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Abstract— A memory efficient hardware string searching engine for anti-virus applications is presented. The proposed QSV 
method is based on quick sampling of the input stream against fixed-length pattern prefixes, and on-demand verification of 
variable-length pattern suffixes. Patterns handled by the QSV method are required to have at least 16 bytes, and possess 
distinct 16-byte prefixes. The latter requirement can be fulfilled by a preprocessing procedure. The search engine uses the 
pipelined Aho-Corasick (P-AC) architecture developed by the first author to process 4- to 15-byte short patterns and a small 
number of exception cases. Our design was evaluated using the ClamAV virus database having 82888 strings with a total size 
that exceeds 8 Mbyte. In terms of byte count, 99.3% of the pattern set is handled by the QSV method and 0.7% of the pattern 
set is handled by P-AC. A pattern with distinct 16-byte prefix only occupies up to 3 lookup table entries in QSV. The overall 
memory cost of our system is about 1.4Mbyte, i.e. 1.4 bit per character of the ClamAV pattern set. The proposed method is 
memory-based, hence, updates to the pattern set can be accommodated by modifying the contents of the lookup tables without 
reconfiguring the hardware circuits. 

Index Terms—string searching, anti-virus system, system security, embedded system.  
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1  INTRODUCTION 
very computer connected to the Internet is subject to 
various kinds of attack. Intrusion detection system 
(IDS) and anti-virus software are essential security 

tools for today’s computer systems. Many users have 
complained that their personal computers are slowed 
down significantly by the IDS/anti-virus software. This is 
understandable because these tools will need to scan any 
data retrieved from storage devices or received via the 
Internet against a very large pattern set with thousands of 
attack patterns. The computation resource consumed by 
the IDS/anti-virus software depends on the amount of 
data to be scanned and the size of the pattern set. If the 
IDS/anti-virus software is deployed to protect a server 
machine, software-based pattern matching engines may 
not meet the required throughput. For example, an email 
server needs to scan all incoming and outgoing mails to 
ensure that emails delivered to end-users are virus-free. 
The amount of data involved is in the order of multi-tera 
bytes per day. Hence, there have been active researches 
on hardware-assisted methods to speed up the pattern 
matching process. 

Patterns in IDS/anti-virus rule sets can be broadly 
divided into two categories, namely, static string and 
regular expression. Up to now, majority of the patterns in 
a rule set are static strings. For example, in the ClamAV 
[6] virus database, there are 82,888 static strings and 7017 
regular expressions. However, the number of regular 
expression is catching up steadily. In this paper, we shall 
present a memory efficient hardware string searching 

engine to handle the 82K static strings. In the following 
discussion, the term “pattern” is used to refer to static 
string. 

There have been attempts to implement hardware-
assisted string matching engines based on the Aho-
Corasick (AC) algorithm [1, 10, 16-18, 22, 25, 26], Knuth-
Morris-Pratt (KMP) algorithm [3, 14], hashing [20], Bloom 
Filters [8, 9], ternary content addressable memory 
(TCAM) [2, 27], and hardwired logic circuits [4, 7, 23, 24]. 
Researchers mostly evaluated their designs using pattern 
sets extracted from the Snort IDS [21]. The number of 
patterns used in their evaluations varies from 2 to 6 
thousands. The average pattern length in the Snort rule 
set is about 19 characters (bytes). The overall size of the 
Snort pattern set is about 100K characters.  

There are two major challenges in anti-virus 
applications, namely, scalability and dynamic updates to 
the pattern set. In an anti-virus system, e.g. ClamAV, the 
rule database contains over 82K static strings. The 
average pattern length is about 102 bytes. The total size of 
the ClamAV pattern set is more than 80 times the size of 
the Snort pattern set. If the previously published methods 
were applied to the ClamAV pattern set, the hardware 
string matching engine would require at least 20 Mbyte 
to over 200 Mbyte of embedded memory. Such a large 
amount of embedded memory is very expensive. 
Moreover, implementation using FPGA is not feasible 
since today’s FPGA devices can only have about 2Mbyte 
of embedded memory.  

Updates to the pattern set in an anti-virus system can 
be quite frequent. For example, by default the ClamAV 
system will check for virus database updates once every 2 
hours. Reconfiguration of a FPGA device may take a 
couple of hours to over a day, depending on the 
complexity of the circuits and device utilization. In order 
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to support dynamic updates to the pattern set, the design 
of the hardware string searching engine should be 
memory-based. The system should be able to update the 
lookup tables without reconfiguring the hardware 
circuits.  

The terms “string matching” and “string searching” are 
often used interchangeably by the research community. 
However, in this paper the two terms have slightly 
different meanings. For an input stream I and a pattern 
set Γ, the string matching problem is to locate and identify 
all substrings of I which are patterns in Γ. Outputs of the 
string matching algorithm are two-tuples <i, pid>, where 
pid is the pattern ID and i is the location at which the 
pattern is found. For string searching, the problem 
requirement is slightly relaxed, and the outputs are 
interpreted as possible matches only, i.e. the given 
pattern is very likely to be found at location i. Methods 
based on the AC or KMP algorithm solve the string 
matching problem. When the system reports a match, no 
further processing is required to verify the match result. 
Methods based on hashing and Bloom filters only solve 
the string searching problem. When the system reports a 
possible match, the result needs to be verified by the 
general purpose processor or other devices to eliminate 
false positives.  

For methods based on the AC algorithm, the complete 
pattern set is stored in the match engine for comparison 
with the input data. Sharing of states in the AC transition 
graph is mostly restricted to nodes that are within 3 hops 
from the root. For virus patterns with average length of 
102 bytes, state sharing can only help to reduce the 
storage of the pattern set by a few percents. Hence, the 
memory cost of pure AC-based methods cannot be lower 
than 8 bits per character. If the problem statement is 
relaxed to string searching, the system only needs to store 
the hash codes or pattern checksums. It is possible to 
reduce the memory cost to less than 8 bits per character.  

In this paper, a string searching method for very large 
pattern sets that would require substantially smaller 
amount of embedded memory is presented. In this study, 
the system parameters are derived based on the ClamAV 
pattern set. However, the proposed method is applicable 
to other pattern sets. For the ClamAV pattern set with 
82888 patterns, our method only requires 1.4 Mbyte of 
embedded memory, i.e. about 1.4 bits per character of the 
pattern set. The proposed method is based on quick 
sampling of the input stream against fixed-length pattern 
prefixes, and on-demand verification of variable-length 
pattern suffixes. The effectiveness of a string searching 
engine depends on the hit rate (including false positives). 
When a genuine virus is found, the data file concerned is 
tagged. How to handle the infected file will be the 
responsibility of the software system. If the hit rate is 
sufficiently low, e.g. 10-7 or lower, the workload of the 
general purpose processor for verification is negligible. In 
our evaluation using different data files as input stream 

with total size that exceeds 900 Mbyte, only 3 matches are 
reported and none of them are false positive. 

Organization of the paper is as follows. In section 2, 
we shall present the general strategy and architecture of 
the proposed method. Some of the system parameters 
will be devised based on the statistical properties of the 
ClamAV pattern set. In section 3, we shall discuss the 
necessary preprocessing and explain how the lookup 
tables and related data structures are computed. Design 
of the aggregation unit will be discussed in section 4. 
Performance evaluation and comparison with related 
work will be discussed in section 5. Section 6 is the 
conclusion. 

2 PROPOSED METHOD 
The string searching problem can be solved using a 
simple strategy outlined in the pseudo code shown 
below. Let Γ be the pattern set, and L be the set of discrete 
pattern lengths. Let Cj be the set of checksum for patterns 
in Γ with length equal to j. The checksums can be 
generated using a user defined CRC polynomial. 

 
//Pseudo code of the string searching method 
for (i = 0; i < in_stream.length; i++) 
{ for each j in L 
 { if(i+j < in_stream.length) 
  { c_in=checksum of in_stream[i..(i+j-1)]; 

  if(c_in==pattern_k.checksum in Cj) 
    report a possible match (i, pattern_k);  
  } 
 } 
} 
 

There are over 82K static strings in the ClamAV 
pattern set. The minimum and maximum pattern lengths 
are 4 and 392, respectively. Running the above algorithm 
on a sequential machine is very inefficient. However, the 
above computation can be mapped to hardware with 
good efficiency. A prerequisite is that all patterns in the 
pattern set are required to have distinct fixed-length (e.g. 
16-byte) prefix. This property can be ensured by the 
preprocessing procedure. The system will do a quick 
sampling of fixed-length segments in the input stream. If 
the sampled input data segment does not match any 
pattern prefixes in the pattern set, then no further 
processing at this byte location is necessary. If the 
sampled segment matches the prefix of a pattern, then the 
system will continue to compute the checksum of the 
input stream data for the corresponding pattern length. If 
the checksum is equal to the expected value, then a match 
result is generated. We shall show that an overall system 
throughput of 1 byte per cycle can be achieved using a 
combination of techniques including pipelining, parallel 
processing, hashing, and pattern set preprocessing.  

