
String Searching Engine for Virus Scanning
Derek Pao, Xing Wang, Xiaoran Wang, Cong Cao, Yuesheng Zhu

Abstract— A memory efficient hardware string searching engine for anti-virus applications is presented. The proposed QSV
method is based on quick sampling of the input stream against fixed-length pattern prefixes, and on-demand verification of
variable-length pattern suffixes. Patterns handled by the QSV method are required to have at least 16 bytes, and possess
distinct 16-byte prefixes. The latter requirement can be fulfilled by a preprocessing procedure. The search engine uses the
pipelined Aho-Corasick (P-AC) architecture developed by the first author to process 4- to 15-byte short patterns and a small
number of exception cases. Our design was evaluated using the ClamAV virus database having 82888 strings with a total size
that exceeds 8 Mbyte. In terms of byte count, 99.3% of the pattern set is handled by the QSV method and 0.7% of the pattern
set is handled by P-AC. A pattern with distinct 16-byte prefix only occupies up to 3 lookup table entries in QSV. The overall
memory cost of our system is about 1.4Mbyte, i.e. 1.4 bit per character of the ClamAV pattern set. The proposed method is
memory-based, hence, updates to the pattern set can be accommodated by modifying the contents of the lookup tables without
reconfiguring the hardware circuits.

Index Terms—string searching, anti-virus system, system security, embedded system.

—————————— ——————————

1 INTRODUCTION
very computer connected to the Internet is subject to
various kinds of attack. Intrusion detection system
(IDS) and anti-virus software are essential security

tools for today’s computer systems. Many users have
complained that their personal computers are slowed
down significantly by the IDS/anti-virus software. This is
understandable because these tools will need to scan any
data retrieved from storage devices or received via the
Internet against a very large pattern set with thousands of
attack patterns. The computation resource consumed by
the IDS/anti-virus software depends on the amount of
data to be scanned and the size of the pattern set. If the
IDS/anti-virus software is deployed to protect a server
machine, software-based pattern matching engines may
not meet the required throughput. For example, an email
server needs to scan all incoming and outgoing mails to
ensure that emails delivered to end-users are virus-free.
The amount of data involved is in the order of multi-tera
bytes per day. Hence, there have been active researches
on hardware-assisted methods to speed up the pattern
matching process.

Patterns in IDS/anti-virus rule sets can be broadly
divided into two categories, namely, static string and
regular expression. Up to now, majority of the patterns in
a rule set are static strings. For example, in the ClamAV
[6] virus database, there are 82,888 static strings and 7017
regular expressions. However, the number of regular
expression is catching up steadily. In this paper, we shall
present a memory efficient hardware string searching

engine to handle the 82K static strings. In the following
discussion, the term “pattern” is used to refer to static
string.

There have been attempts to implement hardware-
assisted string matching engines based on the Aho-
Corasick (AC) algorithm [1, 10, 16-18, 22, 25, 26], Knuth-
Morris-Pratt (KMP) algorithm [3, 14], hashing [20], Bloom
Filters [8, 9], ternary content addressable memory
(TCAM) [2, 27], and hardwired logic circuits [4, 7, 23, 24].
Researchers mostly evaluated their designs using pattern
sets extracted from the Snort IDS [21]. The number of
patterns used in their evaluations varies from 2 to 6
thousands. The average pattern length in the Snort rule
set is about 19 characters (bytes). The overall size of the
Snort pattern set is about 100K characters.

There are two major challenges in anti-virus
applications, namely, scalability and dynamic updates to
the pattern set. In an anti-virus system, e.g. ClamAV, the
rule database contains over 82K static strings. The
average pattern length is about 102 bytes. The total size of
the ClamAV pattern set is more than 80 times the size of
the Snort pattern set. If the previously published methods
were applied to the ClamAV pattern set, the hardware
string matching engine would require at least 20 Mbyte
to over 200 Mbyte of embedded memory. Such a large
amount of embedded memory is very expensive.
Moreover, implementation using FPGA is not feasible
since today’s FPGA devices can only have about 2Mbyte
of embedded memory.

Updates to the pattern set in an anti-virus system can
be quite frequent. For example, by default the ClamAV
system will check for virus database updates once every 2
hours. Reconfiguration of a FPGA device may take a
couple of hours to over a day, depending on the
complexity of the circuits and device utilization. In order

xxxx-xxxx/0x/$xx.00 © 200x IEEE

E

————————————————
• D. Pao, Xiaoran Wang, and C. Cao are with the Department of Electronic

Engineering, City University of Hong Kong. E-mail: d.pao@ cityu.edu.hk.
• Xing Wang and Y. Zhu are with the Communication and Information

Security Lab, Shenzhen Graduate School, Peking University, PRC. E-mail:
zhuys@szpku.edu.cn.

