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a b s t r a c t

Hash tables are widely used in network applications, as they can achieve O(1) query, insert, and delete

operations at moderate loads. However, at high loads, collisions are prevalent in the table, which

increases the access time and induces non-deterministic performance. Slow rates and non-determinism

can considerably hurt the performance and scalability of hash tables in the multi-threaded parallel

systems such as ASIC/FPGA and multi-core. So it is critical to keep the hash operations faster and more

deterministic.

This paper presents a novel fast collision-free hashing scheme using Discriminative Bloom Filters

(DBFs) to achieve fast and deterministic hash table lookup. DBF is a compact summary stored in on-chip

memory. It is composed of an array of parallel Bloom filters organized by the discriminator. Each

element lookup performs parallel membership checks on the on-chip DBF to produce a possible

discriminator value. Then, the element plus the discriminator value is hashed to a possible bucket in an

off-chip hash table for validating the match. This DBF-based scheme requires one off-chip memory

access per lookup as well as less off-chip memory usage. Experiments show that our scheme achieves

up to 8.5-fold reduction in the number of off-chip memory accesses per lookup than previous schemes.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Hash tables are a versatile data structure for fast lookups that
associates a set of keys to a set of values. Hash tables can achieve
constant Oð1Þ average memory accesses of query, insert, and delete
operations at moderate loads. Due to the excellent average-case
performance, hash tables have found widespread applications in
networking, such as load balancing (Azar et al., 1994; Vocking,
1999), per-flow state management (Estan and Varghese, 2002; Estan
et al., 2004), IP route lookup (Border and Mitzenmacher, 2001;
Dharmapurikar et al., 2003), packet classification (Srinivasan et al.,
1999; Baboescu and Varghese, 2001), deep packet inspection
(Dharmapurikar et al., 2004), etc. Most of these applications are
typically deployed in critical data paths of high-speed routers/
switches. Hence, hash tables must provide a better performance in
both average and worst cases for high-speed network applications.

1.1. Motivation

At high loads, collisions are prevalent in the hash table, which
increases the access time and induces non-deterministic performance.
ll rights reserved.
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As the table load increases, collided elements may lead to an increase
in the length of the probe sequence. Long probe sequences can
increase the cost of the primitive operations and make the lookups
non-deterministic, which in turn degrades average performance. The
well-known collision resolution policies have been proposed to
maintain good average-case performance. Nevertheless, at high loads
and frequent collisions, the worst-case performance degrades shapely
and becomes highly non-deterministic.

Especially, non-determinism can considerably hurt the perfor-
mance and scalability of hash tables in the multi-threaded
parallel systems such as ASIC/FPGA and multi-core. In such
systems, multiple threads are exploited to hide the memory
access latency for handling high-speed packets in parallel. Each
thread performs the hash table lookup using the same algorithm,
but has the different lookup time due to the non-determinism.
The slowest thread becomes a bottleneck and determines the
overall throughput of these systems. Hence, it is critical to keep
the hash operations faster and more deterministic.

Due to large memory requirements, hash tables are often not
stored in small high-speed memory (e.g. on-chip SRAMs), but in
slow off-chip DRAMs. In order to achieve high speeds and
determinism, it is viable to minimize the memory and bandwidth
requirements of hash tables. The key to fast and deterministic
hash table lookup is as follows. First, a compact data structure is
imperative to fit in limited on-chip SRAMs, improving the worst-
case performance of off-chip hash tables. Second, a query
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operation requires a single off-chip memory access to hash tables
with no collisions. Finally, it is desirable to improve the space
utilization of off-chip hash tables, leading to low memory
overhead.

1.2. Prior art

Multiple-choice hashing (Azar et al., 1994; Vocking, 1999;
Border and Mitzenmacher, 2001) is a simple and efficient techni-
que, which places each element in one of dZ2 possible buckets of
the hash table. Such scheme can ensure a more even distribution
of elements among all the buckets than traditional schemes using
a single hash function, which helps to reduce the average-case
and worst-case costs of hash tables.

Recently, several multiple-choice hashing schemes (Song et al.,
2005; Kirsch and Mitzenmacher, 2008a,b; Kumar and Crowley,
2005; Kumar et al., 2008; Kirsch and Mitzenmacher, 2008a,b;
Yu and Mahapatra, 2008) have been proposed to improve the
worst-case performance. As memory access is very expensive and
scarce, these schemes leverage a small summary in on-chip
memory to significantly reduce off-chip memory accesses to an
underlying multiple-choice hash table. Bloom filters (Bloom,
1970) are used to represent the summary as they are simple
space-efficient data structures for fast membership query. On-
chip Bloom filters can filter out most of unnecessary off-chip
accesses, achieving better lookup performance. However, these
schemes have the limitations of non-determinism and non-
randomness. First, they cannot completely eliminate the collisions,
which incur unpredictable lookup rate and complicated queuing,
without guaranteeing deterministic worst-case performance. Sec-
ond, they weaken the randomness as an element is hashed in a
small sub-table not in the whole hash table. Due to these draw-
backs, theses schemes suffer from high collisions, low space
utilization, and load imbalance.

Collision-free hashing is recognized as a promising way to
combat the non-determinism and non-randomness. This scheme
hashes an element to a unique bucket in the hash table without
any collision. The literatures (Kumar et al., 2007; Ficara et al.,
2009) have proposed a collision-free hashing scheme that is a
variant of multi-choice hashing. This scheme allows an element to
contain a few additional c bits called discriminator, and maps the
element plus its discriminator by a single hash function to a
possible bucket. It is one-to-one perfect hashing. As a discrimi-
nator has 2c possible values, each element has up to 2c possible
bucket choices for constructing a collision-free hash table. Due to
the collision-free nature, this scheme has the advantages of high
space utilization and deterministic lookups.

