
Fast Sequence Alignment Method Using

CUDA-enabled GPU

Yeim-Kuan Chang

Department of Computer Science and Information

Engineering

National Cheng Kung University

Tainan, Taiwan

ykchang@mail.ncku.edu.tw

De-Yu Chen

Department of Computer Science and Information

Engineering

National Cheng Kung University

Tainan, Taiwan

p76981293@mail.ncku.edu.tw

Abstract—Sequence alignment is a task that calculates the degree

of similarity between two sequences. Given a query sequence,

finding a database sequence which is most similar to the query by

sequence alignment is the first step in bioinformatics research.

The first sequence alignment algorithm was proposed by Needle-

man and Wunsch. They got the optimal global alignment by

using dynamic programming method. Afterwards, Smith and

Waterman proposed the optimal local alignment. However, the

number of sequences in the database increases exponentially

every year and the cost of these two algorithms is expensive in

terms of running time and memory space. Thus, accelerating the

sequence alignment algorithm has become the trend in recent

years. In this paper, we present a fast sequence alignment method

using CUDA-enabled GPU. We first redefine the recursive

formula of Smith-Waterman algorithm so that one row of the

matrix can be calculated in parallel. Then, we use the prefix max

scan method to reduce the computation complexity for each row.

In addition, only on-chip shared memory is used for reducing the

penalty of memory accesses. Experimental results show that the

proposed method is in average 50 times faster than

implementation of Smith-Waterman based on CPU, 2~4 times

faster than other GPU-based versions of Smith-Waterman

algorithm.

Keywords: sequence alignment, GPU, dynamic programming,

CUDA, prefix max scan

I. INTRODUCTION

The bioinformatics integrates the applied mathematics,
information, statistics and computer science methods to study
the biology problem. Such research areas include sequence
analysis, genome annotation, computational evolutionary
biology, analysis of protein expression and prediction of
protein structure etc. The large number of biological data is
stored in the form of DNA, RNA and protein sequences. The
sequences are printed abutting one another without gaps, and
made of their respective letters set shown below:

 DNA : {A, C, G, T}

 RNA : {A, C, G, U}

 Protein : {A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S,
T, W, Y, V}

Sequence alignment is a task that calculates the degree of
similarity between two sequences by arranging sequences of
DNA, RNA or proteins, and gaps are allowed to be inserted in
sequences for increasing similarity. In other words, letters of
one sequence are aligned against letters of another, and only a
selected set of operations is allowed at each aligning position:
(1) match one letter with another, (2) mismatch one letter with
another, (3) align one letter with a gap (denoted by "－")

symbol. For example, consider the two sequences S1 =
AGGCCTATG and S2 = ACG GCCTAATG. One possible
alignment is shown in Figure 1 (The dots indicate the match).
High sequence similarity means the structure and function will
be similar, and they may be derived from a common or similar
ancestor. By sorting and classifying these similar structures, we
can infer the evolution of a period. Therefore, biologists in the
first step for bioinformatics are using sequence alignment tool
to search the sequence database.

In addition, sequence alignment can be further classified
as global and local alignment. The global alignment that
attempts to align every letter of both sequences, on the contrary,
local alignment finds the similar region within two given
sequences. A first sequence global alignment algorithm was
designed by Needleman and Wunsch in 1970 [1], called NW
algorithm, which is based on dynamic programming method.
Then, Smith and Waterman proposed the local alignment
version of NW in 1981 [2]. Both two algorithms produce the
optimal alignment, but the cost of two algorithms is expensive
in terms of running time and memory space. Thus, heuristic
algorithms FASTA [3] and BLAST [4] were proposed in 1985
and 1990, respectively. Unlike the NW or SW algorithm, those
heuristic algorithms directly compute the local alignment by
producing seeds and extending them rather than using dynamic
programming. Unfortunately, heuristic methods loose the
optimality guarantee. Many researchers are trying to accelerate
the NW or SW algorithm by a variety of different tools. Those
tools such as FPGA [5], Cell/BE [6], GPU [7] and OpenMP [8],
provides the effectiveness to significantly reduce the runtime