In the next subsection, we shall first highlight some 
statistical properties of the ClamAV pattern set. These 
statistical properties are used to guide the selection of 
appropriate system parameters in the hardware 
architecture. Details of the hardware architecture will be 



explained in section 2.2. The required preprocessing of 
the pattern set will be discussed in section 3. 

2.1 STATISTICAL PROPERTIES OF THE CLAMAV DATABASE 
The ClamAV virus database main.cvd version 51 
released on 14 May 2009 is used in this study. Only static 
strings are considered. MD5 checksums and regular 
expressions in the database are excluded. A total of 82,888 
static strings are found in the main.db and main.ndb 
files. The minimum, maximum, and average pattern 
lengths are 4, 392, and 102 bytes, respectively. 1258 (1.5%) 
patterns have less than 16 bytes. 81,630 (98.5%) patterns 
have 16 bytes or more. Only 172 patterns have more than 
180 bytes. Detailed pattern length distribution of the 
pattern set is shown in Fig. 1. Patterns with 16 bytes or 
more are called long patterns. Patterns with less than 16 
bytes are called short patterns. The short patterns only 
account for less than 0.2% of the total size of the pattern 
set. 94% of the long patterns have distinct 16-byte 
prefixes. 

 

 
Fig. 1. Pattern length distribution in the ClamAV pattern set. Since 
zero value cannot be shown using logarithmic scale, the number of 
patterns for each length in the plot is set to 1 plus the actual value. 

2.2 QSV ARCHITECTURE 
In the proposed string searching engine, we use our 
previously developed pipelined Aho-Corasick (P-AC) 
match engine [17, 18] to process short patterns and a 
small number of exception cases. The vast majority of 
long patterns will be processed using the quick sampling 
plus verification (QSV) approach. In terms of byte count, 
99.3% of the pattern set will be processed by the QSV 
module. 

The block diagram of the string searching engine is 
depicted in Fig. 2. There are three major components, 
namely, the P-AC module, the QSV module, and the 
aggregation unit (AU). The P-AC module and the QSV 
module operate synchronously. Both of them consume 1 
input character per cycle. The P-AC architecture utilizes 
pipelined processing to eliminate all the failure and 
backward transition edges in the state transition graph of 
the AC algorithm such that the overall size of the lookup 

table can be reduced very significantly. Readers are 
referred to [18] for the detailed design of the P-AC 
module. In the following discussion, we shall focus on 
the QSV module.  

 

 
Fig. 2. System block diagram. 

The QSV module is composed of the prefix sampling 
unit (PS) and the CRC checksum verification unit (CRC). 
Patterns processed by the QSV method are required to 
possess unique 16-byte prefixes. Patterns that share 
common 16-byte (or longer) prefixes will be divided into 
multiple segments with 16 bytes or more, except for the 
last segment, such that each long segment has distinct 16-
byte prefix. Short segments with 4 to 15 bytes are handled 
by the P-AC module. Segments with 1 to 3 bytes are 
ignored by the search engine. They will be verified by the 
post-searching verification procedure. The aggregation 
unit (AU) is used to combine the partial match results 
(detection of individual segments) to produce the final 
results. The segmentation process will be discussed in 
section 3.1, and the design of the AU will be discussed in 
section 4. 

Let ΓPAC denote the set of patterns/segments 
processed by P-AC, and ΓQSV denote the set of 
patterns/segments processed by QSV. Let’s assume for 
the time being that all patterns in ΓQSV have distinct 16-
byte prefixes. For each pattern in ΓQSV, we pre-compute 
the checksum for the 16-byte prefixes. The hardware will 
use a shift-register to buffer 16 bytes of data as shown in 
Fig. 3. A circuit is used to generate a 16-bit CRC 
checksum for the 16 bytes of data in the buffer. If this 
checksum is equal to one of the prefix checksums, then 
some further processing will be required; otherwise no 
further processing is necessary at the current byte 
location. The checksum of the 16-byte input data segment 
needs to be compared against almost 82K possible values. 
This problem is resolved using a two-level hash tables 
based on bit-selection. We take the distinct 16-byte 
pattern prefixes as the set of keys. We then apply a bit-
selection algorithm to select 30 bits from the 128-bit keys. 
The selected bits form a 30-bit hash index. The bit-
selection algorithm is designed in such a way that it will 
try to limit the maximum bucket size to no more than 8. If 
a bucket contains x entries, where x is greater than 8, then 



 
Fig. 3. Block diagram of the QSV module 

 

x−8 patterns in the given bucket will be transferred from 
ΓQSV to ΓPAC. By restricting the maximum bucket size to 8, 
we only need to compare the checksum of the input data 
segment with up to 8 prefix checksums in parallel. The 
advantages of using the bit-selection approach are that (i) 
the bucket size can be controlled, (ii) the generation of the 
hash index is very straightforward, and (iii) the hash 
function can be reprogrammed without the needs to 
reconfigure the hardware. The last property is 
particularly desirable in view of the dynamic updates to 
the pattern set. The bit-selection algorithm will be 
discussed in section 2.3. 

With a 30-bit hash value, the size of the logical hash 
table is equal to 230. However, only up to about 82K 
entries in the hash table are occupied. We implement the 
logical hash table with a two-level structure containing 
tables T1 and T2 as shown in Fig. 3. Table T2 is 
implemented using up to 8 parallel memory modules. 
Size of table T1 is equal to 32K, and size of table T2 (sum of 
the 8 memory modules) is 93K. Table T1 is a direct 
indexed array, and table T2 is implemented using the 
direct indexing plus bit-selection (DIBS) technique of [18]. 
The DIBS approach was later found to be similar to the 
BaRTS of [15]. We shall illustrate the table lookup 
operation using an example. In this example, T2 is 
assumed to be constructed using 1 memory module. 
Refer to the sample set of 8 patterns shown in Fig. 4. The 
30 selected bits are divided into two groups, h1 and h2, 
where each group contains 15 bits. The values of h1, h2, 
the bit mask, and the checksums are shown as 
hexadecimal numbers. h1 is used as the address to access 
table T1. In this example, the values of h1 are artificially 
set to 0002 to 0005 so that the size of the array shown in 
the figure is kept to a minimum. Patterns P2 and P3 are 
mapped to bucket 0003 in T1, and patterns P5 to P8 are 
mapped to bucket 0005 in T1. An entry in T1 stores a 15-

bit mask vector and a 16-bit base address for accessing T2. 
Note that table T2 is implemented with up to 8 parallel 
memories. Its overall capacity is 93K, but the address 
range is less than 64K. When there is more than one 
pattern mapped to the same bucket in T1, the bit mask 
will be used to generate an offset value for accessing T2. If 
an entry in table T1 is empty, the base address field is set 
to all ‘1’. 

Consider the group of patterns P5 to P8 that are 
mapped to bucket 0005 in T1. The 4 patterns can be 
distinguished by taking bits 0 and 4 of their h2 hash 
values as shown in Fig. 5. Hence, the bit mask stored in 
entry 0005 of T1 is equal to 0011 (hexadecimal). The bit-
extraction circuit takes the bit mask and the value of h2 as 
inputs to generate the address offset. Assume g bits of the 
bit mask, bs1, bs2, ... bsg, are equal to 1, where s1 < s2 … < 
sg ≤ 15. Let the value of h2 be i14…i1i0. The offset value 
produced by the bit-extraction circuit is equal to 
0..0isg…is2is1. If g bits in the bit mask are set to 1, a block of 
2g entries in T2 will be allocated for the corresponding T1 
bucket. If the base address is an integral multiple of 2g, 
then the least significant g bits of the base address must 
equal to ‘0’. Hence, the offset can be added to the base 
address by a simple bitwise logical-OR operation. In our 
study, the value of g is no more than 8. 