Unfortunately, the collision-free hashing scheme has the issue
to be addressed which is how to quickly identify the discrimi-
nator value for a queried element. This scheme needs at least 2c

memory accesses per lookup to check for each query, incurring
low throughput and large bandwidth requirements. There is a
natural and simple solution, where a discriminator table stored in
on-chip memory is indexed directly with the off-chip elements.
But this solution causes memory inefficiency as there are a large
number of elements that are hard to fit in limited amounts of on-
chip memory. Hence, it is critical to design a fast and memory-
efficient discriminator table in on-chip memory for improving
high speeds and determinism while retaining collision-free
lookups.

1.3. Our approach

In this paper, we propose two approaches to constructing an
efficient discriminator table for achieving fast and deterministic
hash table lookup. We first develop a direct collision-free hashing
scheme. This scheme directly uses a single Bloom filter to construct
a discriminator table, where all elements in an off-chip hash table
are inserted. It can eliminate most of unnecessary off-chip memory
accesses and enhance collision-free lookup performance. But it
cannot identify one of 2c discriminator values for a queried element
that belongs to the hash table, resulting in 2c memory accesses.

To address this drawback, we develop a fast collision-free
hashing scheme using Discriminative Bloom Filters (DBFs). DBF is
essentially composed of an array of parallel Bloom filters orga-
nized by the discriminator. It is stored in on-chip memory, which
can not only filter out irrelevant off-chip memory accesses but
also identify a possible discriminator value for a queried element.
To validate the match, we use the discriminator value plus the
element identifier as input to a hash function to calculate and
check a possible bucket. Using on-chip DBF, this scheme performs
a single memory access per lookup, instead of 2c memory
accesses per lookup. We also explore two network applications
of the DBFs, including IP route lookup and deep packet inspection.
We show analytically and experimentally that the DBF-based
scheme outperforms previous schemes in terms of the number of
memory accesses per lookup.

1.4. Key contributions

This paper makes the main contributions as follows:
�
 We propose a novel DBF to accelerate collision-free hash table
lookup. DBF consists of an array of parallel Bloom filters
organized by the discriminator. The on-chip DBF identifies a
possible discriminator value for each query, leading to a single
off-chip memory access per lookup.

�
 We explore two network applications of the DBFs, including IP

route lookup and deep packet inspection, for enhancing high-
speed packet processing.

�
 Experiments show that compared to previous schemes, the

DBF-based scheme achieves significant reduction in the num-
ber of off-chip memory accesses per lookup by up to 8.5 times.

The rest of this paper is organized as follows. Section 2
overviews the background on Bloom filters and collision-free
hash table. Section 3 presents the related work. We describe the
direct and fast collision-free hashing schemes, and explore two
network applications of the DBFs in Section 4. Section 5 reports
experimental results. Finally, Section 6 concludes.
2. Background

2.1. Bloom filters oveview

Bloom filters are simple space-efficient randomized data
structures for representing a set to support fast approximate
membership queries. A Bloom filter represents a set S¼

fx1,x2, � � � ,xng of n elements by using a bit vector of m bits, initially
all set to 0. A Bloom filter uses k independent random hash
functions h1, � � � ,hk with the range f1, � � � ,mg, each of which hashes
an element to a random number uniform over the range. For each
element xAS, the bits hiðxÞ are set to 1 for 1r irk. To query
whether an element y is in the set S, we check whether all hiðyÞ

are set to 1. If not, then clearly y is not a member of S. If all hiðyÞ

are set to 1, we assume that y is in S with a certain probability.
Hence a Bloom filter may yield a false positive.

The false positive probability of a Bloom filter is given as

f ¼ 1� 1�
1

m

� �nk
 !k

� 1�e�kn=m
� �k

ð1Þ
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where n is the number of elements in the set S, m is the size of the
bit vector, and k is the number of hash functions. For a given ratio
of m=n, the false positive probability can be reduced by increasing
the number k of hash functions. When k¼ ðm=nÞln2, the false
positive probability is minimized as f � 1=2

� �k
(Broder and

Mitzenmacher, 2004). For most applications, the space savings
of the Bloom filter often outweigh the false positive error.

A standard Bloom filter allows for easy insertion, but not
deletion. Deleting elements from the Bloom filter cannot be done
simply by changing ones back to zeros since each bit may
correspond to multiple elements. A Counting Bloom Filter (CBF)
(Fan et al., 2000) has been proposed to allow for insertions and
deletions of elements. CBF uses an array of m counters instead of
bits. Counters are incremented on an insertion and decremented
on a deletion. The counters are used to track the number of
elements currently hashed to the corresponding locations. To
avoid counter overflow, four bits per counter have been shown to
suffice for most applications. Due to using counters of four bits,
CBF blows up the memory requirements by a factor of four over
the standard Bloom filter, even though most counters are zero.

2.2. Collision-free hash table overview

A Collision-free Hash Table (CHT) has been proposed in the
literatures (Kumar et al., 2007; Ficara et al., 2009). CHT is a variant
of multiple-choice hash table. It is organized as follows. Assume
that there are n distinct elements x1, � � � ,xn and M buckets (MZn)
in the hash table. Each element xi has a c-bit discriminator that
has total 2c possible values. A single hash function g is used to
hash xi plus its discriminator values to 2c possible buckets, in each
of which xi is placed without any collision, achieving one-to-one
perfect hashing. When an element y is queried, the same hash
function g is used to hash y plus each of 2c discriminator values to
2c possible buckets, performing 2c checks in parallel for finding
the exact match. Hence, CHT requires 2c memory accesses per
lookup in worst-case.