• This work was supported by the Hong Kong University Grant
Council GRF Grant No. 9041500, and Research Program of
Shenzhen-Hong Kong Innovation Circle.

to support dynamic updates to the pattern set, the design
of the hardware string searching engine should be
memory-based. The system should be able to update the
lookup tables without reconfiguring the hardware
circuits.

The terms “string matching” and “string searching” are
often used interchangeably by the research community.
However, in this paper the two terms have slightly
different meanings. For an input stream I and a pattern
set Γ, the string matching problem is to locate and identify
all substrings of I which are patterns in Γ. Outputs of the
string matching algorithm are two-tuples <i, pid>, where
pid is the pattern ID and i is the location at which the
pattern is found. For string searching, the problem
requirement is slightly relaxed, and the outputs are
interpreted as possible matches only, i.e. the given
pattern is very likely to be found at location i. Methods
based on the AC or KMP algorithm solve the string
matching problem. When the system reports a match, no
further processing is required to verify the match result.
Methods based on hashing and Bloom filters only solve
the string searching problem. When the system reports a
possible match, the result needs to be verified by the
general purpose processor or other devices to eliminate
false positives.

For methods based on the AC algorithm, the complete
pattern set is stored in the match engine for comparison
with the input data. Sharing of states in the AC transition
graph is mostly restricted to nodes that are within 3 hops
from the root. For virus patterns with average length of
102 bytes, state sharing can only help to reduce the
storage of the pattern set by a few percents. Hence, the
memory cost of pure AC-based methods cannot be lower
than 8 bits per character. If the problem statement is
relaxed to string searching, the system only needs to store
the hash codes or pattern checksums. It is possible to
reduce the memory cost to less than 8 bits per character.

In this paper, a string searching method for very large
pattern sets that would require substantially smaller
amount of embedded memory is presented. In this study,
the system parameters are derived based on the ClamAV
pattern set. However, the proposed method is applicable
to other pattern sets. For the ClamAV pattern set with
82888 patterns, our method only requires 1.4 Mbyte of
embedded memory, i.e. about 1.4 bits per character of the
pattern set. The proposed method is based on quick
sampling of the input stream against fixed-length pattern
prefixes, and on-demand verification of variable-length
pattern suffixes. The effectiveness of a string searching
engine depends on the hit rate (including false positives).
When a genuine virus is found, the data file concerned is
tagged. How to handle the infected file will be the
responsibility of the software system. If the hit rate is
sufficiently low, e.g. 10-7 or lower, the workload of the
general purpose processor for verification is negligible. In
our evaluation using different data files as input stream

with total size that exceeds 900 Mbyte, only 3 matches are
reported and none of them are false positive.

Organization of the paper is as follows. In section 2,
we shall present the general strategy and architecture of
the proposed method. Some of the system parameters
will be devised based on the statistical properties of the
ClamAV pattern set. In section 3, we shall discuss the
necessary preprocessing and explain how the lookup
tables and related data structures are computed. Design
of the aggregation unit will be discussed in section 4.
Performance evaluation and comparison with related
work will be discussed in section 5. Section 6 is the
conclusion.

2 PROPOSED METHOD
The string searching problem can be solved using a
simple strategy outlined in the pseudo code shown
below. Let Γ be the pattern set, and L be the set of discrete
pattern lengths. Let Cj be the set of checksum for patterns
in Γ with length equal to j. The checksums can be
generated using a user defined CRC polynomial.

//Pseudo code of the string searching method
for (i = 0; i < in_stream.length; i++)
{ for each j in L
 { if(i+j < in_stream.length)
 { c_in=checksum of in_stream[i..(i+j-1)];

 if(c_in==pattern_k.checksum in Cj)
 report a possible match (i, pattern_k);
 }
 }
}

There are over 82K static strings in the ClamAV
pattern set. The minimum and maximum pattern lengths
are 4 and 392, respectively. Running the above algorithm
on a sequential machine is very inefficient. However, the
above computation can be mapped to hardware with
good efficiency. A prerequisite is that all patterns in the
pattern set are required to have distinct fixed-length (e.g.
16-byte) prefix. This property can be ensured by the
preprocessing procedure. The system will do a quick
sampling of fixed-length segments in the input stream. If
the sampled input data segment does not match any
pattern prefixes in the pattern set, then no further
processing at this byte location is necessary. If the
sampled segment matches the prefix of a pattern, then the
system will continue to compute the checksum of the
input stream data for the corresponding pattern length. If
the checksum is equal to the expected value, then a match
result is generated. We shall show that an overall system
throughput of 1 byte per cycle can be achieved using a
combination of techniques including pipelining, parallel
processing, hashing, and pattern set preprocessing.

