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Abstract—Sequence alignment is a task that calculates the degree 

of similarity between two sequences. Given a query sequence, 

finding a database sequence which is most similar to the query by 

sequence alignment is the first step in bioinformatics research. 

The first sequence alignment algorithm was proposed by Needle-

man and Wunsch. They got the optimal global alignment by 

using dynamic programming method. Afterwards, Smith and 

Waterman proposed the optimal local alignment. However, the 

number of sequences in the database increases exponentially 

every year and the cost of these two algorithms is expensive in 

terms of running time and memory space. Thus, accelerating the 

sequence alignment algorithm has become the trend in recent 

years. In this paper, we present a fast sequence alignment method 

using CUDA-enabled GPU. We first redefine the recursive 

formula of Smith-Waterman algorithm so that one row of the 

matrix can be calculated in parallel. Then, we use the prefix max 

scan method to reduce the computation complexity for each row. 

In addition, only on-chip shared memory is used for reducing the 

penalty of memory accesses. Experimental results show that the 

proposed method is in average 50 times faster than 

implementation of Smith-Waterman based on CPU, 2~4 times 

faster than other GPU-based versions of Smith-Waterman 

algorithm. 

Keywords: sequence alignment, GPU, dynamic programming, 

CUDA, prefix max scan 

I. INTRODUCTION 

The bioinformatics integrates the applied mathematics, 
information, statistics and computer science methods to study 
the biology problem. Such research areas include sequence 
analysis, genome annotation, computational evolutionary 
biology, analysis of protein expression and prediction of 
protein structure etc. The large number of biological data is 
stored in the form of DNA, RNA and protein sequences. The 
sequences are printed abutting one another without gaps, and 
made of their respective letters set shown below: 

 DNA : {A, C, G, T} 

 RNA : {A, C, G, U} 

 Protein : {A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, 
T, W, Y, V} 

Sequence alignment is a task that calculates the degree of 
similarity between two sequences by arranging sequences of 
DNA, RNA or proteins, and gaps are allowed to be inserted in 
sequences for increasing similarity. In other words, letters of 
one sequence are aligned against letters of another, and only a 
selected set of operations is allowed at each aligning position: 
(1) match one letter with another, (2) mismatch one letter with 
another, (3) align one letter with a gap (denoted by "－") 

symbol. For example, consider the two sequences S1 = 
AGGCCTATG and S2 = ACG GCCTAATG. One possible 
alignment is shown in Figure 1 (The dots indicate the match). 
High sequence similarity means the structure and function will 
be similar, and they may be derived from a common or similar 
ancestor. By sorting and classifying these similar structures, we 
can infer the evolution of a period. Therefore, biologists in the 
first step for bioinformatics are using sequence alignment tool 
to search the sequence database. 

In addition, sequence alignment can be further classified 
as global and local alignment. The global alignment that 
attempts to align every letter of both sequences, on the contrary, 
local alignment finds the similar region within two given 
sequences. A first sequence global alignment algorithm was 
designed by Needleman and Wunsch in 1970 [1], called NW 
algorithm, which is based on dynamic programming method. 
Then, Smith and Waterman proposed the local alignment 
version of NW in 1981 [2]. Both two algorithms produce the 
optimal alignment, but the cost of two algorithms is expensive 
in terms of running time and memory space. Thus, heuristic 
algorithms FASTA [3] and BLAST [4] were proposed in 1985 
and 1990, respectively. Unlike the NW or SW algorithm, those 
heuristic algorithms directly compute the local alignment by 
producing seeds and extending them rather than using dynamic 
programming. Unfortunately, heuristic methods loose the 
optimality guarantee. Many researchers are trying to accelerate 
the NW or SW algorithm by a variety of different tools. Those 
tools such as FPGA [5], Cell/BE [6], GPU [7] and OpenMP [8], 
provides the effectiveness to significantly reduce the runtime 