Fig. 1 illustrates an example of CHT. There are five elements in
the element table and eight buckets in CHT, and each element has
a 1-bit discriminator. Each entry in the element table contains a
node identifier, node key, and all possible hash values. A node key
plus a discriminator value is used as input to a single hash
function g for producing a random number over the range
f0, � � � ,7g. As shown in Fig. 1, elements 0, 1, and 2 use the
discriminator value 0 to select buckets 3, 4, and 0, respectively,
while elements 3 and 4 use the discriminator value 1 to select
buckets 6 and 2, respectively. Each hash table entry contains a
pair of fNode ID, Node Keyg. For a query of an element CHT in
Node ID

0

1

2

3

4

Node Key

abc

bcd

cde

def

efg

Hash
g(abc, 0)=3
g(abc, 1)=0
g(bcd, 0)=4
g(bcd, 1)=2
g(cde, 0)=0
g(cde, 1)=4
g(def, 0)=3
g(def, 1)=6
g(efg, 0)=7
g(efg, 1)=2
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3
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2

3

4
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7
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{4, efg}

{0, abc}

{1, bcd}

{3, def}

CHT

Element Table

Fig. 1. An example of CHT.
Fig. 1 needs to check two possible table buckets in parallel for
the match.

The CHT construction is essentially reduced to a bipartite
graph matching problem (Kumar et al., 2007; Ficara et al.,
2009). A bipartite graph contains elements as the left nodes,
buckets as the right nodes, and bucket choices as edges connect-
ing the left to the right. In this paper, we employ the Cuckoo
hashing scheme (Pagh and Rodler, 2004; Friez et al., 2009) to
construct a CHT. This scheme adopts a random-walk approach to
find a perfect matching in the bipartite graph. We assume that
each element is inserted in the table one by one and hashed to 2c

possible buckets. If one of these buckets is empty, an element is
placed in the bucket. If not, one of the elements in these buckets is
displaced and moved to another of its 2c possible buckets. The
element in turn displaces other elements out of its possible
buckets in a similar manner. Otherwise, the evicted element is
moved to an overflow list. As this scheme requires a sequence of
OðlognÞ moves until no further evictions are needed, the CHT
construction has the time complexity of OðlognÞ, scaling well to a
large set of elements.
3. Related work

There is a considerable amount of work on fast hashing
schemes. The earlier studies (Azar et al., 1994; Vocking, 1999)
suggest that the collisions can be reduced significantly with two
choices. Using multiple hash functions has been considered to
obtain good hash tables. The d-left hash table (Border and
Mitzenmacher, 2001) is a well-known multiple-choice hash table.
The hash table is divided into d sub-tables, and each element is
hashed to d possible buckets, and the left-most least load bucket
is selected to place the element. Recently, several multiple-choice
hashing schemes have been proposed for high-speed network
applications.

Fast Hash Table (FHT) (Song et al., 2005) is proposed to reduce d

parallel lookups for an element to one single lookup. Each element is
stored in an off-chip shortest linked list, and an on-chip CBF is used
as a summary to indicate one linked list used for the search.
Alternative scheme (Kirsch and Mitzenmacher, 2008a,b) is proposed
to improve the FHT performance. This scheme uses an off-chip
multilevel hash table and an array of parallel Bloom filters to
implement the same functionality of the FHT, leading to less space
for both the summary and underlying hash table.

Segmented hashing (Kumar and Crowley, 2005) is a simple
variant of d-ary scheme. The hash table is divided into d equal-
sized sub-tables, and each element is stored in a single bucket
from one sub-table. This scheme uses an on-chip Bloom filter for
each sub-table to avoid d off-chip memory accesses. Peacock
hashing (Kumar et al., 2008) has recently been proposed to reduce
on-chip memory space. This scheme employs a large main sub-
table and a set of small sub-tables, and uses an on-chip Bloom
filter for each small sub-table to achieve deterministic hash table
lookup.

Cuckoo hashing (Pagh and Rodler, 2004) is a simple multiple-
choice scheme that allows element moves. For insertion, each
element is hashed to d possible buckets, and then kicks other
elements away until every element is moved to its appropriate
bucket. The insertion time has OðlognÞ moves for d¼ 2, and this
scheme can achieve about less than one half occupancy. For d¼ 3,
this scheme can achieve about 90% occupancy, but the upper
bounds on insertion time have proven more difficult for dZ3
(Friez et al., 2009). The improved scheme (Kirsch and
Mitzenmacher, 2008a,b) has been proposed to allow at most an
element to be moved during an insertion, improving the sub-
stantial space utilization of a multiple-choice hash table.
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These schemes above are orthogonal to ours. Different from
these schemes using a single Bloom filter for a hash table or a
small sub-table, our DBF-based scheme employs an array of
Bloom filters for a hash table, reducing unnecessary off-chip
memory accesses. We can incorporate the DBFs into these
schemes to further improve the hash table lookup performance.
4. Discriminative bloom filters

For the purpose of clarity, we describe two collision-free
hashing schemes incrementally in this section. First, we present
a direct approach using a single Bloom filter. Second, we present a
fast approach using Discriminative Bloom Filters (DBFs) that is
composed of an array of parallel Bloom filters. Finally, we explore
two network applications of the DBFs for high-speed packet
processing.

4.1. Direct apporach using a single bloom filter

We now present a direct collision-free hashing scheme that
directly uses a single Bloom filter to implement a fast hash table
called Direct Collision-free Hash Table (DCHT). DCHT is composed
of a front-end on-chip Bloom filter and an underlying off-chip
CHT. The Bloom filter is used to construct a compact discriminator
table, eliminating most of unnecessary off-chip memory accesses
to the underlying CHT. Hence, this scheme can achieve faster
collision-free hash table lookup.

Like previous solutions (Song et al., 2005; Kirsch and
Mitzenmacher, 2008a,b; Kumar and Crowley, 2005; Kumar
et al., 2008), this scheme uses an on-chip Bloom filter as a
summary, where all elements stored in an off-chip CHT are
inserted. For an irrelevant element that is not in CHT, the Bloom
filter may drop its lookup, significantly reducing off-chip memory
accesses to CHT. But for a true- or false-positive element through
the Bloom filter, DCHT still requires 2c off-chip memory accesses
to check for the element, due to the factor that the Bloom filter
cannot identify a unique discriminator value for the element.