Assume the values of h1, h2 and the checksum of the 
input data segment are “0005”, “1234”, and “abcd”, 
respectively. The system will first access entry 0005 of T1. 
The base address retrieved from T1 is equal to 0004. Bits 4 
and 0 of “1234” are equal to “10” binary. The system will 
then access entry 0004+2 of T2 in the next cycle. The 
checksum retrieved from T2 is “3e7d”, which is not equal 
to “abcd”. Hence, no further processing at the current 
byte location is required. 



Sample 
patterns 

length 
(byte) 

selected bits prefix 
checksum 

pattern 
checksum 

checkpoint_1 
 

checkpoint_2 
h1 h2 

P1 16 0002 605c b169 ---- ---- ---- 
P2 26 0003 5104 841e 7ac0 b2bc 7ac0 
P3 17 0003 04f3 a72b b5a9 b5a9 b5a9 
P4 37 0004 15e8 b81e e535 98f7 f676 
P5 64 0005 0369 967e 2e14 e6fc 369d 
P6 112 0005 75a2 89a6 48fe 2c94 f709 
P7 40 0005 2391 74b9 e1b8 e1c6 6551 
P8 45 0005 32d0 3e7d a22e c271 1885 

 
 Table T1  Table T2  Table T3 

address mask base  prefix 
checksum 

pattern ID  byte 
count 

pattern 
checksum 

checkpoint_1 checkpoint_2 

0000 0000 ffff  ---- 00000 (null)  -- ---- ---- ---- 
0001 0000 ffff  b169 00001 (P1)  0 ---- ---- ---- 
0002 0000 0001  841e 00002 (P2)  12 7ac0 b2bc 7ac0 
0003 0001 0002  a72b 00003 (P3)  3 b5a9 b5a9 b5a9 
0004 0000 0008  89a6 00006 (P6)  23 e535 98f7 f676 
0005 0011 0004  967e 00005 (P5)  50 2e14 e6fc 369d 
0006 0000 ffff  3e7d 00008 (P8)  98 48fe 2c94 f709 
0007 0000 ffff  74b9 00007 (P7)  26 e1b8 e1c6 6551 
0008 0000 ffff  b81e 00004 (P4)  31 a22e c271 1885 

 
Fig. 4. Lookup tables for a sample set of 8 patterns. 

 
Pattern value of h2 in binary address offset by taking the value of bits 0 and 4 

P5 0000 0011 0110 1001 01 
P6 0111 0101 1010 0010 00 
P7 0010 0011 1001 0001 11 
P8 0011 0010 1101 0000 10 

 
Fig. 5. Distinguishing bits of the h2 hash code for patterns P5 to P8 in the sample set. 

 
 

Consider another scenario where the values of h1, h2 
and checksum of the input data segment are “0005”, 
“2391”, and “74b9”, respectively. The system will first 
access entry 0005 of T1, and then access entry 00004+3 of 
T2 in the next cycle. The checksum retrieved from T2 
matches the checksum of the input data segment. A 
verification command for the given pattern will be 
retrieved from T3 using the pattern ID (obtained from T2) 
as the memory address. The verification command 
contains 4 fields, namely, byte count, pattern checksum, 
checkpoint_1, checkpoint_2. The uses of the checkpoints will 
be explained later. If the length of the pattern is equal to 
16, the byte count value retrieved from T3 is zero. No 
further verification is necessary and the pattern ID 
(obtained from T2) will be sent to the AU directly. If the 
pattern length is greater than 16, then the system will 
check whether the subsequent bytes of the input stream 
match the corresponding pattern suffix. Verification is 
required if the pattern length is equal to 17 or larger. The 
verification process needs not start from the first byte of 
the pattern since the input stream is assumed to have 
matched the 16-byte prefix. If the checksum is generated 
using a 16-bit CRC polynomial and the CRC verification 
unit consumes 1 byte of data per cycle, then a minimum 
of 3 bytes of data needs to be processed. Let the bytes of a 
patterns are numbered from 0 to L−1, where L is the 

pattern length. The pattern checksum is computed using 
bytes 14 to L−1. Hence, the byte count value in the 
verification command is set to L−14, if L > 16.  

Let i be the current location index, and t be the current 
cycle number. The system accesses table T1 in cycle t, and 
accesses table T2 in cycle t+1. If the checksum of the input 
data segment matches the prefix checksum stored in T2, a 
verification command will be retrieved from table T3 in 
cycle t+2 and sent to an idle CRC unit. The CRC unit will 
start to compute the pattern checksum in cycle t+3. By 
that time, byte 14 of the corresponding input data 
segment would have advanced to slot 11 of the input 
buffer. Hence, byte 11 of the shift register is fed to the 
CRC units. Each CRC unit will have a count-down 
counter initialized with the byte count value received in 
the verification command. The CRC unit will process one 
byte of data in each cycle, and the counter is decremented 
at the end of the clock cycle. When the counter is 
decremented to 0, the calculation of the checksum stops 
and the checksum is compared with the pattern 
checksum received in the verification command. If the 
two checksums are equal, then a possible match is 
reported to the AU. 

A pattern can be very long, e.g. with up to 392 bytes 
in the ClamAV pattern set. Two check-points are 



introduced in the verification process after cycles 7 and 
17. The value of checkpoint_1 (checkpoint_2) corresponds to 
the checksum computed with bytes 14 to 20 (14 to 30) of 
the given pattern. If the pattern length is between 17 to 21 
bytes, the two checkpoints are equal to the pattern 
checksum. If the pattern length is between 22 to 31 bytes, 
checkpoint_2 is equal to the pattern checksum. The CRC 
unit will decide whether it needs to continue with the 
verification process after processing 7 and 17 bytes of 
data, respectively. If the current checksum is not equal to 
the corresponding checkpoint, the verification process will 
be aborted.  

The QSV module will report a match for patterns with 
16 bytes if the input data matches the 15-bit hash index h1 
(and in most cases some bits in h2) and the 16-bit prefix 
checksum. There are 728 16-byte patterns in ΓQSV. Assume 
the input data and hash function outputs are uniformly 
distributed. The expected hit rate for 16-byte pattern is 
728×2-31 = 3.4×10-7. For patterns with 17 to 21 bytes, the 
input data must match the hash index h1, the prefix 
checksum and the pattern checksum. About 82K patterns 
in ΓQSV are longer than 16 bytes. The hit rate for patterns 
with at least 17 bytes is less than 82000×2-47 = 5.8×10‐10. 
Hence, the overall expected hit rate is about 3.4×10-7. 

 
2.3 Construction of Lookup Tables 
The 128-bit input stream buffer is divided into 15 regions. 
The lower and upper bounds of the 15 regions are listed 
in Table 1. The bit selection algorithm selects 2 bits from 
each region. Regions R8 to R14 overlap with regions R0 to 
R7. This arrangement ensures that the selected bits will 
not be localized to a few bytes of the 16-byte prefix, and 
provides flexibility to the bit-selection algorithm. The 
hash index h1 is obtained by taking one selected bit from 
each region, and h2 is composed of the remaining selected 
bits. Dividing the 128-bit key into 15 regions also helps to 
simplify the bit-selection circuit. For each region, we 
require two 16-to-1 (or 18-to-1) multiplexors and two 4-
bit (or 5-bit) register that stores the offset of the selected 
bits within the corresponding region. Generation of h1 
and h2 requires another 15 bits of storage and 15 copies of 
2-bit cross-bar switch. The hash function can be 
reprogrammed by assigning new values to the registers. 

The bit-selection algorithm is based on a greedy 
approach that tries to limit the maximum bucket size to 8. 
Given a group of x 128-bit keys, K = {k1, k2, … kx}, the bit-
selection algorithm will first compute the bit-count in 
each bit position. Let bi be the number of keys with the i-
th bit equal to 1. By selecting the i-th bit, the set of keys is 
divided into two groups, K0 and K1, with sizes equal to 
x−bi and bi, respectively. Keys in K0 will have the i-th bit 
equal to 0, whereas keys in K1 will have the i-th bit equal 
to 1. The cost of selecting the i-th bit (cost[i]) is equal to 
the minimum of bi and x−bi.  If there are y groups of keys, 
the overall cost of selecting the i-th bit is equal to the sum 
of cost[i] for all groups. The system will select the bit 
with highest cost subject to the constraint that 2 bits are 

taken from the same region. When the bit-selection 
algorithm terminates, the program will check if there are 
any groups (buckets) with more than 8 items. If a bucket 
contains x items, where x is larger than 8, then x−8 
patterns of the corresponding bucket will be transferred 
from ΓQSV to ΓPAC.  