S1 = A － G G C C T A T G －
 ． ． ． ． ． ． ．

S2 = A C G G C C T A A T G

Figure 1. An example of sequence alignment

for sequence alignment algorithm. GPGPU (General Purpose
computing on Graphics Processing Units) is a technique of
using a GPU to perform computation in applications
traditionally handled by the CPU. The general calculation often
has nothing to do with the graphics. Because modern graphics
processors have parallel processing capability and powerful
programmable pipelines, stream processors can handle non-
graphics data. Especially in the face of a lot of data that can be
processed in parallel, the general purpose graphics processors
perform far beyond the traditional central processing
applications. CUDA (Compute Unified Device Architecture) [9]
is one of GPGPU application. It enables users to write
programs to execute on the NVIDIA’s GPU. Liu et al [10] first
developed the parallelism version of SW algorithm that runs on
GPU. Since their work is done before the dawning of CUDA,
they employed the OpenGL library, namely a graphics library,
to implement the SW algorithm on the GPU. They provided
speedups of more than one order of magnitude with respect to
optimized CPU implementations. Yongchao Liu et al [11]
presented two parallel implementations of SW algorithm by
using CUDA, namely CUDA-SW++. CUDASW++ uses one of
two kernel functions to align a query sequence to another
sequence. Each kernel uses a different strategy to find the
optimal local alignment. The first kernel and second kernel are
called the inter-task and intra-task, respectively. The length of
the database sequence determines which kernel to be used.
According to their performance issues, CUDASW++ reaches
9~16 giga cell updates per second (GCUPS).

In this paper, we present a fast sequence alignment
method using CUDA-enabled GPU. We first try to redefine the
re-cursive formula of SW algorithm so that one row of the
matrix can be calculated in parallel. Then, we use the prefix
max scan method to reduce the computation complexity. In
addition, during the computation, only on-chip shared memory
is used for reducing the penalty of memory accesses.
Experimental results show that the proposed method is in
average 50 times faster than implementation of SW algorithm
based on CPU, in average 2~4 times faster than other CUDA-
based version of Smith-Waterman algorithm.

The remainder of this paper is organized as follows:
Section II reviews the previous sequence alignment algorithms.
Section III features the CUDA architecture. Section IV then
describes our proposed method and Section VI shows
experimental results. Finally, Section VII concludes the paper.

II. RELATED WORK

In this section, we first describe the SW algorithm, and
then show the several parallelism version of SW algorithm that
has been proposed.

The NW algorithm [1] was modified by Smith and
Waterman [2] to deal with local alignment. It guarantees that
the alignment is optimal. Like NW, SW algorithm is also based
on dynamic programming with quadratic time and space
complexity. In order to quantify an alignment, SW algorithm
uses a scoring mechanism. Given two sequences S1 and S2 of
length m and n respectively, based on the relationship between
pair of letters in an alignment we mentioned before, there are
three types of score as follows:

 Match score if S1[i] = S2[j].

 Mismatch score if S1[i] ≠ S2[j]

 Gap penalty score if S1[i] = ”－” or S2[j] = ”－”, or both.

The match and mismatch scores obtained by looking up a
substitution matrix. A substitution matrix is a square matrix in
which each cell contains a score for the corresponding pair of
based. PAM (Percentage of Acceptable point Mutations) series
of matrices [12] and BLOSUM (BLOcks Substitution Matrix)
series of matrices [13] are two popular substitution matrices. In
addition, gap penalty score usually is a negative number.