In the next subsection, we shall first highlight some
statistical properties of the ClamAV pattern set. These
statistical properties are used to guide the selection of
appropriate system parameters in the hardware
architecture. Details of the hardware architecture will be

explained in section 2.2. The required preprocessing of
the pattern set will be discussed in section 3.

2.1 STATISTICAL PROPERTIES OF THE CLAMAV DATABASE
The ClamAV virus database main.cvd version 51
released on 14 May 2009 is used in this study. Only static
strings are considered. MD5 checksums and regular
expressions in the database are excluded. A total of 82,888
static strings are found in the main.db and main.ndb
files. The minimum, maximum, and average pattern
lengths are 4, 392, and 102 bytes, respectively. 1258 (1.5%)
patterns have less than 16 bytes. 81,630 (98.5%) patterns
have 16 bytes or more. Only 172 patterns have more than
180 bytes. Detailed pattern length distribution of the
pattern set is shown in Fig. 1. Patterns with 16 bytes or
more are called long patterns. Patterns with less than 16
bytes are called short patterns. The short patterns only
account for less than 0.2% of the total size of the pattern
set. 94% of the long patterns have distinct 16-byte
prefixes.

Fig. 1. Pattern length distribution in the ClamAV pattern set. Since
zero value cannot be shown using logarithmic scale, the number of
patterns for each length in the plot is set to 1 plus the actual value.

2.2 QSV ARCHITECTURE
In the proposed string searching engine, we use our
previously developed pipelined Aho-Corasick (P-AC)
match engine [17, 18] to process short patterns and a
small number of exception cases. The vast majority of
long patterns will be processed using the quick sampling
plus verification (QSV) approach. In terms of byte count,
99.3% of the pattern set will be processed by the QSV
module.

The block diagram of the string searching engine is
depicted in Fig. 2. There are three major components,
namely, the P-AC module, the QSV module, and the
aggregation unit (AU). The P-AC module and the QSV
module operate synchronously. Both of them consume 1
input character per cycle. The P-AC architecture utilizes
pipelined processing to eliminate all the failure and
backward transition edges in the state transition graph of
the AC algorithm such that the overall size of the lookup

table can be reduced very significantly. Readers are
referred to [18] for the detailed design of the P-AC
module. In the following discussion, we shall focus on
the QSV module.

Fig. 2. System block diagram.

The QSV module is composed of the prefix sampling
unit (PS) and the CRC checksum verification unit (CRC).
Patterns processed by the QSV method are required to
possess unique 16-byte prefixes. Patterns that share
common 16-byte (or longer) prefixes will be divided into
multiple segments with 16 bytes or more, except for the
last segment, such that each long segment has distinct 16-
byte prefix. Short segments with 4 to 15 bytes are handled
by the P-AC module. Segments with 1 to 3 bytes are
ignored by the search engine. They will be verified by the
post-searching verification procedure. The aggregation
unit (AU) is used to combine the partial match results
(detection of individual segments) to produce the final
results. The segmentation process will be discussed in
section 3.1, and the design of the AU will be discussed in
section 4.

Let ΓPAC denote the set of patterns/segments
processed by P-AC, and ΓQSV denote the set of
patterns/segments processed by QSV. Let’s assume for
the time being that all patterns in ΓQSV have distinct 16-
byte prefixes. For each pattern in ΓQSV, we pre-compute
the checksum for the 16-byte prefixes. The hardware will
use a shift-register to buffer 16 bytes of data as shown in
Fig. 3. A circuit is used to generate a 16-bit CRC
checksum for the 16 bytes of data in the buffer. If this
checksum is equal to one of the prefix checksums, then
some further processing will be required; otherwise no
further processing is necessary at the current byte
location. The checksum of the 16-byte input data segment
needs to be compared against almost 82K possible values.
This problem is resolved using a two-level hash tables
based on bit-selection. We take the distinct 16-byte
pattern prefixes as the set of keys. We then apply a bit-
selection algorithm to select 30 bits from the 128-bit keys.
The selected bits form a 30-bit hash index. The bit-
selection algorithm is designed in such a way that it will
try to limit the maximum bucket size to no more than 8. If
a bucket contains x entries, where x is greater than 8, then