S1 = A － G G C C T A T G － 
  ．  ． ． ． ． ． ．    

S2 = A C G G C C T A A T G 

 
Figure 1. An example of sequence alignment 



for sequence alignment algorithm. GPGPU (General Purpose 
computing on Graphics Processing Units) is a technique of 
using a GPU to perform computation in applications 
traditionally handled by the CPU. The general calculation often 
has nothing to do with the graphics. Because modern graphics 
processors have parallel processing capability and powerful 
programmable pipelines, stream processors can handle non-
graphics data. Especially in the face of a lot of data that can be 
processed in parallel, the general purpose graphics processors 
perform far beyond the traditional central processing 
applications. CUDA (Compute Unified Device Architecture) [9] 
is one of GPGPU application. It enables users to write 
programs to execute on the NVIDIA’s GPU. Liu et al [10] first 
developed the parallelism version of SW algorithm that runs on 
GPU. Since their work is done before the dawning of CUDA, 
they employed the OpenGL library, namely a graphics library, 
to implement the SW algorithm on the GPU. They provided 
speedups of more than one order of magnitude with respect to 
optimized CPU implementations. Yongchao Liu et al [11] 
presented two parallel implementations of SW algorithm by 
using CUDA, namely CUDA-SW++. CUDASW++ uses one of 
two kernel functions to align a query sequence to another 
sequence. Each kernel uses a different strategy to find the 
optimal local alignment. The first kernel and second kernel are 
called the inter-task and intra-task, respectively. The length of 
the database sequence determines which kernel to be used. 
According to their performance issues, CUDASW++ reaches 
9~16 giga cell updates per second (GCUPS). 

In this paper, we present a fast sequence alignment 
method using CUDA-enabled GPU. We first try to redefine the 
re-cursive formula of SW algorithm so that one row of the 
matrix can be calculated in parallel. Then, we use the prefix 
max scan method to reduce the computation complexity. In 
addition, during the computation, only on-chip shared memory 
is used for reducing the penalty of memory accesses. 
Experimental results show that the proposed method is in 
average 50 times faster than implementation of SW algorithm 
based on CPU, in average 2~4 times faster than other CUDA-
based version of Smith-Waterman algorithm.  

The remainder of this paper is organized as follows: 
Section II reviews the previous sequence alignment algorithms. 
Section III features the CUDA architecture. Section IV then 
describes our proposed method and Section VI shows 
experimental results. Finally, Section VII concludes the paper. 

II. RELATED WORK 

In this section, we first describe the SW algorithm, and 
then show the several parallelism version of SW algorithm that 
has been proposed. 

The NW algorithm [1] was modified by Smith and 
Waterman [2] to deal with local alignment. It guarantees that 
the alignment is optimal. Like NW, SW algorithm is also based 
on dynamic programming with quadratic time and space 
complexity. In order to quantify an alignment, SW algorithm 
uses a scoring mechanism. Given two sequences S1 and S2 of 
length m and n respectively, based on the relationship between 
pair of letters in an alignment we mentioned before, there are 
three types of score as follows: 

 Match score  if S1[i] = S2[j]. 

 Mismatch score  if S1[i] ≠ S2[j] 

 Gap penalty score  if S1[i] = ”－” or S2[j] = ”－”, or both. 

The match and mismatch scores obtained by looking up a 
substitution matrix. A substitution matrix is a square matrix in 
which each cell contains a score for the corresponding pair of 
based. PAM (Percentage of Acceptable point Mutations) series 
of matrices [12] and BLOSUM (BLOcks Substitution Matrix) 
series of matrices [13] are two popular substitution matrices. In 
addition, gap penalty score usually is a negative number.  

Let H be a score matrix of size (m+1)(n+1). The recursive 
formula is defined as: 
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where 1 ≤ i ≤ m, 1 ≤ j ≤ n, sbt(S1[i], S2[j]) gets the match or 
mismatch score, g is the score of gap penalty. The recursive 
formula are initialized as H[i][0] = H[0][j] = 0 for 0 ≤ i ≤ m and 
0 ≤ j ≤ n. If all the matrix cells have been computed, the 
alignment score is the maximum score in the matrix H. Figure 
2 shows an example of computation of the score matrix for S1 = 
GCAGGGTTAG and S2 = CCACCGGGGC. In Figure 2, g=－
4, the substitution matrix is BLOSUM 62, and the alignment 
score is 27. 

Since the time and space complexity of SW algorithm are 
O(mn), in dealing with the long sequence, SW algorithm will 
not be ideal. Parallel computing is a very common alternative 
to obtain high performance in execution of SW algorithm. In 
the following sections, we will describe three existing 
parallelism mechanisms in the computation of SW algorithm 
based on GPU. 

