 104
of network-wide packet behaviors 86 1,093 10,353

statistics are shown in Table I7. Configuration rules of FIB

(Forwarding Information Base) specify the destination IP field

only, while those of ACL (Access Control List) are written

as 5-tuple8. Some rules specify the VLAN field, but it was

ignored in our experiments in order to use a packet trace

generator named ClassBench [31], which supports 5-tuple

only. This omission, however, has no significant impact on

our results, because the MDD size is only 20 % larger at

most when the VLAN field is considered.

The experiments were conducted using a single core of

Xeon 3.5 GHz with 8 MB cache and 16 GB main memory

(DELL PowerEdge Server).

A. Memory Usage

Fig. 5 shows the MDD size (the number of nodes in an

MDD). The size was smaller than the total number of nodes

in a set of BDDs, as indicated by (7).

Internet2 Stanford Purdue
of BDD nodes 37,903 547,298 561,635

Fig. 5 shows a good fit with (9), which validates Assumption 2;

the discrepancy is 9.6 % at maximum (Purdue with K = 8).

The amount of memory used by an MDD is shown in Fig. 6,

while the size of each MDD node, |b| + 2K |child|, is given

in the following table (the memory usage of an MDD is the

product of MDD size and node size).

K Node size [B]
1 12
2 20
4 68
8 1028

The memory usage is minimized at K = 2 and increases

exponentially for larger K, as expected by (10), but it still fits

within the CPU cache (8 MB) even for K = 8 in Internet2

and Stanford, and for K = 4 in Purdue. Although the memory

usage is relatively large, 56 MB, at K = 8 in Purdue, the CPU

cache remained viable for this seven-fold data; this issue is

discussed in the throughput evaluation. BDD memory usage

is as follows.

Internet2 Stanford Purdue
BDD memory usage [MB] 0.454 6.568 6.740

7The numbers of network-wide packet behaviors in Table I are somewhat
different from [8]. We are unable to explain this difference, but in the most
complicated Purdue network, our number is greater than that of [8] (3,917)
and so this difference does not favor us.

8Since Purdue network has no FIB rule, network-wide packet behaviors are
defined only at the network edge.

302

1

10

100

1000

0 2 4 6 8 10

M
D

D
 si

ze
 [K

]�

K�

Internet2
Stanford
Purdue

Fig. 5. MDD size. The dotted lines indicate (9).

0.1

1

10

100

0 2 4 6 8 10

M
em

or
y

us
ag

e
[M

B
]

K�

Internet2
Stanford
Purdue

Fig. 6. Memory usage of MDD. The dotted lines indicate (10). The horizontal
line is memory usage of HybridCuts for Internet2.

MDD has smaller memory usage than BDD when K ≤ 4 in

Internet2 and Stanford and K ≤ 2 in Purdue.

HybridCuts successfully constructed a classifier just for

Internet2 as described in Section III, which requires 739 KB

of memory. HybridCuts could be comparable to our method

if the header space was represented by a small number of

hypercubes, but it does not scale with the header space

complexity of network-wide packet behavior.

B. Construction and Update Time

Fig. 7 demonstrates the time to unify BDDs of fi’s into a

single MDD of F (1) by the operations of (3). We evaluated

three calculation orders: the optimal order of Theorem 1,

ascending order (a minimum MDD is added to the current

unified MDD at every step), and random order. As shown in

Fig. 7, the optimal order outperforms the others. Even for the

complicated Purdue network, MDDs were unified just in 6.35

sec, which is usually acceptable as an initial construction; note

that it can be incrementally updated on demand, as is detailed

later.

MDD of F (1) was converted to that of F (K) by the bit

aggregation algorithm presented in Algorithm 1. The aggre-

gation time is shown in Fig. 8. As expected, the time grows

exponentially with K, but it remained under 2.5 sec which is

considered acceptable.

It is worth noting that the calculation time of BDDs is less

than 1 sec according to [8], which has to be added to the total

construction time of our method.

HybridCuts required 2.17 sec to construct a classifier for

Internet2. This is slower than our method with the random cal-

0.001

0.01

0.1

1

10

0 2 4 6 8 10

Ti
m

e
[s

ec
]

K�

Internet2
Stanford
Purdue

Fig. 8. Computation time of bit aggregation. Each point is the average of
10 trials.