TABLE 1 
 REGION BOUNDARIES FOR THE BIT-SELECTION ALGORITHM 

region lower 
bound 

upper 
bound 

region lower 
bound 

upper 
bound 

R0 0 15 R8 1 18 
R1 16 31 R9 19 36 
R2 32 47 R10 37 54 
R3 48 63 R11 55 72 
R4 64 79 R12 73 90 
R5 80 95 R13 91 108 
R6 96 111 R14 109 126 
R7 112 127 --- --- --- 

      
//Pseudo code of the bit-selection algorithm 
//initially all the 16-byte prefixes are put  
//in 1 group 
selectedBit = 0; 
skipSmallGroup = 1;  //ignore groups with fewer 
                     //than 8 elements in the 
                     //calculation of cost[] 
while (selectedBit < 30) 
{ 
for (i = 0; i < 128; i++) //reset totalCost[] 

totalCost[i] = 0; 
 
for each group of keys 
{ 
 if (!skipSmallGroup || group.size > 8) 

   for (i = 0; i < 128; i++) 
  {  compute cost[i] for keys in the group; 

      totalCost[i] += cost[i]; 
   } 
  } 
 
  determine index j such that totalCost[j] has the  
  largest non-zero value subject to the region  
  restriction; 
 
  if (j >= 0) 
  { 

add the j-th bit to set of selected bits; 
 divide the groups using the j-th bit; 
 selectedBit++; 

  } 
  else  //try again and include the smaller groups 
        //in the calculation of cost[] 
    skipSmallGroup = 0; 
} 
 

Construction of tables T1 and T3 is straightforward, 
they are indexed by h1 and pid, respectively. Table T2 is 
implemented using up to 8 parallel memory modules as 
shown in Fig. 6 to ensure that the look up operation can 
be completed in 1 clock cycle. We can have 1, 3, 4, 6, and 
8 parallel memories in different address ranges. The 
group of 4 patterns, P5 to P8, that are hashed to the same 
T1 bucket in the example of Fig. 4 can be allocated to a 
single address in T2 with 4 parallel memory modules, or 
allocated to an address block of size 4 in T2 with 1 
memory module as shown in Fig. 4. In the former case, 
the bit-mask will be set to zero. The preprocessing 



routine can take advantage of the availability of parallel 
memories in T2 to optimize the memory utilization. The 
size of an address block is always a power of 2. The 
availability of 3 and 6 parallel memories allow us to get 
better memory utilization for handling group sizes within 
9 to 12, and 17 to 23. For example, a group of 12 items 
may fit into a block of size 4 with 3 parallel memories. For 
a given group of items, the preprocessing routine will 
calculate the storage cost for mapping the group to 
address blocks with different number of parallel 
memories, and selects the one with the best memory 
efficiency. In principle, the availability of all possible 
discrete number of parallel memories will allow us to get 
the best storage efficiency. However, in practice the 
address ranges are fixed once the FPGA is compiled, 
reducing the number of discrete parallel memories may 
offer more flexibility in handling dynamic updates. The 
DIBS approach does not guarantee optimal storage 
efficiency, however, we have the option to transfer a few 
patterns to the P-AC module to avoid the worst case 
performance if necessary. 

 

 
Fig. 6. Physical structure of table T2. 

3 PREPROCESSING OF PATTERN SET 
The success of the QSV approach is subject to two 
prerequisites. First, patterns in ΓQSV are required to have 
distinct 16-byte prefixes. This requirement can be fulfilled 
by a segmentation procedure. Second, the number of 
CRC unit is limited. The preprocessing routine identifies 
exception cases that can lead to overloading of the CRC 
pool, and transfers the exception patterns to the P-AC 
module. 

 

3.1 Segmentation of patterns sharing common 
prefixes 

Patterns sharing common 16-byte prefixes are divided 
into multiple segments with length greater than or equal 
to 16 bytes, except for the last segment. By arranging the 
patterns in ascending order, groups of patterns that share 
common prefixes of length greater than or equal to 16 

bytes can be easily identified. The segmentation 
algorithm will then identify the common substrings 
shared by the patterns in the group and divides the 
patterns accordingly. In the example depicted in Fig. 7, 
substrings are represented by rectangular boxes. 
Substrings s1, s4 and s6 should have 16 bytes or more. The 
lengths of the other substrings may be shorter than 16. 
For all substrings with 16 bytes or more, they should 
have distinct 16-byte prefixes. The segmented patterns 
will be represented by an aggregation graph as shown in 
the figure. Output nodes are labeled with the pattern 
number. Assume segment s7 is shorter than 4 bytes, 
hence, it will not be included in the aggregation graph. If 
segment s6 is detected right after s4, the search engine will 
report a possible match of P4 and the software layer will 
then verify the possible match at the given location. 
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Fig. 7. Segmentation of patterns sharing common prefix and the 
aggregation graph. 

3.2 Capacity of the CRC Pool  
When the prefix sampling unit finds a prefix match and 
the length of the associated pattern is longer than 16 
bytes, a verification command will be sent to a CRC unit. 
The CRC unit can be kept busy for L−14 cycles. The 
number of CRC units available in the system is limited. In 
this subsection we shall first analyze possible scenarios 
that may cause overloading of the CRC verification pool, 
and then we shall discuss the strategy to prevent this 
from happening. In the following discussion we assume 
that patterns sharing common prefixes have been 
properly segmented. Hence, all the patterns in the QSV 
pattern set have distinct 16-byte prefixes.  

A large number of CRC units may be required in the 
following situations. 

1. If the input stream consists of repeated occurrences 
of the 16-byte prefix of a very long pattern, the prefix 
sampling unit will find a prefix match as frequent as 
every 16 cycles. Up to ⎡(L−14)/16⎤ CRC units can be 
busy at the same time. Since the length of a pattern 
can be arbitrarily long, the maximum number of CRC 
units required cannot be determined in advance. 

2. The prefix sampling unit may find a prefix match in 
successive cycles in the following situations. 



(a) A repeating-prefix pattern (RP-pattern) is a 
pattern where its leading 16 bytes (or more) are 
composed of repeated occurrences of a k-byte 
block, where k ≤ 16. In the extreme case k is equal 
to 1, i.e. the leading bytes of the pattern are 
having the same value. If the input stream is 
consisted of a long sequence of the same byte 
value, the prefix sampling unit will find a prefix 
match in successive cycles. 

(b) Let pi denote the 16-byte prefix of pattern Pi. 
There may exist a subset of patterns whose 
prefixes are {p1, p2, …, pk} such that (i) the 
prefixes are unique; and (ii) the leading s bytes of 
p2 are equal to the last s bytes of p1, and the 
leading s’ bytes of p3 are equal to the last s’ bytes 
of p2, and so on. The patterns in the set are said 
to have staggering prefixes. In the worst case, s is 
equal to 15. The prefix sampling unit will find a 
prefix match in successive cycles if the input 
stream is equal to p1 + last byte of p2 + last byte of 
p3 + … + last byte of pk, where ‘+’ represents the 
concatenation operator. 

Situation 1 can be resolved by a simple strategy. 
Whenever the length of a pattern is greater than a 
predefined threshold Lmax, the pattern is divided into 
multiple segments such that each segment has no more 
than Lmax bytes. For situation 2a, the preprocessing 
routine identifies all RP-patterns where the length of the 
repeating block is no more than 16 bytes. A RP-pattern 
will be divided into the prefix segment that contains the 
repeating blocks plus the first non-repeating block, and 
the suffix segment that contains the remaining bytes. The 
prefix segment will be transferred to the P-AC module, 
and the suffix segment will be processed by the QSV 
module. By attaching a non-repeating block to the prefix 
segment we prevent the P-AC module from generating a 
segment match in every k cycles, where k is the length of 
the repeating block. If the length of the suffix segment is 
less than 16 bytes, or the suffix segment is also a RP-
pattern, then the segmentation is abolished and the whole 
pattern is transferred to P-AC module. By adopting this 
segmentation policy, the maximum CRC units required 
in situations 1 and 2a is no more than ⎡( Lmax−14)/16⎤. In 
this study, the value of Lmax is equal to 180. 