The first mechanism is to exploit the parallel char-
acteristics of cells in the anti-diagonals. That is, each anti-
diagonal cell can be computed independently of the others. As 
shown in Figure 3, the intermediate results vectors for the (i–

  C C A C C G G G G C 

 0 0 0 0 0 0 0 0 0 0 0 

G 0 0 0 0 0 0 6 6 6 6 2 

C 0 9 9 5 9 9 5 3 3 3 15 

A 0 5 9 13 9 9 9 5 3 3 11 

G 0 1 5 9 10 6 15 15 11 9 7 

G 0 0 1 5 6 7 12 21 21 17 13 

G 0 0 0 1 2 3 13 18 27 27 23 

T 0 0 0 0 0 1 9 14 23 25 26 

T 0 0 0 0 0 0 5 10 19 21 24 

A 0 0 0 4 0 0 1 6 15 19 21 

G 0 0 0 0 1 0 6 7 12 21 17 

 
Figure 2. Example of computation of the score matrix for S1 = 

GCAGGGTTAG and S2 = CCACCGGGGC. The gap penalty is －4, 

substitution matrix is BLOSUM 62, and the alignment score is 27.  



2)th, (i–1)th and ith anti-diagonals are allocated with size 
min(|S1|,|S2|). When the computation of the ith anti-diagonal is 
completed, it swaps the intermediate results vectors. However, 
this mechanism has memory problems due to the non-uniform 
access pattern of data in memory. Liu et al [10] speeded up the 
computation of SW algorithm by implementing the first 
mechanism on the GPU. A peak performance of 0.7 GCUPS at 
a query of length 4092 is reported. 

The second mechanism is shown in Figure 4. The matrix 
is computed vector by vector in order parallel to the query 
sequence. To compute a vector, all values from previous one 
are needed, and stored in the linear memory. More precisely, it 
uses two memory spaces: one for the previous values and one 
for the newly computed ones. At the end of each vector, it 
swaps them and so on. According to the data size read from 
memory, this mechanism gets 4 or 8 vector values at a time. 
However, it still has to handle data dependencies within the 
vector. Rognes and Erling [14] developed the second 
mechanism on common microprocessors, and their results 
show a six-fold speed-up relative to the first mechanism. Next, 
Manavski et al [7] presented a CUDA-based implementation 
for second mechanism. Their performance reaches a peak of 
1.8 GCUPS using a GeForce 8800 GTX card. Yongchao Liu et 
al [11] presented the best CUDA implementation of first and 
second mechanisms, namely CUDASW++. According to their 
performance, they reach 9~16 GCUPS. 

The last parallelism mechanism combines the first and 
second mechanisms. As shown in Figure 5, this mechanism 
processes the vector in parallel to the query sequence and at the 
same time it processes the vector from the next column in anti-
diagonal direction. However, this method consumes a large 
amount of memory space. Sanchez et al [15] implemented the 
third mechanism on GPU, and they claimed that the 

implementation obtains a 30% reduction in the execution time 
relative to the first and second mechanisms. 

III. CUDA  

CUDA (Compute Unified Device Architecture) [9] is a 
technique that enables user to write programs to execute on the 
CUDA-enabled GPU. CUDA was developed by NVIDIA in 
November 2006. CUDA allows us to directly access their 
specific graphics hardware and efficiently use massive threads. 
In this section, we will describe the programing model and 
hardware model. 

A. Programming model 

The programming language in CUDA is called CUDA 
C/C++. It consists of a minimal set of extensions to the C/C++ 
language and a runtime library. It provides a simple path for 
users familiar with the C/C++ programming language to easily 
write programs for execution by the GPU. 

Overall, the CUDA program is divided into two parts, the 
serial codes and parallel codes. The serial codes are executed 
on the conventional processor while parallel codes are executed 
on the GPU. The parallel codes are written in kernel function 
that runs in every thread. The kernel function call looks like a 
C language function call except the execution configuration is 
added between triple angle brackets “<<<” and “>>>” as 
shown below. 