1

10

100

1000

0 2 4 6 8 10

Ti
m

e
[m

se
c]

K�

Internet2
Stanford
Purdue

Fig. 9. Computation time to update an MDD. Each point is the average of
100 trials.

culation order, because HybridCuts processes each hypercube

rule individually while our method handles them collectively

in a compressed manner.

For MDD updates, we assume that the packet classifier is

updated by a new rule associated with a new network-wide

behavior. First, the new rule was randomly chosen from the

original rules, and then the MDD of classifier was constructed

from the remaining rules. We finally measured the time to

perform update operation � over the MDDs of new rule and

original classifier. Fig. 9 shows the update time. It is less than

10 msec for Internet2, and less than 30 msec for Stanford.

Even for Purdue with K = 8, the MDD was updated in just

200 msec; these results are entirely acceptable unless time

constraints are extraordinarily severe.

C. Classification Throughput

Traditionally, classification throughput of packet classifica-

tion has been evaluated by the number of memory accesses

per packet. However, modern processors have complicated

architectures with multi-level cache hierarchy, which has a

significant impact on throughput, and so classification through-

put was measured by actually processing packet headers. In

addition to Xeon, classification throughput was also measured

using a single core of Core i7 1.7 GHz with 4 MB cache and 8

GB main memory (Apple Macbook Air), in order to examine

the impact of hardware.

In the experiments, the classification throughput was mea-

sured as follows. First, a million packets with IP and TCP/UDP

headers were generated by ClassBench based on the network

303

0

0.2

0.4

0.6

0.8

Optimal Ascending Random

Ti
m

e
[s

ec
]�

Internet2�

0

5

10

15

20

25

30

Optimal Ascending Random

Stanford�

0.562�
0

500

1000

1500

2000

2500

Optimal Ascending Random

Purdue�

6.35�

Fig. 7. Computation time of MDD unification. Each point is the average of 10 trials.

0

10

20

30

40

50

0 2 4 6 8 10

Th
ro

ug
hp

ut
 [M

pp
s]
�

K�

Internet2�
Average
Worst-case

0

5

10

15

20

25

0 2 4 6 8 10
K�

Stanford�

Average
Worst-case

Xeon�

0

2

4

6

8

10

12

0 2 4 6 8 10
K�

Purdue�

Average
Worst-case

0

1

2

3

4

5

6

0 2 4 6 8 10
K�

Stanford�

Average
Worst-case

0

2

4

6

8

0 2 4 6 8 10

Th
ro

ug
hp

ut
 [M

pp
s]
�

K�

Internet2�

Average
Worst-case

0

1

2

3

4

0 2 4 6 8 10
K�

Purdue�

Average
Worst-case

Core i7�

Fig. 11. Classification throughput measured on Xeon 3.5 GHz at the top, and on Core i7 1.7 GHz at the bottom. Each cross is the average of 30 trials, and
each trial processed a million packets. The worst-case throughput is indicated by dashed lines. The horizontal lines in Internet2 are throughput of HybridCuts.

1

10

100

0 2 4 6 8 10

of

 h
op

s

K�

Internet2
Stanford
Purdue

Fig. 10. Average hop counts on an MDD to classify a packet. The dotted
lines guide ∝ 1/K. The horizontal line is average hop counts of HybridCuts
for Internet2.

configurations. The packets were then written into a file in

network-byte order. Finally, each packet was read from the file

and classified. Note that packets should be generated based on

the configurations as done by ClassBench, in order to match

all behaviors; randomly generated packets are likely to match

larger subspaces (probably a “default rule”), but never match

smaller ones.

Fig. 10 shows the average number of hops from the root to

a terminal on the MDD of F ′(K). Considering that the number

of worst-case hops at K = 1 is equivalent to the number of

bits of interest given in Table I, the average hop number was

roughly 2/3 of the worst-case. The average hop number follows

1/K with maximum deviation of 17 % (Stanford with K = 8),

and it is less than 10 even with K = 8 for all networks, which

ensures the fast classification of our method. The hop number

is much less than the 288 bits of the TCP/IP header, since

header fields of no interest are simply skipped on MDDs.