Let H be a score matrix of size (m+1)(n+1). The recursive
formula is defined as:

















gjiH

gjiH

jSiSsbtjiH

jiH

]1][[

]][1[

])[],[(]1][1[

max]][[

21

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, sbt(S1[i], S2[j]) gets the match or
mismatch score, g is the score of gap penalty. The recursive
formula are initialized as H[i][0] = H[0][j] = 0 for 0 ≤ i ≤ m and
0 ≤ j ≤ n. If all the matrix cells have been computed, the
alignment score is the maximum score in the matrix H. Figure
2 shows an example of computation of the score matrix for S1 =
GCAGGGTTAG and S2 = CCACCGGGGC. In Figure 2, g=－
4, the substitution matrix is BLOSUM 62, and the alignment
score is 27.

Since the time and space complexity of SW algorithm are
O(mn), in dealing with the long sequence, SW algorithm will
not be ideal. Parallel computing is a very common alternative
to obtain high performance in execution of SW algorithm. In
the following sections, we will describe three existing
parallelism mechanisms in the computation of SW algorithm
based on GPU.

The first mechanism is to exploit the parallel char-
acteristics of cells in the anti-diagonals. That is, each anti-
diagonal cell can be computed independently of the others. As
shown in Figure 3, the intermediate results vectors for the (i–

 C C A C C G G G G C

 0 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 0 6 6 6 6 2

C 0 9 9 5 9 9 5 3 3 3 15

A 0 5 9 13 9 9 9 5 3 3 11

G 0 1 5 9 10 6 15 15 11 9 7

G 0 0 1 5 6 7 12 21 21 17 13

G 0 0 0 1 2 3 13 18 27 27 23

T 0 0 0 0 0 1 9 14 23 25 26

T 0 0 0 0 0 0 5 10 19 21 24

A 0 0 0 4 0 0 1 6 15 19 21

G 0 0 0 0 1 0 6 7 12 21 17

Figure 2. Example of computation of the score matrix for S1 =

GCAGGGTTAG and S2 = CCACCGGGGC. The gap penalty is －4,

substitution matrix is BLOSUM 62, and the alignment score is 27.

2)th, (i–1)th and ith anti-diagonals are allocated with size
min(|S1|,|S2|). When the computation of the ith anti-diagonal is
completed, it swaps the intermediate results vectors. However,
this mechanism has memory problems due to the non-uniform
access pattern of data in memory. Liu et al [10] speeded up the
computation of SW algorithm by implementing the first
mechanism on the GPU. A peak performance of 0.7 GCUPS at
a query of length 4092 is reported.

The second mechanism is shown in Figure 4. The matrix
is computed vector by vector in order parallel to the query
sequence. To compute a vector, all values from previous one
are needed, and stored in the linear memory. More precisely, it
uses two memory spaces: one for the previous values and one
for the newly computed ones. At the end of each vector, it
swaps them and so on. According to the data size read from
memory, this mechanism gets 4 or 8 vector values at a time.
However, it still has to handle data dependencies within the
vector. Rognes and Erling [14] developed the second
mechanism on common microprocessors, and their results
show a six-fold speed-up relative to the first mechanism. Next,
Manavski et al [7] presented a CUDA-based implementation
for second mechanism. Their performance reaches a peak of
1.8 GCUPS using a GeForce 8800 GTX card. Yongchao Liu et
al [11] presented the best CUDA implementation of first and
second mechanisms, namely CUDASW++. According to their
performance, they reach 9~16 GCUPS.

The last parallelism mechanism combines the first and
second mechanisms. As shown in Figure 5, this mechanism
processes the vector in parallel to the query sequence and at the
same time it processes the vector from the next column in anti-
diagonal direction. However, this method consumes a large
amount of memory space. Sanchez et al [15] implemented the
third mechanism on GPU, and they claimed that the

implementation obtains a 30% reduction in the execution time
relative to the first and second mechanisms.

III. CUDA

CUDA (Compute Unified Device Architecture) [9] is a
technique that enables user to write programs to execute on the
CUDA-enabled GPU. CUDA was developed by NVIDIA in
November 2006. CUDA allows us to directly access their
specific graphics hardware and efficiently use massive threads.
In this section, we will describe the programing model and
hardware model.