Fig. 3. Block diagram of the QSV module

x−8 patterns in the given bucket will be transferred from
ΓQSV to ΓPAC. By restricting the maximum bucket size to 8,
we only need to compare the checksum of the input data
segment with up to 8 prefix checksums in parallel. The
advantages of using the bit-selection approach are that (i)
the bucket size can be controlled, (ii) the generation of the
hash index is very straightforward, and (iii) the hash
function can be reprogrammed without the needs to
reconfigure the hardware. The last property is
particularly desirable in view of the dynamic updates to
the pattern set. The bit-selection algorithm will be
discussed in section 2.3.

With a 30-bit hash value, the size of the logical hash
table is equal to 230. However, only up to about 82K
entries in the hash table are occupied. We implement the
logical hash table with a two-level structure containing
tables T1 and T2 as shown in Fig. 3. Table T2 is
implemented using up to 8 parallel memory modules.
Size of table T1 is equal to 32K, and size of table T2 (sum of
the 8 memory modules) is 93K. Table T1 is a direct
indexed array, and table T2 is implemented using the
direct indexing plus bit-selection (DIBS) technique of [18].
The DIBS approach was later found to be similar to the
BaRTS of [15]. We shall illustrate the table lookup
operation using an example. In this example, T2 is
assumed to be constructed using 1 memory module.
Refer to the sample set of 8 patterns shown in Fig. 4. The
30 selected bits are divided into two groups, h1 and h2,
where each group contains 15 bits. The values of h1, h2,
the bit mask, and the checksums are shown as
hexadecimal numbers. h1 is used as the address to access
table T1. In this example, the values of h1 are artificially
set to 0002 to 0005 so that the size of the array shown in
the figure is kept to a minimum. Patterns P2 and P3 are
mapped to bucket 0003 in T1, and patterns P5 to P8 are
mapped to bucket 0005 in T1. An entry in T1 stores a 15-

bit mask vector and a 16-bit base address for accessing T2.
Note that table T2 is implemented with up to 8 parallel
memories. Its overall capacity is 93K, but the address
range is less than 64K. When there is more than one
pattern mapped to the same bucket in T1, the bit mask
will be used to generate an offset value for accessing T2. If
an entry in table T1 is empty, the base address field is set
to all ‘1’.

Consider the group of patterns P5 to P8 that are
mapped to bucket 0005 in T1. The 4 patterns can be
distinguished by taking bits 0 and 4 of their h2 hash
values as shown in Fig. 5. Hence, the bit mask stored in
entry 0005 of T1 is equal to 0011 (hexadecimal). The bit-
extraction circuit takes the bit mask and the value of h2 as
inputs to generate the address offset. Assume g bits of the
bit mask, bs1, bs2, ... bsg, are equal to 1, where s1 < s2 … <
sg ≤ 15. Let the value of h2 be i14…i1i0. The offset value
produced by the bit-extraction circuit is equal to
0..0isg…is2is1. If g bits in the bit mask are set to 1, a block of
2g entries in T2 will be allocated for the corresponding T1
bucket. If the base address is an integral multiple of 2g,
then the least significant g bits of the base address must
equal to ‘0’. Hence, the offset can be added to the base
address by a simple bitwise logical-OR operation. In our
study, the value of g is no more than 8.

Assume the values of h1, h2 and the checksum of the
input data segment are “0005”, “1234”, and “abcd”,
respectively. The system will first access entry 0005 of T1.
The base address retrieved from T1 is equal to 0004. Bits 4
and 0 of “1234” are equal to “10” binary. The system will
then access entry 0004+2 of T2 in the next cycle. The
checksum retrieved from T2 is “3e7d”, which is not equal
to “abcd”. Hence, no further processing at the current
byte location is required.