The classification throughput measured on the Xeon is

demonstrated at the top of Fig. 11. It exceeded 10 Mpps at

K = 8 for all networks; at 10 Mpps, even short packets of 125

304

0
5

10
15
20
25
30
35

0.1 1 10 100
Memory usage [MB]�

Core i7�

0

2

4

6

8

10

12

0.1 1 10 100

Ti
m

e
[n

se
c]
�

Memory usage [MB]�

Xeon

Fig. 12. Computation time required for a single hop versus memory usage,
measured on Xeon 3.5 GHz at the top and on Core i7 1.7 GHz at the bottom.
The dotted line shows the linear regression on (log(x), y).

bytes can fill a 10 Gbps link. The throughput of our method

scales linearly against K for all networks, though the MDD is

larger than the CPU cache for Purdue with K = 8. Fig. 11 also

shows the worst-case throughput estimated using the worst-

case hop number shown in Fig. 10. Even for the worst-case,

the throughput is rather high.

Interestingly, the classification throughput shows different

behaviors on Core i7, as shown at the bottom of Fig. 11. The

throughput is quite high, greater than 3 Mpps at K = 8 for

all networks, but it does not scale linearly, rather it scales

logarithmically.

This difference in scaling is investigated in depth. Fig. 12

shows the computation time required for a single hop versus

the memory usage of MDD. The hop time on Xeon stays

nearly constant, while that on Core i7 increases logarithmically

with MDD size; this is the reason for the scaling difference.

We do not dive into the details of CPU architecture and

cache hierarchy, which is beyond the scope of this paper, but

these results justify our evaluation strategy; the classification

throughput should be evaluated based on actual measurements

in order to consider the hardware impact.

Throughput of HybridCuts was 7.26 Mpps on Xeon for

Internet2, as shown in Fig. 11; it is slower than our method

of K ≥ 2, though the average hop count was quite small,

3.46. This is because each hop took 31.8 nsec, which is nearly

four times of our method. HybridCuts has to examine decision

criteria at every node, while our simple search algorithm finds

the next node just by array access. Moreover, HybridCuts has

to find a rule from “binth” number of rules by linear search

at a leaf node.

The BDD classification method was slower by several

orders of magnitude due to the linear search performed over

all behaviors, as follows.

Internet2 Stanford Purdue
Throughput by BDDs [Mpps] 0.0849 0.00578 0.00153

VII. DISCUSSION FROM APPLICATION ASPECTS

This section discusses our method in terms of applications.

Section VII-A chooses the best K based on the experiments’

results. Section VII-B discusses the contributions of our

method to SDN applications.

0

5

10

15

20

25

0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 [M

pp
s]
�

Update rate [update/sec]�

Stanford�K=8�

K=4�

Fig. 13. Classification throughput versus update rate. Internet2 and Purdue
are omitted since they showed similar results.

A. Choice of Best K

Network operators are needed to choose the best K to de-

ploy their applications. Our evaluation in Section VI revealed

a tradeoff between the throughput and construction/update

time; large K improves the throughput, but degrades the

construction/update time. This tradeoff is shown in Fig. 13

(the construction time is not shown to depict the tradeoff on a

two-dimensional plane). The figure tells us that K should be

set to 4 or 8, since the points of K = 4 and 8 form a Pareto
frontier, i.e., they cannot be improved without degrading some

property. If the network were much simpler, K = 16 might be

included in the Pareto frontier, but MDDs of K = 16 require

128× memory capacity compared to K = 8, which would

probably make it difficult to fully leverage small CPU caches.

In contrast, only K = 4 would form a Pareto frontier in more

complicated networks.

B. Contributions to SDN applications

1) Network Fabric: Network fabric [3], [4] is an idea

to improve the economic efficiency and manageability of

networks by separating the “intelligence” from the network

core. An application program of network fabric constructs

a classifier of network-wide packet behaviors based on the

network policies. The classifier is then set to edge switches,

which tag the header of every incoming packet with some

sort of “behavior label”. The labeled packets are forwarded

through the network core based on the behavior labels. This

simple network core can consist of low-cost switches and can

be managed just by the labels independently of protocols used

in external networks.

To realize the network fabric, the network edge is required

to determine the network-wide behavior for every packet at

line rate, but that is virtually impossible for conventional clas-

sification methods, which failed to construct the classifier or

achieved unacceptably low throughput given complex policies

like those of the Stanford backbone. Reference [4] estimated

that the classification rate of 6.7 Gbps on a single CPU core

is enough, and the rate could be enhanced using computer

clustering techniques like RouteBricks [32] for a large domain.

However, no specific classification method that can deal with

network-wide packet behaviors is listed in the paper. Our

305

method is the first one that can realize the network fabric

even if the network policy is complex.