A. Programming model

The programming language in CUDA is called CUDA
C/C++. It consists of a minimal set of extensions to the C/C++
language and a runtime library. It provides a simple path for
users familiar with the C/C++ programming language to easily
write programs for execution by the GPU.

Overall, the CUDA program is divided into two parts, the
serial codes and parallel codes. The serial codes are executed
on the conventional processor while parallel codes are executed
on the GPU. The parallel codes are written in kernel function
that runs in every thread. The kernel function call looks like a
C language function call except the execution configuration is
added between triple angle brackets “<<<” and “>>>” as
shown below.

Kernel<<< nBlocks, nThreadsPerBlock >>> (paramrter list)

The two parameters between the angle brackets define the
number of blocks and the number of threads per block. The
total number of simultaneously running threads for a given
kernel is the product of these two parameters. There is a limit
to the number of threads per block, since all threads of a block
are expected to reside on the same processor core and must
share the limited memory resources of that core. On current
GPUs, a block may contain up to 1024 threads. Blocks are
organized into a one-dimensional, two-dimensional, or three-
dimensional grid of blocks as illustrated in Figure 6. The
number of blocks in a grid is usually dictated by the size of the
data being processed or the number of processors in the system,
which it can greatly exceed. The programming model also
assumes that both the conventional processors and the GPU
maintain their own separate memory spaces in DRAM, referred
to as host memory and device memory, respectively. Therefore

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7)

(7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7)

(8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7)

Q
u

er
y
 s

eq
u

en
ce

Figure 5. Third parallelism mechanism

Database sequences
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7)

(7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7)

Q
u

er
y
 s

eq
u

en
ce

Figure 3. First parallelism mechanism

Database sequences

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7)

(7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7)

(8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7)

Q
u

er
y
 s

eq
u

en
ce

Figure 4. Second parallelism mechanism

Database sequences

, a CUDA program manages the global, constant, and texture
memory spaces visible to kernels through calls to the CUDA
runtime. In order to write efficient CUDA programs, it is
important to understand the different types of memory modules
in CUDA.

(1) Read-write per thread register:

For each thread, it has private register. The register is
fastest but very limited size.

(2) Read-write per thread local memory:

The local memory is another size solution for register
limited size. However, access to local memory is as
expensive as access to global memory.

(3) Read-write per block shared memory:

Shared memory is fast on-chip memory of limited size
(16KB per block). Accessing the shared memory is as
fast as accessing a register as long as there are no bank
conflicts. It is also used to share information between the
threads of a block.

(4) Read-only per grid constant memory:

Constant memory is a cache that is optimized for the case
when all threads read from the same location. Essentially,
data can be broadcast from constant memory to all
threads with one cycle of latency when there is a cache
hit.

(5) Read-only per grid texture memory

Texture memory is large (usually depending on the size
of global memory) and is cached. It can be read from
kernel using texture fetching device function. It is
possible, through the judicious use of the caching
behavior of texture memory to avoid the bandwidth
limitations of global memory and greatly accelerate GPU
application performance.

(6) Read-write per grid global memory

Global memory is by far the largest memory space, with
capacities measured in gigabytes (typically 1GB up).
However, since the global memory belongs to off-chip
memory; it has high latency, low bandwidth. The
effective bandwidth of global memory depends heavily
on the memory access pattern, e.g. coalesced access.

B. Hardware model

Figure 7 illustrates an overview of the hardware model in
CUDA. This model mainly consists of GPU itself and off-chip
device memory. The GPU has a set of Multiprocessors (MPs);

each MP includes a set of stream processors (SPs) and shared
memory. During kernel execution, the blocks are assigned to
MPs and threads within a block are performed by SPs.