The prefix sampling unit makes a decision based on a 
sampling window of 16 bytes. The problem of situation 
2b can be resolved by extending the sampling window to 
a larger size, e.g. 31 bytes, and apply a segmentation 
strategy to reduce the number of “committed” 
verification tasks in each extended sampling window to a 
small value, e.g. 2. The extended sampling window is 
realized by introducing 2 check-points in the CRC 
verification process as explained in section 2.2. Referring 
to the input described in situation 2b, if the prefixes are 
not substrings of another pattern in the set (i.e. p2 is not a 
substring of P1), then the CRC unit for handling the 
verification of P1 will abort its operation after 7 cycles. 

Hence, up to 7 CRC units can be temporarily in use for 
the given input stream.  

The check-pointing strategy alone is not sufficient if 
the prefix of a pattern is also a substring of another 
pattern. Let P[i..j] denotes bytes i to j of pattern P. 
Consider two patterns P1 and P2 in the set, where P1 and 
P2 are not RP-pattern. P1 and P2 are said to have a 
dependency P2 → P1, if the prefix of P2 is a substring of P1 
such that P2[0..α] is equal to P1[β..(α+β)], where α ≥ 15, 0 
< β < 16 and α+β ≥ 30. If the input stream matches the 
leading α+β+1 bytes of P1 at location i, the prefix 
sampling unit will issue a verification command for P1 at 
location i, and then issues another verification command 
for P2 at location i+β. If α+β ≥ 30, the two CRC units may 
pass the check-points and can be kept busy for a period 
up to Lmax−14 cycles. In general, the dependency chain can 
have more than 2 patterns. If there are j patterns in a 
dependency chain, e.g. P1 → P2 → … → Pj, up to j CRC 
units can be kept busy for Lmax−14 cycles in every 31+j 
cycles, and the number of CRC units required can be up 
to j×⎡(Lmax−14)/(31+j)⎤. To resolve this problem, we must 
break the dependency chain.  

The preprocessing routine will first find all 
dependency chains, and processes the dependency chains 
according to their length in descending order. RP-
patterns (where the length of repeating block can be 
greater than 16) found in a dependency chain are 
segmented as in situation 2a, and are removed from the 
dependency chain. If the remaining number of patterns in 
the dependency chain is greater than 2, patterns in the 
middle portion of the chain will be segmented, i.e. P2 to 
Pj-1. Let the pattern under consideration is Pi, and the 
leading α+1 bytes of Pi is a substring of Pj. The 
preprocessing routine will try to find a feasible cutting 
point such that Pi is divided into two segments that 
satisfy the following 4 conditions: 

(a) length of the prefix segment is at least α+2 bytes (i.e. 
the common substring plus at least one additional 
byte) such that the prefix segment will not be a 
substring of another pattern in the dependent chain; 

(b) length of the suffix segment is at least 16 bytes; 
(c) the suffix segment is not a RP-pattern; 
(d) the suffix segment will not have any dependency 

relation with patterns that are already members of 
some dependency chain. 

If a feasible segmentation can be found, the prefix 
segment will be transferred to the P-AC module and the 
suffix segment will be processed by the QSV module. If 
no feasible segmentation can be found, then the whole 
pattern Pi will be transferred to the P-AC module. By 
limiting the maximum length of the dependency chain to 
2, the number of committed verification tasks required in 
each extended sampling window is at most 2. Number of 
CRC units required is no more than 2×⎡( Lmax−14)/31⎤ = 
12. Suppose the input data stream is composed of 
repeated occurrences of a 32-byte block that matches the 



prefixes of two dependent patterns followed by the input 
sequence described in situation 2b, then the maximum 
number of CRC units that can be in use at the same time 
is 12 + 7 = 19. 

 
3.3 Preprocessing Procedure 
The major steps of the preprocessing procedure are listed 
below. 

1. Sort the patterns in ascending order. Eliminate 
duplicated patterns. Put patterns with less than 16 
bytes in ΓPAC, and patterns with 16 bytes or more in 
ΓQSV. ΓQSV and ΓPAC are maintained in sorted order in 
the subsequent steps. 

2. Extract patterns in ΓQSV that start with sequence of 
repeating character or short substrings. Segment 
these patterns and put the prefix segments in ΓPAC, 
and put the suffix segments in ΓQSV. Enter the 
segment code sequences in the segment code table to 
be used by the AU. 

3. Extract patterns in ΓQSV that share common 16-byte 
prefixes. Apply the segmentation algorithm to divide 
the extracted patterns into segments with distinct 16-
byte prefixes. If a long segment is found to share a 
common 16-byte prefix with an existing pattern in 
ΓQSV, the segment will be transferred to ΓPAC. Note 
that only the last segment of a pattern can be shorter 
than 16 bytes. Segments with 4 to 15 bytes are put in 
ΓPAC, and segments longer than or equal to 16 bytes 
are put in ΓQSV. The last segment of some patterns 
can be very short, e.g. less than 4 bytes. These last 
few bytes will be verified by the post-matching 
verification routine. Enter the segment code 
sequences in the segment code table to be used by the 
AU. 

4. Find pattern chains with staggering prefixes in ΓQSV. 
Divide the patterns and move exception patterns to 
ΓPAC according to the criteria mentioned in section 
3.2. 

5. Extract distinct 16-byte prefixes from ΓQSV and apply 
the bit-selection algorithm. If a bucket contains more 
than 8 patterns, move the excess patterns to ΓPAC if 
required. 

6. Compute the prefix checksum, pattern checksum, 
checkpoint_1 and checkpoint_2 for patterns in ΓQSV. Let 
ΓH represent the group of patterns that are mapped 
to the same address (bucket) in T2. Conflict is said to 
have occurred if  

(i) two patterns in a ΓH group share the same prefix 
checksum; or  

(ii) two equal-length patterns in a ΓH group share 
the same pattern checksum. 

When conflict is detected, one of the conflicting 
patterns will be transferred to ΓPAC. The probability 

of having conflicts is close to zero since the number 
of patterns in a ΓH group is no more than 8. In our 
evaluation using the ClamAV pattern set, no 
checksum conflict has been found. 

7. Set up the lookup tables. 

4 AGGREGATION UNIT 
A few percents of the patterns are divided into multiple 
segments in the preprocessing phase. In our system, 
patterns are numbered from 1 to N, and segments are 
assigned IDs that starts from M, where M > N. Hence, if 
the pattern ID associated with a match result is smaller 
than M, then the match result is sent to the output 
interface directly. If the pattern ID is greater than or equal 
to M, then the match result corresponds to a partial 
match (matching of a segment) of a long pattern. The AU 
is responsible for aggregating the partial matches to 
produce the final result.  

A partial match result received from the P-AC/QSV 
module is a 4-tuple <pid, patLoc, refLoc, verified>, where 
pid is the pattern ID, patLoc corresponds to the location of 
the last byte of the pattern found in the input stream, 
refLoc is the location of last byte of the 16-byte prefix, and 
the verified bit represents whether the pattern has been 
verified by a CRC unit. The uses of the verified bit and 
refLoc will be explained in section 4.1. The conventional 
approach to aggregate partial matches is to model the AU 
as a deterministic finite automaton (DFA). However, this 
approach is not applicable to the hybrid P-AC/QSV 
architecture. In our system, segments can have variable 
lengths. Hence, input symbols (i.e. pid) to the FA are not 
mutual exclusive. Typically the initial state, q0, of the 
aggregation graph can have many out-going edges 
(current state, input symbol, next state). Consider two 
transition edges e1=(q0, pid1, ns1) and e2=( q0, pid2, ns2). The 
length of segment pid1 and segment pid2 can be different, 
and we do not rule out the possibility of having segment 
pid1 to be a substring of segment pid2, or vice versa. 
Assume the FA receives an input symbol pid1 and makes 
a transition to state ns1. While the FA is waiting for the 
next input symbol at state ns1, another valid input symbol 
pid2 may arrive. To overcome this issue, we shall 
implement the AU as a non-deterministic FA (NFA) that 
allows multiple active states.  