2) Fault Localization: In network fault localization [5], the

application software calculates network-wide packet behav-

iors that could be monitored in the network, in advance. A

few probe packets are then selected for each behavior, and

the packets are exchanged periodically between switches. If

the actually monitored behavior is not identical to the pre-

calculated one, the application investigates possible causes as

in solving a set cover problem.

Reference [5] assumes that only a small number of pre-

defined packets are employed, since no conventional classifi-

cation method can classify arbitrary packets. This limitation,

which was recognized as a match fault deficiency in [5],

implies that faulty behaviors of other packets are overlooked;

more importantly, failures occurring on production traffic are

not detected. Our classifier allows the application software to

examine all packets without ignoring any of them. Our efficient

method, of course, does not need to compromise the sampling

rate.

3) Network Verification: Network verification [6]–[11] is

used to check network properties, such as reachability (e.g.,

packets of a given header subspace sent from a client can get

to a specified server), loop-free (no packet in the subspace

would traverse any cyclic path), and waypointing (packets

from the outside of network should pass through a firewall).

The property tests rely on packet classification in order to

map the header space to a network-wide packet behavior

represented as a directed subgraph.

Assume that in Stanford backbone network, a new rule

should be applied immediately to fix a security hole and

several properties must be checked with the new rule before

deploying it. Subgraphs representing packet behaviors can be

updated in 26 msec by [8], while the classifier is updated in

29 msec in our method (Fig. 9); our method is comparably

fast. The new behaviors are, then, confirmed with each packet

or each header subspace to be tested; assuming that many

properties equal to the number of rules in the network, e.g.,

100,000, have to be checked, our method only requires 5.0

msec for the lookups while [8] requires 17.3 sec, which can

be critical in a severe security incident.

VIII. RELATED WORK

This section discusses related work; conventional packet

classification methods [12]–[20] are not discussed, since they

were thoroughly examined in Section III.

To fully leverage efficient packet classifiers, fast packet I/O

mechanisms should be created to receive packets at line rates.

Recent research on system technologies [33] resulted in 14.9

Mpps on a single CPU core, which is roughly equal to our

results. Our classification method with the fast packet I/O

can provide SDN applications with the quick identification

of network-wide packet behavior on fast links.

OpenFlow9, one version of SDN, defines the multi-table

9http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf

pipeline; it divides a large classifier into multiple small ones.

If the original complicated header space is divided into many

parts, the complexity of each part might be greatly reduced.

However, the multi-table pipeline focuses on rules specified

on a single switch, not network-wide packet behaviors, and it

is supposed to handle each dimension with a separate table.

Therefore, each machine holds only a few tables (e.g., four

tables [34]), and so our problem is not significantly mitigated.

Several papers [35]–[38], some of which were written in the

context of SDN [37], [38], discussed algorithms to distribute

classification rules among multiple switches without changing

their semantics, in order to store the rules in space-limited

TCAMs. They are, however, not arranged to identify the

network-wide packet behavior.

Multiple-bit striding was utilized to accelerate trie traver-

sal [39], [40], and this technique looks similar with our bit

aggregation. Our method is, however, established on MDDs,

not simple tries, and so Algorithm 1 is designed to handle

path convergence by caching visited nodes and to care skipped

nodes of don’t care bits.

BDDs have often been used to deal with complicated

header spaces along with various network applications such as

firewall analysis [41], network state verification [6]–[8], policy

enforcement [42], and traffic analysis [43]. However, work to

date did not focus on classification throughput, and so speeds

are low. Firewall Decision Diagrams (FDDs) [44], [45] can be

used to represent the header space in a compressed manner, but

they were designed to be human readable, not to be efficiently

manipulated by computers; e.g., the network verifier using

FDDs [9] seems to be at least 1,000 times slower than those

with BDDs [6], [8]. Prefix DAG [46] employs a data structure

similar to MDDs, but it focused on a simple classification

problem with a single header field, in which classifiers are

readily constructed even if all rules are extracted.

BDDs and MDDs have been intensively studied in the LSI-

CAD community. Reference [47] minimized the total size of

given BDDs by applying different bit orders to them, while

our interest includes the size of MDD. The memory usage of

MDD was optimized in [30], but the MDD structure is made

complicated and degrading the classification throughput.