IV. Proposed method

In this section, we will describe the proposed method.
Suppose that there are N sequences in the database. The
mission is to find a database sequence which is mostly similar
to the query sequence. The alignment task is defined to be the
operations needed for computing the alignment scores of two
sequences. Figure 8 shows our idea. Since there is no data
dependency between different alignment tasks, we exploit one
CUDA block to process each alignment task. It seems possible
that more than one processing block can be assigned to
compute one alignment task. However, CUDA does not
support the synchronization between the blocks. Although the
programmer can create synchronization scheme by using
global memory, but it will pay a significant performance
penalty due to access latency of global memory.

A. Redefine the recursive formula

We first try to redefine the recursive formula of Smith-
Waterman (SW) algorithm so that one row of the matrix can be

Block (0, 0)

Block (0, 1)

Block (1, 0)

Block (1, 1)

Grid

Thread (1, 0)

Thread (0, 0)

Thread (0, 1)

Thread (0, 2)

Thread (1, 1)

Thread (1, 2)

Block (0, 1)

Figure 6. Grid of Thread Blocks

Multiprocessor 1

Register

SP SP

SP SP

SP

SP SP

SP

Shared

memory

Multiprocessor 2

Register

SP SP

SP SP

SP

SP SP

SP

Shared

memory

Multiprocessor N

Register

SP SP

SP SP

SP

SP SP

SP

Shared
memory

...........

Constant Memory

Texture Memory

Global Memory

Figure 7. CUDA hardware model

Query sequence:

CATTAATACCCG

Database sequences

1. AAGTCGATTAA
2. CAACTGTTTAA

3. TCTTATTATGTC

4. GCTGGGTATTG
5. CGCTCGACATT

6. CGCTGGACATT

7. TATCCAATATC

Grid

7 alignment tasks

Block 0

Block 4
7 blocks

Figure 8. One alignment task is processed by one block

Block 2

Block 3

Block 5

Block 1

Block 6

calculated in parallel. Given two sequences S1 and S2 of length
m and n, respectively, let H be the score matrix of size
(m+1)×(n+1). The recursive formula is as follows:

















gjiH

gjiH

jSiSsbtjiH

jiH

]1][[

]][1[

])[],[(]1][1[

max]][[

21

,

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, sbt(S1[i], S2[j]) gives the match
score when S1[i] = S2[j] or the mismatch score when S1[i]≠
S2[j], and g is the score of gap penalty. Our target is to
parallelize the score computation of one row of the matrix at
each step. We first show how to compute the scores of the first
row (gray cells) of the matrix below, by assuming the database
sequence is of length 8.

8..1,

0

]1][1[

]][0[

),(]1][0[

max]][1[

1





















 jfor
gjH

gjH

basbtjH

jH

j

Obviously, there is a data dependency between the cells.
In order to compute the scores in parallel, we have the
following new formula:

8..1,

0

]][0[

),(]1][0[

max]][1[

1

' 












 jforgjH

basbtjH

jH

j

and

.8..1,

0

]1][1[

]][1[

max]][1[

'










 jforgjH

jH

jH

Next, the expanded formula is as follows.

.8..1,

]0][1[

)1(]1][1[

...

2]2][1[

]1][1[

]][1[

max]][1[

'

'

'

'



























 jfor

gjH

gjH

gjH

gjH

jH

jH

After expansion, it’s clear that there is no data dependency
between all 8 of the first row of H matrix cells if H’ values can
be computed in advance. Based on this observation, the final
three formulas are defined as follows. First, the formula (a) can
be performed by the threads assigned to the cells in parallel.

After the first step is finished, formulas (b) and (c) are then
executed. The scores of all the cells in the row are completed.















0

]][1[

])[],[(]1][1[

max]][[')(

21

gjiH

jSiSsbtjiH

jiHa






 

gkkjiH

jiH
jiLb jk

*]][['

]][['
max]][[)(0








gjiH

jiL
jiHc

*]0][[

]][[
max]][[)(

Thus, the computations of the next row of the matrix can be
carried out.