 A transition edge in the NFA contains 7 fields 
(current state, segment ID, segment length, next state, bit-
mask, TTL, state-type). The TTL (time-to-live counter) is 
equal to the maximum length among all segments that 
appear in the out-going edges of the corresponding next 
state. The state-type field indicates whether the next state 
is an output state, a terminal state, both or none. There 
are two transition rule tables, A0 and A1. Table A0 stores 
all the transition rules originating from the initial state, 
and table A1 stores the rest of the transition rules. If the 
transition rule symbols for the edges originating from the 
initial state are numbered from M to M+δ, where δ is 



equal to the fanout of the initial state, then the address 
used to access table A0 is equal to the segment ID – M.  

Table A1 is implemented using the DIBS approach, 
the same method for implementing table T2 described in 
section 2.2. The address used to access table A1 is equal to 
the base address (current state value) plus an offset. The 
address offset is generated using the bit-mask and the 
input symbol (i.e. the segment ID). Note that the segment 
IDs are assigned by the preprocessing routine. We can 
incorporate simple heuristics in the ID assignment 
process such that the bit-mask will contain a minimum of 
‘1’. Segmented patterns and patterns processed by the P-
AC module are numbered within the range of 1 to 16K-1. 
By doing so, the state ID of the aggregation graph can be 
used to represented the pattern ID of the patterns 
concerned. 

The AU maintains a list of active states (AS_list). 
Each active state is associated with a bit-mask, a reference 
location and an expiry location. The bit-mask is used to 
generate the address offset for accessing table A1. The 
reference location of an active state is equal to the 
location of the last byte of the segment (patLoc) that 
triggers the state transition. The expiry location is equal 
to the reference location plus the time-to-live counter 
retrieved from the lookup table. Entries in the AS_list can 
be purged using two approaches. The first approach is 
based on the expiry location. If partial match events are 
delivered to the AU in ascending order of the patLoc, 
expired entries in the list of active state can be purged by 
simple comparison of the expiry location of the active 
state and the patLoc of the partial match. The second 
approach is based on the “compatibility property” of 
segments. Let pattern Pi is divided into segments s1, s2 
and so on. Segment s1 is referred to as the first-segment of 
a long pattern. If s1 is not a midfix of any other segmented 
patterns, s1 is said to be an incompatible segment. When the 
AU receives a segment match event of s1, all the current 
entries in the AS_list can be removed. This is because if s1 
is not a midfix of any other segmented patterns, then the 
detection of s1 implies that the expected suffix segments 
corresponding to the current active states in the AS_list 
cannot be found within the required location range. To 
avoid possible confusion, the definition of compatibility 
property is based on the h1 hash code, the prefix and 
pattern checksums rather than the actual byte values. Let 
the length of s1 be len1. s1 is not compatible with pattern Pj 
if there does not exist any midfix substring of length len1 
in Pj that possesses the same h1 hash code, prefix and 
pattern checksums of s1. If s1 is not compatible will all 
segmented patterns, then the compatible bit of the 
corresponding transition rule entry in table A0 is set to 0. 
In our study, 84% of the first-segments have their 
compatible bit equal to 0.  

The operation of the AU is described by the pseudo 
code shown below. 
//pseudo code for the aggregation process 
//PM = partial match result; AS = active state 

for each entry in the AS_list before the arrival 
of the partialMatch 
{ 
  if((PM.verified==1 && PM.patLoc > AS.expiryLoc) 
   ||(PM.verified==0 && PM.refLoc > AS.expiryLoc)) 
    remove the active state from the list; 
  else 
  { 
    retrieve the transition rule from table A1; 
 
    if(rule.segment_ID==PM.segment_ID &&    
       AS.location + rule.segment_len == PM.patLoc) 
    { 
       if (rule.next_state is an output state) 

      report a possible match(rule.next_state,  
      PM.patLoc); 

 
       if (rule.next_state is not a terminal state) 
          addToList(rule.next_state,         
                    PM.location, 
                    PM.patLoc + rule.TTL,                 
                    bit_mask); 
    } 
  } 
} 
 
if (PM.segment_ID is within the range M to M+delta) 
{  
  retrieve the transition rule from table A0; 
  if (PM.verified == 1 && rule.compatible == 0) 
     remove all current entries in AS_list; 

 
  addToList(rule.next_state, 

  PM.location,  
 PM.patLoc + rule.TTL, 
 bit_mask); 

  
  if (rule.next_state is an output state) 

report a possible match (rule.next_state, 
PM.patLoc); 

} 

 
4.1 Buffering and Overflow Exceptions 
The CRC pool contains 20 verification units divided into 
5 groups. Each group of 4 CRC units is equipped with a 
FIFO queue to buffer the match results as shown in Fig. 8. 
Match results are inserted to the FIFO queues in 
ascending order of the patLoc. For 16-byte patterns that do 
not require CRC verification, the match result is inserted 
into a dedicated FIFO queue, FIFO1. A separate FIFO is 
provided for buffering the outputs of the P-AC module. 
The competition network selects the front item among all 
the FIFO queues with the smallest location value and 
passes it to AU for processing.  

Three types of overflow exceptions can be possible, 
(i) overflow of the CRC pool, (ii) overflow of the FIFO 
queues, and (iii) overflow of the AS_list. However, these 
exceptions are very unlikely to happen. One possible 
reason for the overflow of the CRC pool is the accidental 
matches of checksums in the prefix sampling process and 
the check-points of the CRC verification process. A prefix 
match requires the matching of the hash index h1 (and 
possibly some bits in h2) and the 16-bit prefix checksum. 
The probability of an accidental prefix match is about 
82000×2-31 = 3.8×10-5. Given a prefix match, the 
probability of having an accidental match of the first 
check-point is 2-16 = 1.5×10-5, and the probability of 
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accidentally matching the two check-points is 2-32 = 
2.3×10-10. The chance of having 2 or more CRC units 
accidentally pass through their respective check-points, 
while sharing the same input data, is extremely low. Two 
different CRC polynomials can be used in prefix 
sampling and suffix verification. By keeping the CRC 
polynomials private, we can prevent hackers from 
constructing data traffic that attempts to overload the 
CRC pool. 

If overflow of the CRC pool did happen, the 
corresponding pattern is assumed to be detected without 
verification. The unverified match result will be inserted 
into a dedicated FIFO queue, i.e. FIFO7 in Fig. 8. The 
design of FIFO7 is slightly different from the other FIFO 
queues. Each item in FIFO7 contains 3 data fields <pid, 
refLoc, patLoc>, where refLoc is the location of the last byte 
of the 16-byte prefix, and patLoc is the expected location 
of the last byte of the pattern, patLoc = refLoc+byteCount−2. 
Items in FIFO7 are ordered by refLoc instead of patLoc. The 
competition network uses the refLoc of the front item of 
FIFO7 in its selection operation. If the front item of FIFO7 
is selected, the partial match result sent to the AU will 
have the verified bit set to 0. If the front item of the other 
FIFO queues is selected, the verified bit is set to 1. Since 
the partial match results from FIFO7 are ordered by 
refLoc, purging of the AS_list will be based on refLoc 
instead of patLoc if the verified bit is equal to 0. 

In our study, the lengths of the FIFO queues are equal 
to 32, and the size of the AS_list is equal to 16. Whenever 
one or more of the FIFO queues overflow, the P-AC and 
QSV modules are stalled. This will allow the AU to catch 
up with the processing. When the FIFO queue overflow 
condition disappears, the P-AC and QSV modules can 
resume operation.  

In the performance study, we shall show that the 
frequency of segment detection is very low. Also, the 
mechanisms used to purge the AS_list are very effective. 
The probability of having AS_list overflow is extremely 
low. If AS_list overflow did occur, the AU will simply 
send the overflowed next state value to the output and let 
the software layer to handle the exception. Alternatively, 
the size of the AS_list can be increased to minimize the 
probability of overflow. 

5 PERFORMANCE STUDY AND COMPARISON 
The ClamAV virus database (main.cvd version 51 

released on 14 May 2009) is used in our study. A total of 
82,888 static strings are found in the main.db and 
main.ndb files. The minimum, maximum and average 
pattern lengths are 4, 392, and 102 bytes, respectively. 114 
duplicated strings are found. 1258 patterns are shorter 
than 16 bytes, and 172 patterns are longer than 180 bytes. 
About 94% of the long patterns have distinct 16-byte 
prefixes. 102 long patterns are found to contain prefix 
strings made up of repeating character or repeating short 
substring. About 5K (6%) patterns are segmented. 
Excluding segments that are shorter than 4 bytes, on 
average a pattern is divided into 2.44 segments. The 
average segment length is about 45 bytes. Number of 
distinct first-segment is equal to 1841, and 84% of the  
first-segments have the compatible bit equal to 0. When a 
first segment with compatible bit = 0 is detected, current 
entries in the AS_list can be purged. 