IX. CONCLUSIONS

This paper has developed a packet classification method that

efficiently represents the complicated header space defined

with network-wide packet behaviors. To fully leverage the

global network view provided by SDN, packet classification

methods are required to well handle network-wide packet

behaviors, not actions taken on a single switch. Although

packet classification has been studied intensely, conventional

classification methods are unable to handle network-wide

behaviors at all. Our method is based on compressed decision

diagrams and is supported by several new algorithms; it is

simple but surprisingly efficient. Numerical experiments on

three actual networks showed that our method can identify

the network-wide packet behavior at 10 Mpps or more for

all three networks. Our work is the only one to solve this

306

hard but important problem in SDN. Moreover, thanks to

the introduction of SDN, complex network policies can now

be automatically processed by application programs without

being manually written in the inefficient 5-tuple format, and so

our efficient internal representation will get more opportunities

beyond the example applications shown in this paper.

In future work, we will develop SDN applications that uti-

lize our classification method, and evaluate its feasibility with

field experiments. Powerful techniques studied in computer

science, such as compressed self-indexes [46] and Boolean

expression minimization [48], will be applied to our method.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[2] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in IEEE INFOCOM, 2013, pp. 2211–2219.

[3] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric: A
retrospective on evolving sdn,” in ACM HotSDN, 2012, pp. 85–90.

[4] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi,
and S. Shenker, “Software-defined internet architecture: Decoupling
architecture from infrastructure,” in ACM HotNets, 2012, pp. 43–48.

[5] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic test
packet generation,” in ACM CoNEXT, 2012, pp. 241–252.

[6] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi, “Network
configuration in a box: towards end-to-end verification of network
reachability and security,” in IEEE ICNP, 2009, pp. 123–132.

[7] R. McGeer, “Verification of switching network properties using satisfi-
ability,” in IEEE ICC, 2012, pp. 6638–6644.

[8] H. Yang and S. Lam, “Real-time verification of network properties using
atomic predicates,” in IEEE ICNP, 2013, pp. 1–11.

[9] A. Khakpour and A. Liu, “Quantifying and querying network reacha-
bility,” in IEEE ICDCS, 2010, pp. 817–826.

[10] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in USENIX NSDI, 2012, pp. 113–126.

[11] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow:
Verifying network-wide invariants in real time,” in USENIX NSDI, 2013,
pp. 15–28.

[12] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification
using multidimensional cutting,” in ACM SIGCOMM, 2003, pp. 213–
224.

[13] H. Lim and J. H. Mun, “High-speed packet classification using binary
search on length,” in ACM/IEEE ANCS, 2007, pp. 137–144.

[14] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, “Packet classification
algorithms: From theory to practice,” in IEEE INFOCOM, 2009, pp.
648–656.

[15] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar, “EffiCuts: Optimizing
packet classification for memory and throughput,” in ACM SIGCOMM,
2010, pp. 207–218.

[16] W. Li and X. Li, “HybridCuts: A scheme combining decomposition and
cutting for packet classification,” in IEEE HOTI, 2013, pp. 41–48.

[17] H. Che, Z. Wang, K. Zheng, and B. Liu, “DRES: Dynamic range
encoding scheme for TCAM coprocessors,” IEEE Transactions on
Computers, vol. 57, no. 7, pp. 902–915, 2008.

[18] A. Liu, C. Meiners, and E. Torng, “TCAM razor: A systematic approach
towards minimizing packet classifiers in tcams,” IEEE/ACM Transac-
tions on Networking, vol. 18, no. 2, pp. 490–500, 2010.

[19] A. Bremler-Barr and D. Hendler, “Space-efficient TCAM-based classi-
fication using gray coding,” IEEE Transactions on Computers, vol. 61,
no. 1, pp. 18–30, 2012.

[20] O. Rottenstreich, R. Cohen, D. Raz, and I. Keslassy, “Exact worst case
TCAM rule expansion,” IEEE Transactions on Computers, vol. 62, no. 6,
pp. 1127–1140, 2013.

[21] R. Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677–691, 1986.

[22] A. Srinivasan, T. Ham, S. Malik, and R. Brayton, “Algorithms for
discrete function manipulation,” in IEEE ICCAD, 1990, pp. 92–95.

[23] Y.-W. E. Sung, S. G. Rao, G. G. Xie, and D. A. Maltz, “Towards
systematic design of enterprise networks,” in ACM CoNEXT, 2008, pp.
22:1–22:12.

[24] M. H. Overmars and F. A. van der Stappen, “Range searching and point
location among fat objects,” Journal of Algorithms, vol. 21, no. 3, pp.
629–656, 1996.