We are now able to compute all the scored in one row of
the matrix in parallel. However, the time complexity of this
method is the same as the SW algorithm. The main reason is
that the computation time of one row of the matrix depends on
the last cell. The time complexities of the formulas (a) and (c)
are O(1). The last cell requires O(n) time to perform formula
(b). The total computation time for the matrix is O(n)×m =
O(mn). This does not get any performance improvement. In
order to solve this problem, we use prefix max scan to speed up
the computation of the formula (b). Given the input
array[a1, …, an], the prefix max scan computes the output
array[M(a1, a1), M(a1, a2), …, M(a1, an)], where M(a0, aj) is the
maximal value from a0 to aj. The prefix max scan can be
divided into k steps when n = 2k. For step i = 0 to k – 1, the

element array[j2i+1+1] will be compared with array[j2i+1–
2i+1] for j = 1 to 2k–i–1 in parallel, and store the result in

array[j2i+1+1].

Figure 9 shows the operations performed by the prefix max
scan for n = 8. The input is the array of H’[i][1]+(n–1)*g,
H’[i][2]+(n–2)*g, ..., H’[i][n]. The output array will be the
output array of H’[i][1]+(n–1)*g, M(H’[i][1]+(n–1)*g,
H’[i][2]+(n–2)*g), M(H’[i][1]+(n–1)*g, H’[i][n]). After adding
output array and the array of –(n–1)*g, –(n–2)*g, ... , –(n–n)*g
together, the result L[i][j] of formula (b) is obtained. Let us
now analyze the execution time again. Suppose that each step
of the parallel prefix scan requires O(1) time. The computation
time for each row is O(log2n). The total computation time for
the matrix is m×O(log2n) = O(mlog2n) which is a great

 b1 b2 b3 b4 b5 b6 b7 b8

 0 0 0 0 0 0 0 0 0

a1 0

a2 0

a3 0

a4 0

a1 a2 a3 a4 a5 a6 a7 a8

M(a1,a2) M(a2,a3) M(a3,a4) M(a4,a5) M(a5,a6) M(a6,a7) M(a7,a8)

M(a1,a2) M(a1,a3) M(a1,a4) M(a2,a5) M(a3,a6) M(a4,a7) M(a5,a8)

M(a1,a2) M(a1,a3) M(a1,a4) M(a1,a5) M(a1,a6) M(a1,a7) M(a1,a8)

a1

a1

a1

Figure 9. Prefix max scan.

improvement.

B. CUDA implementation

In this section, we describe how to use CUDA to implement
the proposed algorithms. As we mentioned before, one
alignment task is mapped to one block. Each thread in the
block is used to process each cell of one row of the matrix.
Figure 10 shows our idea. However, our experiments are
carried out on a NVIDIA C1060 graphics card. It only supports
512 threads per block. Thus, the width of the matrix cannot
exceed 512. In order to solve this problem, we partition the
matrix into slices of equal width when the width of the matrix
exceeds 512. The slices are processed iteratively. Figure 11
shows how we partition the matrix into slices of width 512. On
the other hand, we avoid storing the entire of matrix during the
slice computation. We allocate the minimum amount of
memory to compute the matrix. One is a linear amount of
shared memory and the other is a linear amount of linear global
memory. The shared memory is used to store the ith row when
the (i+1)th row is to be computed. The global memory is used
to store the last column of the slice. The shared memory of
only up to 512×4Bytes (integer type) = 2Kbytes is needed. On
the other hand, the database sequences are stored in the global
memory. The texture memory is exploited to store the
substitution matrix (i.e. sbt(x,y)) and the query sequence.

V. Experimental results

The tests of proposed method is executed on NVIDIA
C1060 graphics card, with 30 MPs comprising 240 SPs and
4GB RAM, installed in a PC with an Intel Core 2 6420 2.13
GHz processor running the Ubuntu OS. Table I and Table II

show the detailed information of the graphics card and PC,
respectively.