Kernel<<< nBlocks, nThreadsPerBlock >>> (paramrter list) 

The two parameters between the angle brackets define the 
number of blocks and the number of threads per block. The 
total number of simultaneously running threads for a given 
kernel is the product of these two parameters. There is a limit 
to the number of threads per block, since all threads of a block 
are expected to reside on the same processor core and must 
share the limited memory resources of that core. On current 
GPUs, a block may contain up to 1024 threads. Blocks are 
organized into a one-dimensional, two-dimensional, or three-
dimensional grid of blocks as illustrated in Figure 6. The 
number of blocks in a grid is usually dictated by the size of the 
data being processed or the number of processors in the system, 
which it can greatly exceed. The programming model also 
assumes that both the conventional processors and the GPU 
maintain their own separate memory spaces in DRAM, referred 
to as host memory and device memory, respectively. Therefore 
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Figure 5. Third parallelism mechanism 
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Figure 3. First parallelism mechanism 

Database sequences 

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) 

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) 

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) 

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) 

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) 

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7) 

(7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7) 

(8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7) 

 

Q
u

er
y
 s

eq
u

en
ce

 

Figure 4. Second parallelism mechanism 
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, a CUDA program manages the global, constant, and texture 
memory spaces visible to kernels through calls to the CUDA 
runtime. In order to write efficient CUDA programs, it is 
important to understand the different types of memory modules 
in CUDA. 

(1) Read-write per thread register: 

For each thread, it has private register. The register is 
fastest but very limited size. 

(2) Read-write per thread local memory: 

The local memory is another size solution for register 
limited size. However, access to local memory is as 
expensive as access to global memory. 

(3) Read-write per block shared memory: 

Shared memory is fast on-chip memory of limited size 
(16KB per block). Accessing the shared memory is as 
fast as accessing a register as long as there are no bank 
conflicts. It is also used to share information between the 
threads of a block. 

(4) Read-only per grid constant memory: 

Constant memory is a cache that is optimized for the case 
when all threads read from the same location. Essentially, 
data can be broadcast from constant memory to all 
threads with one cycle of latency when there is a cache 
hit. 

(5) Read-only per grid texture memory 

Texture memory is large (usually depending on the size 
of global memory) and is cached. It can be read from 
kernel using texture fetching device function. It is 
possible, through the judicious use of the caching 
behavior of texture memory to avoid the bandwidth 
limitations of global memory and greatly accelerate GPU 
application performance. 

(6) Read-write per grid global memory 

Global memory is by far the largest memory space, with 
capacities measured in gigabytes (typically 1GB up). 
However, since the global memory belongs to off-chip 
memory; it has high latency, low bandwidth. The 
effective bandwidth of global memory depends heavily 
on the memory access pattern, e.g. coalesced access. 

B. Hardware model 

Figure 7 illustrates an overview of the hardware model in 
CUDA. This model mainly consists of GPU itself and off-chip 
device memory. The GPU has a set of Multiprocessors (MPs); 

each MP includes a set of stream processors (SPs) and shared 
memory. During kernel execution, the blocks are assigned to 
MPs and threads within a block are performed by SPs. 

IV. Proposed method 

In this section, we will describe the proposed method. 
Suppose that there are N sequences in the database. The 
mission is to find a database sequence which is mostly similar 
to the query sequence. The alignment task is defined to be the 
operations needed for computing the alignment scores of two 
sequences. Figure 8 shows our idea. Since there is no data 
dependency between different alignment tasks, we exploit one 
CUDA block to process each alignment task. It seems possible 
that more than one processing block can be assigned to 
compute one alignment task. However, CUDA does not 
support the synchronization between the blocks. Although the 
programmer can create synchronization scheme by using 
global memory, but it will pay a significant performance 
penalty due to access latency of global memory. 

A. Redefine the recursive formula 

We first try to redefine the recursive formula of Smith-
Waterman (SW) algorithm so that one row of the matrix can be 
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Figure 7. CUDA hardware model 
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CATTAATACCCG 
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1. AAGTCGATTAA 
2. CAACTGTTTAA 

3. TCTTATTATGTC 

4. GCTGGGTATTG 
5. CGCTCGACATT 

6. CGCTGGACATT 

7. TATCCAATATC 
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7 alignment tasks 

Block 0 

Block 4 
7 blocks 

Figure 8. One alignment task is processed by one block 
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calculated in parallel. Given two sequences S1 and S2 of length 
m and n, respectively, let H be the score matrix of size 
(m+1)×(n+1). The recursive formula is as follows: 
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where 1 ≤ i ≤ m, 1 ≤ j ≤ n, sbt(S1[i], S2[j]) gives the match 
score when S1[i] = S2[j] or the mismatch score when S1[i]≠
S2[j], and g is the score of gap penalty. Our target is to 
parallelize the score computation of one row of the matrix at 
each step. We first show how to compute the scores of the first 
row (gray cells) of the matrix below, by assuming the database 
sequence is of length 8. 
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Obviously, there is a data dependency between the cells. 
In order to compute the scores in parallel, we have the 
following new formula: 
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and 
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Next, the expanded formula is as follows. 
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After expansion, it’s clear that there is no data dependency 
between all 8 of the first row of H matrix cells if H’ values can 
be computed in advance. Based on this observation, the final 
three formulas are defined as follows. First, the formula (a) can 
be performed by the threads assigned to the cells in parallel. 