Fig. 2 illustrates an example of DCHT, where a single Bloom
filter is stored in on-chip memory, and a CHT is stored in off-chip
memory. When an element x is queried, we perform parallel
membership checks on the on-chip Bloom filter by computing
h1ðxÞ, h2ðxÞ, and h3ðxÞ to see whether x is in the filter. If x is in the
filter, we use two possible discriminator values plus x to compute
g x, 0ð Þ ¼ 0 and g x, 1ð Þ ¼ 4, and then search buckets 0 and 4 of CHT
to find the exact match. If x is not in the filter, the search
terminates, which can avoid unnecessary off-chip memory
On-chip Memory Off-chip Memory

x

h1(x)

h3(x)

h2(x)
g(x, 1)

g(x, 0)

BF

0

1

2

3

4

5

6

7

{2, cde}

{4, efg}

{0, abc}

{1, bcd}

{3, def}

CHT

Fig. 2. An example of DCHT.
accesses. Due to the false positives of a Bloom filter, DCHT
requires many additional off-chip memory accesses to validate
the match, limiting the hash table lookup throughput.

Alternative solution is to employ the recently proposed Bloo-
mier Filter (Chazelle et al., 2004), in which encodes the discrimi-
nator values associated to elements. This solution can provide a
possible discriminator value for a queried element, resulting in
one off-chip memory access per lookup. However, this solution
has the issues of large memory requirements and dynamically
changed elements. First, each bucket in the Bloomier Filter needs
at least c bits to store a c-bit discriminator instead of a bit of the
standard Bloom filter, which incurs prohibitively larger on-chip
memory space. Second, the Bloomier Filter can only support a
static set of elements, not dynamically changed elements. To
address these limitations, we propose DBFs to achieve a single
memory access per lookup while retaining memory efficiency in
the next subsection.

4.2. Fast apporach using DBF

To reduce the number of off-chip memory accesses, we
propose a fast collision-free hashing scheme. This scheme uses a
DBF and a CHT to implement a fast and deterministic hash table
called Fast Collision-free Hash Table (FCHT). FCHT is composed of
an on-chip DBF and an off-chip CHT. DBF is used as a summary to
construct an efficient discriminator table, which can not only
eliminate most of unnecessary off-chip memory accesses, but also
identify a possible discriminator value for a queried element. To
validate the match, we hash the discriminator value plus the
element by calculating a single hash function to a possible bucket
of the off-chip CHT for the check.

DBF comprises an array of parallel Bloom filters organized by
the discriminator instead of a single Bloom filter. According to the
discriminator values, we partition all elements into an array of 2c

groups, each with the same discriminator value, where c is the bit
size of the discriminator. Each group of elements is inserted into a
standard Bloom filter, so there are totally at most 2c Bloom filters
running in parallel. In fact, we construct one Bloom filter for each
discriminator value, which contains all the elements that have the
same discriminator value to select the appropriate buckets to
place them. For example, when c¼ 2, all elements stored in CHT
are partitioned into four groups, and DBF contains at most four
parallel Bloom filters in on-chip memory.

It is easy to check whether an element belongs to the hash
table using DBF. We first perform parallel membership checks on
2c Bloom filters BF0, � � � ,BF2c

�1 of a DBF. Given a query of an
element x, we calculate k hash functions h1, � � � ,hk, and check k

hashed bits in each Bloom filter BFi for 0r ir2c
�1. If all k bits are

1, x is in the hash table; otherwise, it is not in the hash table. For x,
we need to check which BFi contains x, and produce a discrimi-
nator value i. Then, we use i plus x as input to a hash function
g x,ið Þ, and map to a possible bucket of CHT, checking to see
whether x exactly matches a pair of fNode ID, Node Keyg in the
bucket. Hence FCHT requires one memory access per lookup for
most of elements stored in CHT, and filters out irrelevant
elements. Algorithm 1 shows the pseudo-code of query operation
in FCHT.

Algorithm 1. Query Operation in FCHT
1:
 Query in FCHT (Element x)
2:
 FCHT is composed of 2c Bloom filters BF0, y, BF2
c
�1, and a

underlying CHT with a hash function g.

3:
 Each BFi has the same k hash functions h1, y, hk, and a

vector of mi bits.

4:
 for (i¼0; io¼2c

�1; iþþ) do
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5:
x

Discrimin
0
1

h1

h

result¼true;
6:
 for (j¼1; jo¼k; jþþ) do
7:
On-ch

BF
0

D

ator Node
{0, abc}, {1
{3, def}, {4

(x)

3(x)

h2(x)

Discriminator T

Fig. 3.
if (BFi[hj(x) % mi]¼¼0) do
8:
 result¼false;
9:
 break;
10:
 end do
11:
 end do
12:
 if (result¼¼true) do
13:
 if (CMP(x, CHT[g(x, i)])¼¼true) do
14:
 return true;
15:
 else
16:
 return false;
17:
 end do
18:
 else
19:
 return false;
20:
 end do
21:
 end do
Fig. 3 illustrates an example of FCHT. The on-chip DBF
comprises two parallel Bloom filters, and the off-chip CHT con-
tains five pairs of fNode ID, Node Keyg. In the discriminator table,
each entry contains a discriminator value and a subset of pairs of
fNode ID, Node Keyg. Each subset of pairs with the same discrimi-
nator value i is stored in Bloom filter BFi of DBF. As shown in
Fig. 3, pairsf0, abcg, f1, bcdg, and f2, cdeg with discriminator value
0 are stored in Bloom filter BF0, while pairs f3, def g and f4, ef gg

with discriminator value 1 are stored in Bloom filter BF1. For a
query of element x, we perform parallel membership checks on
BF0 and BF1. If only BF0 matches x, we produce discriminator
value 0 for x. Then, we hash x plus discriminator value 0 by
calculating g x, 0ð Þ to a bucket 0 of the off-chip CHT. Finally, we
check the bucket to see whether x truly matches element 2 with
key cde.