For database sequences used in this paper, five databases
are produced by Seq-Gen [16]. Each database includes 100
sequences of equal length, ranging from 128 to 8192. Seq-Gen
is a program that can simulate various lengths of DNA or
protein sequences. On the other hand, the substitution matrix
BLOSUM 62 is used with gap penalty －4.

In order to completely understand the performance of the
proposed method, we compare two existing methods as follows:

(1) Single CPU-thread implementation of the Smith-
Waterman algorithm. The runtime is measured by
sequential executing alignment tasks.

(2) Two kernels of CUDASW++ proposed in [11]. The
source codes of CUDASW++ are available at
http://www.nvidia.com/object/swplusplus_on_tesla.html

As we mentioned before, CUDASW++ uses one of two
kernel functions to find the optimal local alignment between a
query sequence and a database sequence. The first and second
kernels are the same as the second and first parallelism
mechanisms, respectively. The length of the database sequence
determines which kernel to be used. In order to compare with
two kernels of CUDSASW++, we first increase the threshold
to 10,000 so that all sequences in the database are aligned using
the first kernel, and then decrease the threshold to 0 so that
only the second kernel can be used. Table III shows the
runtime comparison.

In the Table III, the length of the query sequence is fixed
to 128; we increase the length of the database sequences so that
more slices to be processed iteratively. Since we use the shared
memory to calculate each slice, it is very useful to accelerate
the computation, and there are no bank conflicts in the
proposed method. For the same alignment tasks, our proposed
method is 50 times faster than that of single CPU-thread, 4
times faster than first kernel of CUDASW++, and 2 times
faster than second kernel of CUDASW++ in average. Figure

Table II. Graphics card specification

Item Description

CUDA driver 3.2

CUDA capability 1.3

Global memory 4 GB

Clock rate 1.3 GHz

Multiprocessors 30

Stream processors per multiprocessor 8

CUDA cores 240

Shared memory per block 16 KB

Maximum number of threads per block 512

Constant memory 65 KB

Database sequence (length=2K)

Q
u

er
y
 s

eq
u

en
ce

Slice 0 Slice 1 Slice 2 Slice 3

Figure 11. Partition the matrix into slices of equal width

Last

column

512

 b1 b2 b3 b4 b5 b6 b7 b8

 0 0 0 0 0 0 0 0 0

a1 0

a2 0

a3 0

Thread

0

Thread

1
Thread

2
Thread

3
Thread

4
Thread

5
Thread

6
Thread

7

Block 0

Figure 10. A thread is used to process each cell.

Table I. PC specification

Item Description

CPU Intel Core 2 6420 2.13 GHz

RAM DDR2 4GB

OS Ubuntu 10.04.2 64bit

GPU NVIDIA C1060

GPU Driver 270.41.19

PCI Express 2.0

12 summarizes all the compared methods except the single
CPU-thread implementation.

VI. Conclusion

In recent years, the multi-core system has been widely used.
The application can be efficiently calculated in parallel.
Focusing on this point, NVIDIA introduces the CUDA
technology to provide a user-friendly environment to write
programs for GPU’s. Due to the rapid growth in biological
sequence databases, accelerating sequence alignment by using
high-performance device has become a recent trend. In this
paper, we have presented a fast sequence alignment scheme
using CUDA-enabled GPU. We redefined the recursive
formula so that one row of the matrix can be calculated in
parallel. Next, we accelerated the computation of each cell of
one row by prefix max scan method. In addition, only on-chip

shared memory is used for reducing the penalty of memory
accesses. Experimental results show the proposed method is in
average 50 times faster than implementation of Smith-
Waterman based on CPU and 2~4 times faster than other GPU-
based version of Smith-Waterman algorithm. Finally, we
expect the proposed method can provide researchers as a
reference in the study of sequence alignment. Table VI shows
the performance comparisons for the sequences of different
lengths.