[25] S. Suri, T. Sandholm, and P. Warkhede, “Compressing two-dimensional
routing tables,” Algorithmica, vol. 35, no. 4, pp. 287–300, 2003.

[26] C. Böhm, S. Berchtold, and D. A. Keim, “Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia
databases,” ACM Comput. Surv., vol. 33, no. 3, pp. 322–373, 2001.

[27] R. Yoshinaka, J. Kawahara, S. Denzumi, H. Arimura, and S. Minato,
“Counterexamples to the long-standing conjecture on the complexity
of BDD binary operations,” Information Processing Letters, vol. 112,
no. 16, pp. 636–640, 2012.

[28] D. E. Knuth, The Art of Computer Programming: Combinatorial Algo-
rithms Part 1. Addison-Wesley, USA, 2011, vol. 4A.

[29] D. A. Huffman, “A method for the construction of minimum redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[30] S. Nagayama and T. Sasao, “On the optimization of heterogeneous
MDDs,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 24, no. 11, pp. 1645–1659, 2005.

[31] D. Taylor and J. Turner, “ClassBench: a packet classification bench-
mark,” in IEEE INFOCOM, vol. 3, 2005, pp. 2068–2079 vol. 3.

[32] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: exploiting
parallelism to scale software routers,” in ACM SOSP, 2009, pp. 15–28.

[33] L. Rizzo, “netmap: a novel framework for fast packet I/O,” in USENIX
ATC, 2012, pp. 101–112.

[34] H. Pan, H. Guan, J. Liu, W. Ding, C. Lin, and G. Xie, “The FlowAdapter:
Enable flexible multi-table processing on legacy hardware,” in ACM
HotSDN, 2013, pp. 85–90.

[35] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with DIFANE,” in ACM SIGCOMM, 2010, pp. 351–362.

[36] C. R. Meiners, A. X. Liu, E. Torng, and J. Patel, “Split: Optimiz-
ing space, power, and throughput for TCAM-based classification,” in
ACM/IEEE ANCS, 2011, pp. 200–210.

[37] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the ”one big
switch” abstraction in software-defined networks,” in ACM CoNEXT,
2013, pp. 13–24.

[38] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in IEEE INFOCOM, 2013, pp. 545–549.

[39] J. Hasan and T. N. Vijaykumar, “Dynamic pipelining: Making IP-lookup
truly scalable,” in ACM SIGCOMM, 2005, pp. 205–216.

[40] Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu, W. Meng, H. Dai,
X. Tian, Z. Xu, H. Wu, and D. Yang, “Wire speed name lookup: A
GPU-based approach,” in USENIX NSDI, 2013, pp. 199–212.

[41] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra,
“Fireman: a toolkit for firewall modeling and analysis,” in IEEE S&P,
2006, pp. 199–213.

[42] Y.-W. E. Sung, C. Lund, M. Lyn, S. G. Rao, and S. Sen, “Modeling
and understanding end-to-end class of service policies in operational
networks,” in ACM SIGCOMM, 2009, pp. 219–230.

[43] L. Yuan, C.-N. Chuah, and P. Mohapatra, “ProgME: Towards pro-
grammable network measurement,” IEEE/ACM Transactions on Net-
working, vol. 19, no. 1, pp. 115–128, 2011.

[44] M. G. Gouda and A. X. Liu, “Structured firewall design,” Computer
Networks, vol. 51, no. 4, pp. 1106–1120, 2007.

[45] A. Liu and M. Gouda, “Diverse firewall design,” IEEE Transactions on
Parallel and Distributed Systems, vol. 19, no. 9, pp. 1237–1251, 2008.

[46] G. Rétvári, J. Tapolcai, A. Kőrösi, A. Majdán, and Z. Heszberger, “Com-
pressing IP forwarding tables: Towards entropy bounds and beyond,” in
ACM SIGCOMM, 2013, pp. 111–122.

[47] A. Narayan, A. J. Isles, J. Jain, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Reachability analysis using partitioned-ROBDDs,” in
IEEE/ACM ICCAD, 1997, pp. 388–393.

[48] K. Kogan, S. Nikolenko, W. Culhane, P. Eugster, and E. Ruan, “Towards
efficient implementation of packet classifiers in SDN/OpenFlow,” in
ACM HotSDN, 2013, pp. 153–154.

307