The preprocessing routine is implemented using the 
C language. The program takes the raw pattern file as 
input and produces all the required lookup tables 
automatically. The execution time of the program on a PC 
with Intel Core2 E6400 2.13 GHz CPU is about 3 minutes. 
The process to determine the values of h1 and h2 requires 
the longest computation time. It is because the number of 
groups is almost doubled when 1 more bit is selected. 
This process takes about 130 seconds. The total file I/O 
time is about 20 seconds, and the sorting, segmentation, 
computation of checksums, and other analysis requires 
about 30 seconds. When handling incremental updates to 
the pattern set, we need not recomputed the selected bits 
for h1 and h2. Assume the internal data structures are 
available, incremental changes to the lookup tables can be 
determined in a couple of seconds. 

Considering the combined hash values of h1 and h2, 
over 97% of the 16-byte prefixes are hashed to distinct 
buckets. Only 3 buckets have more than 8 items. Two of 
them contain 11 items, and 1 of them contains 10 items.  
As a result, 8 patterns are transferred to the P-AC 
module. After all the preprocessing steps, there are 82,091 
patterns/segments in ΓQSV with a total length of 8,202,518 
bytes, and there are 2,843 patterns/segments in ΓPAC with 
a total length of 57,486 bytes. Hence, 99.3% of the pattern 
set is handled by the QSV module. 

Considering the first level hashing defined by h1 
alone, 87.4% of the 32768 T1 buckets have no more than 4 
items, and only 31 buckets contain 16 or more items. The 
largest bucket size is 81. On average the number of 
selected bits in the bit-masks of T1 is equal to 1.13. Only 3 
buckets have more than 4 selected bits in their bit-masks. 

The sizes of the lookup tables for the QSV module are 
listed in Table 2. Address ranges of the parallel memories 
in T2 are set to multiples of 1K. Some of the entries may 
be vacant. These vacant entries can be used to 
accommodate future updates to the pattern set. The total 



memory cost for the QSV module is about 1.2 Mbyte. The 
memory cost of the P-AC module is 194 Kbyte. The 
overall memory cost is about 1.4 Mbyte, i.e. 1.4 bits per 
character of the pattern set. Table T3 stores the 
verification commands. One can sees that no verification 
commands are required for patterns/segments handled 
by P-AC. The physical size of T3 can be reduced to 82K if 
the pattern/segment IDs are assigned properly. For 
example, patterns handled by P-AC and those segmented 
patterns are assigned IDs starting from 1, and segments 
handled by P-AC are assigned IDs on the high end. 
Suppose patterns 1 to z do not require any verification 
command. Entries 0 to z in T3 are empty, and they need 
not be stored in the physical table. The physical address 
used to access T3 is equal to pid – z, where the value of z 
can be stored in an internal register. 

The hardware implementation cost is evaluated using 
the Xilinx Virtex-5 XC5VSX240T device model. The 
device contains 516 36-Kbit block RAMs and 37,440 slices. 
Each slice contains 4 6-input LUTs and 4 register bits. A 
6-input LUT can be used to implement logic functions, or 
used as 64 bits distributed RAM, or SRL-32 shift register 
for implementing FIFO buffers. Our design uses 324 
(63%) 36-Kbit block RAMs, 4878 (3.3%) LUTs, 6989 (4.7%) 
register bits and occupies 2163 (5.8%) slices. The LUT 
usages for the major components are as follows: the CRC 
circuit that generates the prefix checksum requires 144 
LUTs, the bit-extraction circuit that generates the address 
offset requires 64 LUTs, the CRC pool requires 1640 
LUTs, the 8 FIFO queues requires 536 LUTs, the 
competition network requires 336 LUTs, and the AU 
requires 202 LUTs. With speed grade set to -2, the 
maximum system clock frequency is 200MHz after place-
and-route. In an actual system deployment, the unused 
block RAMs can be utilized to provide spare capacities in 
the lookup tables for future updates to the pattern set. 

TABLE 2 
MEMORY COST FOR LOOKUP TABLES OF THE QSV MODULE 

Lookup table No. of entries No. of bits 
per entry 

Total storage 
(Kbit) 

T1 32K 31 992 
T2 93K  

(sum of the 8  
parallel memories) 

33 3069 

T3 91K 56 5096 
A0 2K 39 78 
A1 7K 60 420 

 

We have also simulated the performance of the string 
searching engine using different types of data files as the 
data source. The results are summarized in Table 3. When 
processing the word document file, the QSV module on 
average finds a prefix match for every 3.3 Kbyte of data, 
and finds a segment match for every 8.6 Kbyte of data. 
When processing other file types, the QSV module on 
average finds a prefix match for every 350 Kbyte of data, 
and finds a segment match for every 2 Mbtye of data. Up 

to 4 CRC units are active at the same time when 
processing the ubuntu-7.10 ISO image file. The 
aggregation unit has very light workload. There is at 
most 1 entry in the AS_list throughout the simulations. 

Three patterns are found in the installation program 
of Java jdk 6 with Netbeans, and the ubuntu-7.10 ISO 
image file. The data in the two input files match the 
pattern values in all three cases. Hence, they are 
considered true-match by the search engine. However, 
these are not classified as true-match by the ClamAV 
software because of mismatch of the file extension. 
Comparing with the method of [10] when the ubuntu-
7.10 ISO image file is used as the input stream, the PERG 
architecture reports 4 matches, where one of them is a 
false positive. 

 

5.1 Comparison with previous work 
The proposed QSV method shares some common 
concepts with the work of [5]. In Cho’s method, the 
pattern detection module (PDM) uses some selected bytes 
of the input data to compute a hash index. The pattern 
stored in the given hash index is then retrieved and 
compared with the input. Because of the limited memory 
word length and other circuit design considerations, the 
pattern length supported by the PDM is restricted to 8 
bytes or less. Long patterns are divided into segments 
with up to 8 bytes. Segments detected by PDMs are 
aggregated using dedicated long pattern state machines 
(LPSM). Our method differs from Cho’s method in 3 
major aspects. First, the QSV method is checksum based, 
whereas Cho’s method is character-based. Second, the 
QSV method uses a CRC unit to check for the variable-
length suffix that may follow the detected prefix. In Cho’s 
method, long patterns are simply divided into multiple 8-
byte segments and it relies on the LPSM to aggregate 
short segments in order to detect long patterns. Third, in 
our method we use a NFA to handle the aggregation of 
partial-matches, and the workload of the NFA is 
minimized by careful segmentation of patterns. In Cho’s 
method, one LPSM is required to trace along each 
potential matching long pattern. Cho’s aggregation 
method has two limitations. The LPSM uses dedicated 
delay elements and logic circuits to derive the final 
match. Hence, the maximum pattern length must be 
known a priori. Moreover, if predictive LPSM is used, the 
number of LPSM required is equal to the number of 
pattern that share a common prefix (which can be over 
100). If retrospective LPSM is used, the number of LPSM 
required is equal to the number of patterns that share a 
common suffix. Both parameters are data dependent. 

The idea of using bit-selection to implement lookup 
tables can be found in [15, 16]. The DIBS lookup table 
organization is similar to the BaRTS of [15]. In Lunteren’s 
string matching method [16], the transition edges of a 
state graph are partitioned into multiple groups and a 
dedicated lookup table is used to store the transition rules



TABLE 3 
SIMULATION RESULTS 

 
data file 

 
size 

(Mbyte)

P-AC module QSV module no. of CRC 
units required 

max. length of 
the AS_list segment 

match 
pattern 
match 

prefix 
match 

segment 
match 

pattern 
match 

JPEG picture 2.96 0 0 4 1 0 1 0 
MP3 music 7.5 6 0 7 6 0 1 1 
MP4 video 53 0 0 41 24 0 1 1 
PDF document 1.05 1 0 6 0 0 1 0 
Word document 3.1 275 0 921 359 0 2 1 
jdk-6u14-nb-6 149 122 0 91 10 3 2 1 
ubuntu-7.10 695 1998 0 2538 436 3 4 1 

 
of each group. One bit-mask is shared by all entries in the 
table. In general, the lookup tables are restricted to 
relatively small sizes, e.g. 1K entries or less. In a physical 
realization, the number of match engines, the number of 
lookup tables per engine, and size of the lookup tables 
can be determined based on detailed analysis of the given 
pattern set, where the system parameters are not fixed a 
priori. When new patterns are added to the system after 
it has been built, the new patterns may not fit to the 
existing lookup tables. We may need to repartition the 
state graph, or even repartition the pattern set subject to a 
rigid set of constraints, where the system parameters 
have already been fixed. This is a complicated 
combinatorial optimization problem with exponential 
time complexity.  