We observe that there are different numbers of elements
associated with each discriminator value in the off-chip CHT.
ip Memory Off-chip Memory
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g(x, 0)

BF

0

1

2

3

4

5

6

7

{2, cde}

{4, efg}
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{1, bcd}
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An example of FCHT.
Hence, we use different size for each Bloom filter according to the
number of elements stored in it, in order to minimize the overall
false positive probability with a fixed size of on-chip memory. As
all the elements are distributed among all the Bloom filters, the
on-chip DBF has the same memory usage with a single Bloom
filter of DCHT. Due to the false positives, DBF may produce
multiple possible discriminator values for a queried element with
acceptable probability, leading to a few additional off-chip memory
accesses for validating the match.

Moreover, we must bind the lookup time of FCHT, which
consists of hash computation time and off-chip memory access
time. To reduce the hash computation time, we apply the same
group of k hash functions to all the Bloom filters of DBF. We show
that the off-chip memory access time is primarily determined by
the overall false positive probability of all the Bloom filters.
Hence, we will analyze the false positive probability of DBF in
the next subsection.
4.3. Handling incremental updates

When elements are changed dynamically, FCHT must support
fast incremental updates. However, with an array of standard
Bloom filters, we cannot delete elements from the DBFs. A
Counting Bloom Filter (CBF) is an extension of the standard Bloom
filter that allows adding and deleting elements. CBF stores a
counter rather than a bit in each location of the array. To add an
element to CBF, we increment the counters at the positions
calculated by the hash functions; to delete an element, we
decrement the counters.

To handle incremental updates of FCHT, we use an array of
parallel CBFs other than standard Bloom filters to compose an on-
chip DBF. But, the use of CBF requires larger memory space. There
have been several techniques (Bonomi et al., 2006a, 2006b; Hua
et al., 2008; Ficara et al., 2008) proposed for reducing the space
required, generally at the cost of additional computation and
shuffling of memory, while still keeping constant worst-case time
bounds on various primitive operations. Such efforts (Hua et al.,
2008; Ficara et al., 2008) have exploited the idea of hierarchical
structure to compress a great deal of wasted space corresponding
to zero counters. To retain speeds and simplicity, we can apply
this idea to the on-chip DBF.

Additionally, the underlying CHT must also allow for inserting
and deleting elements. When an element is deleted, we just
remove the related pair from a hashed bucket, and update the
corresponding CBF. But the element insertion is a bit more
complicated. To attain one-to-one perfect hashing, we employ
the Cuckoo hashing scheme (Pagh and Rodler, 2004; Friez et al.,
2009) that uses the same random-walk insertion approach as the
CHT construction. This approach places at most one element at
each location of the hash table by allowing elements to be moved
after their initial placement. Therefore, we obtain a sequence of at
mostOðlognÞ moved elements for updating the corresponding
CBFs of DBF.

Fig. 4 illustrates incremental updates of FCHT. When element
5 with the key f gh is inserted in FCHT, we first hash the element’s
key plus each discriminator value by calculating h f gh, 0ð Þ and
h f gh, 1ð Þ, and map to buckets 6 and 4 for placing the element. To
insert element 5 into the off-chip CHT, we exploit the random-
walk insertion approach to allow elements 1 and 4 to be evicted
along the movement path 5-1-4. Hence, we move elements 5,
1, and 4 to t buckets 4, 2, and 7 in CHT, and set their discriminator
values to 1, 1, and 0. After that, we update the corresponding CBFs
of DBF. Due to the changed discriminator values, we have to move
element 1 from CBF0 to CBF1, and 4 from CBF1 to CBF0. As it has
discriminator value 1, element 5 is inserted into CBF1.
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4.4. False positive probability analysis

One key problem of DBF is the false positive, where an element
is claimed as a member in the set even though it is not in the set.
When a queried element experiences false positives, DBF may
produce multiple possible discriminator values for the element.
Then, FCHT needs multiple additional memory accesses to the
underlying CHT for finding the exact match. Therefore we analyze
the false positives effect of DBF on the lookup performance of
FCHT, and explore the key parameters to optimize the lookup
performance.

We use the expected number of off-chip memory accesses to
measure the hash table lookup performance. In FCHT, the lookup
performance is dominated by the number of matching Bloom
filters of an on-chip DBF. It is easy to find that the worst-case
lookup performance is at most 2c off-chip memory accesses,
where c is the bit size of a discriminator. To improve the FCHT
lookup performance, we must minimize the overall false positive
probability of an on-chip DBF. Assume that each Bloom filter BFi

of DBF has the same k hash functions and the constant ratio mi=ni,
where mi is the number of bits in BFi, and ni is the number of
elements in BFi. Hence all Bloom filters of DBF have the same false
positive probability f .

For a query of an element, we can derive the occurrence
probability of the number of Bloom filters matching the element.
Let F be a random variable for the number of matching Bloom
filter, and j be constant in the range f0, � � � ,2c

g. When F ¼ j, the
probability that exactly j Bloom filters match the element is
calculated as follows:

P F ¼ jð Þ ¼ ð
2c

j Þf
j 1�fð Þ

2c
�j

ð2Þ

For each value j, the expected number E of off-chip memory
accesses of FCHT is calculated as follows:

E¼
X2c

j ¼ 0

jP F ¼ jð Þ ¼
X2c

j ¼ 0

jð2
c

j Þf
j 1�fð Þ

2c
�j

ð3Þ

As the probability P F ¼ jð Þ follows the binomial distribution,
the expected number E is calculated as follows:

E¼ 2cf ð4Þ

Therefore the worst-case number Eworst of off-chip memory
accesses is calculated as follows:

Eworst ¼ 2c
ð5Þ
Eqs. (4) and (5) show that both the average-case and worst-
case lookup performance primarily depends on the number 2c of
parallel Bloom filters of DBF. Hence, reducing bucket choices cis
important to improve the worst-case lookup performance
of FCHT.