REFERENCES

[1] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,” J.
Molecular Biology, vol. 48, pp. 443-453, 1970.

[2] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequence,” J. Molecular Biology, vol. 147, pp. 195-197, 1981.

[3] D. J. Lipman and W. R. Pearson, “Rapid and Sensitive Protein
Similarity Searches,” Science, vol. 227, pp. 1435-1441, 1985.

[4] S. F. Itschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic Local Alignment Search Tool,” J. Molecular Biology, vol. 215,
pp. 403-410, 1990.

[5] Oliver T, Schmidt B and Maskell DL, “Reconfigurable architectures for
bio-sequence database scanning on FPGAs,” IEEE Trans. Circuit Syst.
II 2005, 52:851–855.

[6] Szalkowski A, Ledergerber C, Krahenbuhl P and Dessimoz C,
“SWPS3–fast multi-threaded vectorized Smith-Waterman for IBM
Cell/B.E. and x86/SSE2,” BMC Research Notes 2008, I:107.

[7] Svetlin A Manavski and Giorgio Valle, “CUDA compatible GPU cards
as efficient hardware accelerators for Smith-Waterman sequence
alignment,” BMC Bioinformatics 2008, 9(Suppl 2):S10.

[8] S. R. Sathe and D. D. Shrimankar, “Parallelization of DNA Sequence
Alignment using Open MP,” ICCCS’11, February 12–14, 2011.

[9] CUDA zone, http://developer.nvidia.com/category/zone/cuda-zone.

[10] Liu W, Schmidt B, Voss G and Muller-Wittig W, “Streaming algorithms
for biological sequence alignment on GPUs,” IEEE Transactions on
Parallel and Distributed Systems, 18(9):1270–1281, 2007.

[11] Yongchao Liu, Bertil Schmidt, Douglas L Maskell, “CUDASW++2.0:
enhanced Smith-Waterman protein database search on CUDA-enabled
GPUs based on SIMT and virtualized SIMD abstractions,” BMC
Research Notes 2010, 3:93.

[12] David J. States, Warren Gish, and Stephen F. Altschul, “Improved
Sensitivity of Nucleic Acid Database Searches Using Application-
Specific Scoring Matrices,” METHODS: A Companion to Methods in
Enzymology Vol. 3, No. 1, August, pp. 66-70, 1991.

[13] Steven Henikoff and Jorja G. Henikoff, “Amino acid substitution
matrices from protein blocks,” Proc. Natl. Acad. Sci. Vol. 89, pp. 10915-
10919, 1992.

[14] Rognes and Seeberg, “Six-fold speed-up of Smith-Waterman sequence
database searches using parallel processing on common
microprocessors,” BIOINF: Bioinformatics, 16, 2000.

[15] Friman Sánchez, Esther Salamí, Alex Ramirez, Mateo Valero, “Parallel
processing in biological sequence comparison using general purpose
processors,” IEEE International Symposium on Workload Charact
erization(IISWC), 2005.

[16] Seq-Gen web site, http://tree.bio.ed.ac.uk/software/seqgen.

Table III. Runtime comparison

DBseq

length

of

DBseq

Runtime (ms)

CUDASW++

first

kernel

CUDASW++

second

kernel

Single

CPU-

thread

Our

method

128 100 9.09 6.18 69.69 1.65

256 100 12.80 6.67 135.71 2.71

512 100 20.36 10.00 233.25 4.93

1k 100 34.14 16.86 482.53 9.66

2k 100 65.35 25.70 872.98 19.14

4k 100 126.00 44.80 2244.11 38.26

8k 100 246.88 85.70 4680.05 76.13

Figure 12. The runtimes of all the compared methods

0

50

100

150

200

250

300

128 256 512 1024 2048 4096 8192
 Length of the database sequences

R
u

n
ti

m
e

(m
s

)

First kernel of CUDASW++

Second kernel of CUDASW++

First method