After the first step is finished, formulas (b) and (c) are then 
executed. The scores of all the cells in the row are completed. 
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Thus, the computations of the next row of the matrix can be 
carried out. 

We are now able to compute all the scored in one row of 
the matrix in parallel. However, the time complexity of this 
method is the same as the SW algorithm. The main reason is 
that the computation time of one row of the matrix depends on 
the last cell. The time complexities of the formulas (a) and (c) 
are O(1). The last cell requires O(n) time to perform formula 
(b). The total computation time for the matrix is O(n)×m = 
O(mn). This does not get any performance improvement. In 
order to solve this problem, we use prefix max scan to speed up 
the computation of the formula (b). Given the input 
array[a1, …, an], the prefix max scan computes the output 
array[M(a1, a1), M(a1, a2), …, M(a1, an)], where M(a0, aj) is the 
maximal value from a0 to aj. The prefix max scan can be 
divided into k steps when n = 2k. For step i = 0 to k – 1, the 

element array[j2i+1+1] will be compared with array[j2i+1–
2i+1] for j = 1 to 2k–i–1  in parallel, and store the result in 

array[j2i+1+1].  

Figure 9 shows the operations performed by the prefix max 
scan for n = 8. The input is the array of H’[i][1]+(n–1)*g, 
H’[i][2]+(n–2)*g, ..., H’[i][n]. The output array will be the 
output array of H’[i][1]+(n–1)*g, M(H’[i][1]+(n–1)*g, 
H’[i][2]+(n–2)*g), M(H’[i][1]+(n–1)*g, H’[i][n]). After adding 
output array and the array of –(n–1)*g, –(n–2)*g, ... , –(n–n)*g  
together, the result L[i][j] of formula (b) is obtained. Let us 
now analyze the execution time again. Suppose that each step 
of the parallel prefix scan requires O(1) time. The computation 
time for each row is O(log2n). The total computation time for 
the matrix is m×O(log2n) = O(mlog2n) which is a great 

  b1 b2 b3 b4 b5 b6 b7 b8 

 0 0 0 0 0 0 0 0 0 

a1 0         

a2 0         

a3 0         

a4 0         

 

a1 a2 a3 a4 a5 a6 a7 a8 
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a1 

a1 

a1 

Figure 9. Prefix max scan. 



improvement.  

B. CUDA implementation 

In this section, we describe how to use CUDA to implement 
the proposed algorithms. As we mentioned before, one 
alignment task is mapped to one block. Each thread in the 
block is used to process each cell of one row of the matrix. 
Figure 10 shows our idea. However, our experiments are 
carried out on a NVIDIA C1060 graphics card. It only supports 
512 threads per block. Thus, the width of the matrix cannot 
exceed 512. In order to solve this problem, we partition the 
matrix into slices of equal width when the width of the matrix 
exceeds 512. The slices are processed iteratively. Figure 11 
shows how we partition the matrix into slices of width 512. On 
the other hand, we avoid storing the entire of matrix during the 
slice computation. We allocate the minimum amount of 
memory to compute the matrix. One is a linear amount of 
shared memory and the other is a linear amount of linear global 
memory. The shared memory is used to store the ith row when 
the (i+1)th row is to be computed. The global memory is used 
to store the last column of the slice. The shared memory of 
only up to 512×4Bytes (integer type) = 2Kbytes is needed. On 
the other hand, the database sequences are stored in the global 
memory. The texture memory is exploited to store the 
substitution matrix ( i.e. sbt(x,y) ) and the query sequence. 

V. Experimental results 

The tests of proposed method is executed on NVIDIA 
C1060 graphics card, with 30 MPs comprising 240 SPs and 
4GB RAM, installed in a PC with an Intel Core 2 6420 2.13 
GHz processor running the Ubuntu OS. Table I and Table II 

show the detailed information of the graphics card and PC, 
respectively. 