We explore how the value ranges of c impact on the lookup
performance of FCHT. Assume that there are n distinct elements
and M buckets in the hash table. The analysis of the Cuckoo
hashing scheme (Pagh and Rodler, 2004) has shown that we can
have a constant small value of c if M is slightly greater than n. For
example, if M¼ 1:1n, then c¼ 2 can ensure a perfect matching
with high probability. Recent work (Kumar et al., 2007; Ficara
et al., 2009) has also shown that when M¼ n, using
c¼ Oðlog log nÞ bits of a discriminator can guarantee that a perfect
hash table exists and it can support fast updates. As there are at
most OðlognÞ bucket choices for each element, FCHT using DBF
can improve both the average-case and worst-case performance,
achieving fast and deterministic hash table lookup.

4.5. Network applications of DBFs

We explore two network functions using DBF in high-speed
routers, including IP route lookup and deep packet inspection
(DPI). IP route lookup performs a longest prefix matching, where
the destination IP of a packet is matched against a set of IP
prefixes. DPI performs an exact pattern matching, where both
packet headers and payloads are inspected against a set of known
signatures. Besides in routers, these algorithms have been widely
used in intrusion detection and prevention, network monitoring,
and traffic accounting.

To achieve high speeds, the literatures (Dharmapurikar et al.,
2003, 2004) have recently proposed Parallel Bloom Filters (PBFs)
for IP route lookup and DPI. This solution consists of an on-chip
PBF and an array of off-chip hash tables. PBF is composed of an
array of standard Bloom filters organized by the rule length, e.g.
prefix length for IP route lookup, and signature string length for
DPI. According to the rule length, all rules in a database are
partitioned into an array of subset, and each subset of rules with
the same length is inserted into both a corresponding Bloom filter
of PBF and an off-chip hash table. One hash table with a single
hash function corresponds to one on-chip Bloom filter of PBF for
validating the match. For a query, all Bloom filters of PBF operate
on the corresponding fields (e.g. destination IP address or pay-
load) of various lengths from an incoming packet. Each Bloom
filter tests the membership, and simply indicates match or no
match. Due to the false positives of Bloom filters, this PBF-based
solution needs to check a corresponding off-chip hash table for
validating each possible match.

To reduce off-chip memory accesses of the solution above, we
propose a novel DBF-based architecture for high-speed IP route
lookup and DPI. In this architecture, we use a DBF to replace each
standard Bloom filter of a PBF, so that there is an array of parallel
DBFs in on-chip memory. Accordingly, we use a CHT to replace
each general hash table corresponding to an on-chip Bloom filter,
so that there is an array of off-chip CHTs. Fig. 5 illustrates a packet
processing architecture using DBFs. This architecture is composed
of an array of on-chip parallel DBFs and an array of off-chip CHTs.
Note that each DBF is composed of an array of parallel standard
Bloom filters, each containing a group of rules with the same
discriminator value. Hence, all the DBFs have the same on-chip
memory space as PBF.

This DBF-based solution works as follows. When handling an
incoming packet, we extract the fields of different lengths in the
range f1, � � � ,Wg (see Fig. 5) from the packet, and then feed them
to each corresponding DBF in on-chip memory. Each DBF checks
the membership in parallel, and then identifies a possible
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discriminator value for each field. Like FCHT, this solution hashes
each field plus its discriminator value to a corresponding off-chip
CHT, and then searches the exact match to output a matching rule
for packet processing. In essence, our architecture is composed of
an array of parallel FCHTs, each containing a subset of rules with
the same length. We show that this solution has the same on-chip
memory usage as the PBF-based solution above, while requiring
less off-chip memory accesses as well as smaller off-chip memory
usage.
5. Experimental results

We have conducted simulation experiments to evaluate the
performance of DBF. In the experiments we mainly compare FCHT
with CHT and DCHT in terms of the number of off-chip memory
accesses per lookup and update overhead. There are two cate-
gories of experiments for performance evaluation.

In the first experiments, we synthesize a storage set that is
inserted in a hash table, and a testing set for query on the hash
table. The testing set contains 10-fold elements of a storage set.
Each element is a 4-byte string that is randomly generated from a
given alphabet f‘a’-‘z’,‘A’-‘Z’g. The testing set contains true ele-
ments of 20% to 80% that are stored in the storage set.

In the second experiments, we obtain a storage set of equal-
sized IP prefixes and Snort signatures from real-world networks.
We synthesize a testing set of IP addresses and payload strings for
query, which contains true elements of 40% and 80% that are
stored in the storage set.
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Table 1
False positive probability.

Ratio of True Elements (%) False Positive Probability (%)

m/n¼10, k¼6 c¼3

DCHT (%)

20 21.28

30 13.65

40 9.24

50 6.35

60 4.31

70 2.82

80 1.67
5.1. Experiments on synthetic sets

We conduct the experiments on synthetic sets to examine the
performance of FCHT, CHT, and DCHT in different settings. In the
experiments, there are n¼ 10K and n¼ 100K unique elements
and M¼ n buckets in an off-chip hash table; each element has a
discriminator of c¼ 3 or c¼ 4 bits, indicating that there are 8 or
16 bucket choices for an element. For fair evaluation, we must
choose the appropriate value of the parameters (e.g., m, n, ank) of
Bloom filters to optimize the performance of FCHT, CHT, and
DCHT. Given that the ratio of m=n is constant in an on-chip Bloom
filter, we select k¼ ðm=nÞln2 hash functions to minimize the false
positive probability, where n is the number of elements, and m is
the number of buckets in the Bloom filter. Each Bloom filter of
DBF has the same parameters of k and m=n. As m=n is the same,
both DCHT and FCHT have the same on-chip memory usage.
When m=n¼ 10, we can easily calculate the on-chip memory size
of m¼ 100K bits and m¼ 1M bits in case of n¼ 10K and n¼ 100K.