The P-AC and QSV architectures are composed of 
multiple pipelined stages, and table lookups are involved 
in each stage. To ensure deterministic throughput, we 
need to guarantee that each table lookup operation can be 
completed in 1 clock cycle. We have demonstrated that 
this can be achieved using the DIBS approach. The 
construction of lookup tables using the DIBS approach is 
fairly simple and the memory efficiency is quite good. 
The occupancy of tables T2 and A1 are 86% and 82%, 
respectively. In the recent proposal of Ficara et al. [11] for 
the construction perfect hardware hash table using 
additional discriminator bits, values of the discriminator 
bits are determined using a trial-and-error approach. The 
time to find suitable values for the discriminator bits can 
be very long, especially when the number of keys is large. 
If the number of discriminator bits is fixed, there is no 
guarantee that a perfect hash table can always be 
obtained when the pattern set is expanded. 

A few recent studies had also used the ClamAV 
pattern set in their evaluations. Ho and Lemieux [12] 
used Bloomier filters in their PERG architecture. For the 
conventional Bloom filter [8], the system can only 
determine if the input key is a member of the pattern set 
or not. It does not identify the matching pattern. Bloomier 
filter is an extension of Bloom filter. If the hash functions 
are carefully selected, the pattern that may match the 
input data can be identified. However, the selection of 
hash functions can only be done using trial-and-error. 
Since the hardware hash functions operate on fixed-

length data, long patterns are divided into overlapping 
fragments in PERG. A total of 26 Bloomier filter units 
(BFUs) are used in [12], where each BFU checks for 
segments of a given length. Detected segments are 
consolidated by a reassembly unit. Information regarding 
the consolidation of segments is called metadata, and it is 
stored in off-chip 50MHz SRAM. The BFUs operate at 200 
MHz. Because of the slower speed of the external SRAM, 
the reassembly unit takes at least 4 clock cycles to process 
one segment match. Some segments are shared by 
multiple patterns. Processing of these segments requires 
multiple passes. The 26 BFUs can report segment matches 
simultaneously. A FIFO buffer is used to store the 
outputs of the BFUs. If the FIFO buffer is full, the BFUs 
are temporarily stalled. In their performance study using 
the ubuntu-7.10 ISO image file as input, the BFUs were 
stalled for 5% of the time because of FIFO buffer 
overflow. 

The PERG architecture requires 0.335 bit of embedded 
memory per character of the pattern set. In addition to 
the embedded memory, the system also requires 4 Mbyte 
of external memory to store the metadata, i.e. 4 bits per 
character.  Hence, the overall memory cost is about 4.3 
bits per character. PERG has better scalability than our 
method because the metadata can be stored in external 
SRAM. However, it has two weaknesses. First, updates to 
the pattern set may cause hash collisions. When hash 
collision occurs, a new set of hash functions should be 
selected. Consequently, the hardware circuits for 
computing the hash functions should be reconfigured.  

Second, the reassembly unit of PERG can be a 
performance bottleneck. In PERG, patterns with length 
between k to 2k−1 bytes will be processed by a BFU with a 
predefined segment length of k bytes. Patterns longer 
than k bytes will be divided into 2 overlapping k-byte 
segments. For example, one of the 7-byte patterns in the 
ClamAV pattern set has the values “90, 90, 60, 90, 90, 90, 
90” (hexadecimal numbers). This pattern is processed by 
a BFU for 4-byte segments. After segmentation, the 
pattern is divided into 2 segments “90, 90, 60, 90” and 
“90, 90, 90, 90”. If the input contains a long sequence of 
bytes ‘90’, the BFU will generate a match result in each 
cycle and fill the FIFO buffer. Consequently, the BFUs 
will be stalled and the system throughput can be 



degraded significantly. Other scenarios that will cause 
FIFO overflow are possible. For example, two 7-byte 
patterns in the pattern set have the values “52, 52, 83, c4, 
04, 89, 3c” and “52, 57, 03, fa, 5f, 52, 52”. After 
segmentation, two of the segments are “52, 52, 83, c4” and 
“fa, 5f, 52, 52”. If the input contains repeated occurrences 
of the 6-byte block “fa, 5f, 52, 52, 83, c4”, the BFU will 
generate 2 matches in every 6 cycles. 

Hua et al. [13] presented an interesting idea to reduce 
the memory cost and improve the processing speed of the 
Aho-Corasick automaton. In their approach, the input 
data as well as the patterns are transformed to another 
alphabet set using a “content-invariant” variable-stride 
segmentation method. A symbol in the new alphabet set 
may represent 1 to w characters (bytes), where w is the 
window size used by the preprocessing unit in 
transforming the input data. On average, one symbol in 
the new alphabet set represents 2 to 3 bytes of the original 
data. A pattern is divided into the head-block, core-block, 
and tail-block. The search engine will only compare the 
input against the core-block. Verifications of the head-
block and tail-block are performed by dedicated 
hardware. Short patterns with empty core-block are 
handled using other techniques, e.g. TCAM. The 
advantages of Hua’s method diminish if the pattern or 
input stream is composed of a long sequence of the same 
byte value. The memory cost of Hua’s design is about 2.5 
bytes per character of the pattern set.  

In the method of Song et al. [22], the DFA maintains 
one additional cached state in addition to the normal 
active state. By doing so, backward transition edges 
pointing back to nodes that are two hops from the initial 
state can be eliminated. The memory cost of Song’s 
method when applied to the ClamAV pattern set is 4.2 to 
6.0 bytes per character. 

6 CONCLUSION 
In this paper we have presented a memory efficient 
method to do string searching. The proposed QSV 
method is based on quick sampling of fixed-length data 
segments and on-demand verification of the variable-
length suffix segment. The QSV method has good 
scalability. The prefix sampling (PS) unit has 3 lookup 
tables, T1, T2 and T3. The size of T1 is fixed with 32K 
entries. The sizes of T2 and T3 are proportional to the 
number of patterns. For a pattern with distinct 16-byte 
prefix, the system only need to store up to 3 entries in 
tables T1 to T3. The storage cost is independent of the 
pattern length.   

In the QSV method, patterns are required to have 
distinct 16-byte prefixes. Patterns that share common 16-
byte prefixes will be divided into multiple segments with 
distinct prefixes. In our evaluation with the ClamAV 
pattern set, about 6% percents of patterns are segmented. 
Short patterns with less than 16 bytes, and a small 
number of exception patterns that cannot be handled by 

the QSV module will be processed by a pipelined Aho-
Corasick (P-AC) string matching engine [17, 18]. The 
memory cost of P-AC is considerably higher than that of 
QSV. However, the P-AC module will only be 
responsible for handling 0.7% of the pattern set in terms 
of byte count. The overall memory cost of the search 
engine is only 1.4 bits per character of the pattern set, 
which is much lower than other known methods. For the 
current ClamAV pattern set with 82888 static strings, the 
total memory required is about 1.4 Mbyte.  

Comparing version 50 (released on 15 Feb. 2009) and 
version 51 (released on 14 May 2009) of the ClamAV 
database main.cvd, version 51 contains 653 new static 
strings. Hence, on average 7 static strings are added to 
the database per day within the 3 months period. Both P-
AC and QSV are memory-based. When new patterns are 
added to the pattern set, the lookup tables can be 
modified without reconfiguring the hardware circuits. 
This is an essential feature for anti-virus applications, 
where updates to the pattern set can be quite frequent 
and the system would require short update latency. 

The method presented in this paper is only for the 
handling of static strings. Given the fact that over 90% 
patterns in today’s ClamAV pattern set are static strings, 
the result of this study is significant. Our future work [19] 
will focus on the study of hardware architecture for 
matching regular expressions. It is generally agreed that 
the matching of regular expressions is a more difficult 
problem, especially when one aims to optimize for speed, 
hardware efficiency (memory and logic elements), 
scalability, and flexibility (i.e. ability to update the 
pattern set without hardware reconfiguration). 
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