For database sequences used in this paper, five databases 
are produced by Seq-Gen [16]. Each database includes 100 
sequences of equal length, ranging from 128 to 8192. Seq-Gen 
is a program that can simulate various lengths of DNA or 
protein sequences. On the other hand, the substitution matrix 
BLOSUM 62 is used with gap penalty －4. 

In order to completely understand the performance of the 
proposed method, we compare two existing methods as follows:  

(1) Single CPU-thread implementation of the Smith-
Waterman algorithm. The runtime is measured by 
sequential executing alignment tasks. 

(2) Two kernels of CUDASW++ proposed in [11]. The 
source codes of CUDASW++ are available at 
http://www.nvidia.com/object/swplusplus_on_tesla.html 

As we mentioned before, CUDASW++ uses one of two 
kernel functions to find the optimal local alignment between a 
query sequence and a database sequence. The first and second 
kernels are the same as the second and first parallelism 
mechanisms, respectively. The length of the database sequence 
determines which kernel to be used. In order to compare with 
two kernels of CUDSASW++, we first increase the threshold 
to 10,000 so that all sequences in the database are aligned using 
the first kernel, and then decrease the threshold to 0 so that 
only the second kernel can be used. Table III shows the 
runtime comparison. 

In the Table III, the length of the query sequence is fixed 
to 128; we increase the length of the database sequences so that 
more slices to be processed iteratively. Since we use the shared 
memory to calculate each slice, it is very useful to accelerate 
the computation, and there are no bank conflicts in the 
proposed method. For the same alignment tasks, our proposed 
method is 50 times faster than that of single CPU-thread, 4 
times faster than first kernel of CUDASW++, and 2 times 
faster than second kernel of CUDASW++ in average. Figure 

Table II. Graphics card specification 

Item Description 

CUDA driver 3.2 

CUDA capability 1.3 

Global memory 4 GB 

Clock rate 1.3 GHz 

Multiprocessors 30 

Stream processors per multiprocessor 8 

CUDA cores 240 

Shared memory per block 16 KB 

Maximum number of threads per block 512 

Constant memory 65 KB 
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Figure 11. Partition the matrix into slices of equal width 
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Figure 10. A thread is used to process each cell. 

Table I. PC specification 

Item Description 

CPU Intel Core 2 6420  2.13 GHz 

RAM DDR2 4GB 

OS Ubuntu 10.04.2 64bit 

GPU NVIDIA C1060 

GPU Driver 270.41.19 

PCI Express 2.0 

 



12 summarizes all the compared methods except the single 
CPU-thread implementation. 

 

 

VI. Conclusion 

In recent years, the multi-core system has been widely used. 
The application can be efficiently calculated in parallel. 
Focusing on this point, NVIDIA introduces the CUDA 
technology to provide a user-friendly environment to write 
programs for GPU’s. Due to the rapid growth in biological 
sequence databases, accelerating sequence alignment by using 
high-performance device has become a recent trend. In this 
paper, we have presented a fast sequence alignment scheme 
using CUDA-enabled GPU. We redefined the recursive 
formula so that one row of the matrix can be calculated in 
parallel. Next, we accelerated the computation of each cell of 
one row by prefix max scan method. In addition, only on-chip 

shared memory is used for reducing the penalty of memory 
accesses. Experimental results show the proposed method is in 
average 50 times faster than implementation of Smith-
Waterman based on CPU and 2~4 times faster than other GPU-
based version of Smith-Waterman algorithm. Finally, we 
expect the proposed method can provide researchers as a 
reference in the study of sequence alignment. Table VI shows 
the performance comparisons for the sequences of different 
lengths. 
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Table III. Runtime comparison 

DBseq 

length 

# of 

DBseq 

Runtime (ms) 

CUDASW++ 

first  

kernel 

CUDASW++ 

second  

kernel 

Single 

CPU-

thread 

Our 

method 

128 100 9.09 6.18 69.69 1.65 

256 100 12.80 6.67 135.71 2.71 

512 100 20.36 10.00 233.25 4.93 

1k 100 34.14 16.86 482.53 9.66 

2k 100 65.35 25.70 872.98 19.14 

4k 100 126.00 44.80 2244.11 38.26 

8k 100 246.88 85.70 4680.05 76.13 

 

Figure 12. The runtimes of all the compared methods 
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