Table 1 shows the comparisons of false positive probability
between DCHT and FCHT. Due to the aggregate false positives
from all Bloom filters of DBF, FCHT has larger false positive
probability than DCHT. For instance, in case of m=n¼ 16 and
c¼ 4, when the ratio of true elements to total queried elements
increases from 20% to 80%, the false positive probability of DCHT
and FCHT separately decreases from 1.59% down to 0.10% and
from 3.00% down to 0.19%. Nevertheless, our later experiments
show that FCHT requires less off-chip memory accesses per
lookup than DCHT since DBF can identify a unique discriminator
for a queried element.

Table 2 shows the number of off-chip memory accesses per
lookup in case of c¼ 3. DCHT and FCHT have constant number of
off-chip memory accesses per lookup, while CHT has variable
number of off-chip memory accesses. For instance, when
m=n¼ 16 and k¼ 11, CHT has 6.8–40.5 off-chip memory access
per lookup, and DCHT has 4.5 off-chip memory accesses while
FCHT has only 1.0 off-chip memory accesses. Table 2 shows that
FCHT requires about one off-chip memory access per lookup, less
than both CHT and DCHT.

Fig. 6 depicts average off-chip memory accesses per lookup in
case of c¼ 3. We observe that FCHT requires much less average
off-chip memory accesses per lookup than both CHT and DCHT.
When m=n¼ 10, FCHT reduces average off-chip memory accesses
per lookup by 6.5–30.9 times and by 4.1 times compared to CHT
and DCHT; when m=n¼ 16, FCHT reduces average off-chip mem-
ory accesses by 6.7–39.8 times and by 4.5 times. Fig. 6 demon-
strates that FCHT using DBF outperforms previous schemes in
terms of the number of off-chip memory accesses per lookup.

Table 3 shows the number of off-chip memory accesses
per lookup in case of c¼ 4. We also observe that DCHT and FCHT
have constant number of off-chip memory accesses per lookup,
while CHT has variable number of off-chip memory accesses.
m/n¼16, k¼11 c¼4

FCHT (%) DCHT (%) FCHT (%)

33.77 1.59 3.00

22.95 1.01 1.77

16.03 0.65 1.14

11.29 0.42 0.77

7.83 0.27 0.51

5.17 0.17 0.33

3.08 0.10 0.19



Table 2
Number of off-chip memory accesses per lookup in case of c¼3.

c¼3 M¼n¼10 K M¼n¼100 K

Ratio of True Elements (%) m/n¼10, k¼6 m/n¼16, k¼11 m/n¼10, k¼6 m/n¼16, k¼11

CHT DCHT FCHT DCHT FCHT CHT DCHT FCHT DCHT FCHT

20 40.5 4.8 1.3 4.5 1.0 40.5 4.8 1.3 4.5 1.0

30 25.5 4.7 1.2 4.5 1.0 25.5 4.7 1.2 4.5 1.0

40 18.0 4.6 1.1 4.5 1.0 18.0 4.6 1.1 4.5 1.0

50 13.5 4.6 1.1 4.5 1.0 13.5 4.6 1.1 4.5 1.0

60 10.5 4.6 1.1 4.5 1.0 10.5 4.6 1.1 4.5 1.0

70 8.4 4.6 1.1 4.5 1.0 8.4 4.6 1.1 4.5 1.0

80 6.8 4.5 1.1 4.5 1.0 6.8 4.5 1.1 4.5 1.0
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Fig. 6. Average off-chip memory accesses per lookup in case of c¼3.

Ratio of True Elements
20% 30% 40% 50% 60% 70% 80%

M
em

or
y 

A
cc

es
s 

Pe
r E

le
m

en
t

0

10

20

30

40

50

60

70

80
CHT
DCHT(10,6)
FCHT(10,6)
DCHT(16,11)
FCHT(16,11)

Fig. 7. Average off-chip memory accesses per lookup in case of c¼4.

K. Huang et al. / Journal of Network and Computer Applications 36 (2013) 657–666664
For instance, when n¼ 10K and m=n¼ 16, CHT has 12.8–76.5 off-
chip memory accesses per lookup, and DCHT has 8.5 off-chip
memory accesses, while FCHT has 1.0 off-chip memory accesses.
Table 3 also demonstrates that FCHT requires much less off-chip
memory accesses per lookup than both CHT and DCHT.

Fig. 7 depicts average off-chip memory accesses per lookup in
case of c¼ 4. Fig. 7 also demonstrates that FCHT requires less
average memory accesses per lookup than both CHT and DCHT.
When m=n¼ 10, FCHT reduces average off-chip memory accesses
per lookup by 11.6–47.4 times and by 7 times compared to CHT
and DCHT; when m=n¼ 16, FCHT reduces average off-chip mem-
ory accesses by 12.7–73.9 times and by 8.5 times.

Fig. 8 shows the update overhead. Fig. 8(a) shows that CHT,
DCHT, and FCHT have constant off-chip memory accesses per
deletion. As a single on-chip Bloom filter cannot identify a
discriminator value for a queried element, CHT and DCHT has
the same deletion overhead. We also observe that CHT and DCHT
also have the same insertion overhead. Because DBF can identify a
unique discriminator value for an element, FCHT has one off-chip
memory access per deletion, less than both CHT and DCHT.
Fig. 8(b) shows the insertion overhead of FCHT, where newly
inserted elements account for 0.1%, 1%, and 10% of elements in the
hash table. When the occupancy increases from 0.1% to 10%, FCHT
requires less off-chip memory accesses per insertion. The reason
is that more inserted elements have more empty buckets, which
offers more opportunities to find an argument path for the
insertion (Pagh and Rodler, 2004; Friez et al., 2009).

5.2. Experiments on realistic sets

We conduct the experiments on realistic sets to evaluate two
packet processing applications of DBF, including IP route lookup and
DPI. To evaluate IP route lookup, we obtain four representative real-
world IPv4 prefix tables of core routers. AS6447 and AS65000 are
collected from (/http://bgp.potaroo.netS), while OIX and V3 are
collected from (/http://www.routerreview.orgS). As shown In
Table 4, AS6447, AS65000, OIX, and V3 are large-scale IPv4 BGP
tables that contain about 310 K, 217 K, 347 K, and 250 K prefixes,
respectively. As the prefixes of length 24 primarily account for about
30–50%, we extract these prefixes from four prefix tables to examine
the performance of IP route lookup.

To evaluate DPI, we also obtain a set of Snort attack signatures.
Snort 2.7 has a set of total 7840 signatures (/http://
www.snort.orgS). For evaluation purposes, we partition the Snort
set into a group of subsets according to the signature length, and
sort the group in descending order. Similarly, we extract three
first subsets of Snort signatures to examine the performance of
DPI. As shown in Table 5, Snort379, Snort348, and Snort247
contain 379, 348, and 247 signatures of equal length, respectively.

We mainly compare PBF-based and DBF-based approaches to
IP route lookup and DPI. For fair evaluations, we set the optimal
parameters of on-chip Bloom filters and off-chip hash tables in
the experiments. Given a constant ratio of m=n¼ 16, k¼ 11 is
chosen to minimize the false positive probability of on-chip
Bloom filters. Furthermore, we set the parameters of M=n¼ 1:1
and c¼ 4 for each off-chip CHT in the DBF-based approach to
optimize the hash table lookup performance. In the experiments a
testing set contains true elements of 40% and 80% stored in a
storage set of IP prefixes and Snort signatures.

Fig. 9 depicts the number of off-chip memory accesses per
lookup in case of IP route lookup. In this experiment we
synthesize a set of testing prefixes each with the length 24.
Fig. 9 shows that the PBF-based approach has 8.5 average off-chip
memory accesses per lookup, while the DBF-based approach has
1.0 average off-chip memory accesses. Therefore for IP route
lookup, the DBF-based approach reduces the number of off-chip
memory accesses per lookup by 8.5 times compared to the PBF-
based approach.

Fig. 10 depicts the number of off-chip memory accesses per
lookup in case of DPI. In this experiment we synthesize a set of
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Table 4
IP Prefixes.

Type Prefix Table #Prefixes

IPv4 AS6447 310,344

AS65000 217,952

OIX 347,408

V3 250,376

Table 5
Snort Signatures.

Type Signature Set #Signatures

Snort Snort379 379

Snort348 348

Snort247 247
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Fig. 9. Off-chip memory accesses per lookup in case of IP route lookup.
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Table 3
Number of off-chip memory accesses per lookup in case of c¼4.

c¼4 M¼n¼10 K M¼n¼100 K

Ratio of True Elements (%) m/n¼10, k¼6 m/n¼16, k¼11 m/n¼10, k¼6 m/n¼16, k¼11

CHT DCHT FCHT DCHT FCHT CHT DCHT FCHT DCHT FCHT

20 76.5 9.1 1.6 8.5 1.0 76.50 9.08 1.6 8.6 1.0

30 48.2 8.8 1.4 8.5 1.0 48.17 8.84 1.3 8.5 1.0

40 34.0 8.7 1.3 8.5 1.0 34.00 8.72 1.2 8.5 1.0

50 25.5 8.7 1.2 8.5 1.0 25.50 8.65 1.2 8.5 1.0

60 19.8 8.6 1.3 8.5 1.0 19.84 8.60 1.1 8.5 1.0

70 15.8 8.6 1.1 8.5 1.0 15.79 8.56 1.1 8.5 1.0

80 12.8 8.6 1.1 8.5 1.0 12.75 8.54 1.1 8.5 1.0
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testing strings against a storage set of Snort signatures. We
observe that the PBF-based approach has 8.0 average off-chip
memory accesses per lookup, while the DBF-based approach has
1.0 average off-chip memory accesses. Fig. 10 shows that for DPI,
the DBF-based approach reduces the number of off-chip memory
accesses per lookup by 8.0 times compared to the PBF-based
approach.
6. Conclusions

We propose a fast collision-free hashing scheme called FCHT
using DBF to achieve fast and deterministic hash table lookup.
FCHT is composed of an on-chip DBF and an off-chip CHT. DBF is
composed of an array of parallel Bloom filters organized by the
discriminator. Each element in a CHT has a discriminator, indicat-
ing that it has multiple bucket choices to place the element. For a
query of an element, all Bloom filters of an on-chip DBF are
checked in parallel for the membership to produce a possible
discriminator value for the element. Then the discriminator value
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plus the element is hashed to a possible bucket in an off-chip CHT
for validating the match. We also explore two network applica-
tions of DBF, including IP route lookup and DPI.

We show that FCHT achieves one off-chip memory access per
lookup by using DBF. Experiments on synthetic sets show that
compared to CHT and DCHT, FCHT reduces the number of off-chip
memory accesses per lookup by up to 73.9 times and by up to
8.5 times. Experiments on realistic sets show that for packet
processing the DBF-based approach requires less significant off-
chip memory accesses per lookup than the PBF-based approach.
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