Sample
patterns

length
(byte)

selected bits prefix
checksum

pattern
checksum

checkpoint_1

checkpoint_2
h1 h2

P1 16 0002 605c b169 ---- ---- ----
P2 26 0003 5104 841e 7ac0 b2bc 7ac0
P3 17 0003 04f3 a72b b5a9 b5a9 b5a9
P4 37 0004 15e8 b81e e535 98f7 f676
P5 64 0005 0369 967e 2e14 e6fc 369d
P6 112 0005 75a2 89a6 48fe 2c94 f709
P7 40 0005 2391 74b9 e1b8 e1c6 6551
P8 45 0005 32d0 3e7d a22e c271 1885

 Table T1 Table T2 Table T3

address mask base prefix
checksum

pattern ID byte
count

pattern
checksum

checkpoint_1 checkpoint_2

0000 0000 ffff ---- 00000 (null) -- ---- ---- ----
0001 0000 ffff b169 00001 (P1) 0 ---- ---- ----
0002 0000 0001 841e 00002 (P2) 12 7ac0 b2bc 7ac0
0003 0001 0002 a72b 00003 (P3) 3 b5a9 b5a9 b5a9
0004 0000 0008 89a6 00006 (P6) 23 e535 98f7 f676
0005 0011 0004 967e 00005 (P5) 50 2e14 e6fc 369d
0006 0000 ffff 3e7d 00008 (P8) 98 48fe 2c94 f709
0007 0000 ffff 74b9 00007 (P7) 26 e1b8 e1c6 6551
0008 0000 ffff b81e 00004 (P4) 31 a22e c271 1885

Fig. 4. Lookup tables for a sample set of 8 patterns.

Pattern value of h2 in binary address offset by taking the value of bits 0 and 4

P5 0000 0011 0110 1001 01
P6 0111 0101 1010 0010 00
P7 0010 0011 1001 0001 11
P8 0011 0010 1101 0000 10

Fig. 5. Distinguishing bits of the h2 hash code for patterns P5 to P8 in the sample set.

Consider another scenario where the values of h1, h2
and checksum of the input data segment are “0005”,
“2391”, and “74b9”, respectively. The system will first
access entry 0005 of T1, and then access entry 00004+3 of
T2 in the next cycle. The checksum retrieved from T2
matches the checksum of the input data segment. A
verification command for the given pattern will be
retrieved from T3 using the pattern ID (obtained from T2)
as the memory address. The verification command
contains 4 fields, namely, byte count, pattern checksum,
checkpoint_1, checkpoint_2. The uses of the checkpoints will
be explained later. If the length of the pattern is equal to
16, the byte count value retrieved from T3 is zero. No
further verification is necessary and the pattern ID
(obtained from T2) will be sent to the AU directly. If the
pattern length is greater than 16, then the system will
check whether the subsequent bytes of the input stream
match the corresponding pattern suffix. Verification is
required if the pattern length is equal to 17 or larger. The
verification process needs not start from the first byte of
the pattern since the input stream is assumed to have
matched the 16-byte prefix. If the checksum is generated
using a 16-bit CRC polynomial and the CRC verification
unit consumes 1 byte of data per cycle, then a minimum
of 3 bytes of data needs to be processed. Let the bytes of a
patterns are numbered from 0 to L−1, where L is the

pattern length. The pattern checksum is computed using
bytes 14 to L−1. Hence, the byte count value in the
verification command is set to L−14, if L > 16.

Let i be the current location index, and t be the current
cycle number. The system accesses table T1 in cycle t, and
accesses table T2 in cycle t+1. If the checksum of the input
data segment matches the prefix checksum stored in T2, a
verification command will be retrieved from table T3 in
cycle t+2 and sent to an idle CRC unit. The CRC unit will
start to compute the pattern checksum in cycle t+3. By
that time, byte 14 of the corresponding input data
segment would have advanced to slot 11 of the input
buffer. Hence, byte 11 of the shift register is fed to the
CRC units. Each CRC unit will have a count-down
counter initialized with the byte count value received in
the verification command. The CRC unit will process one
byte of data in each cycle, and the counter is decremented
at the end of the clock cycle. When the counter is
decremented to 0, the calculation of the checksum stops
and the checksum is compared with the pattern
checksum received in the verification command. If the
two checksums are equal, then a possible match is
reported to the AU.

A pattern can be very long, e.g. with up to 392 bytes
in the ClamAV pattern set. Two check-points are

introduced in the verification process after cycles 7 and
17. The value of checkpoint_1 (checkpoint_2) corresponds to
the checksum computed with bytes 14 to 20 (14 to 30) of
the given pattern. If the pattern length is between 17 to 21
bytes, the two checkpoints are equal to the pattern
checksum. If the pattern length is between 22 to 31 bytes,
checkpoint_2 is equal to the pattern checksum. The CRC
unit will decide whether it needs to continue with the
verification process after processing 7 and 17 bytes of
data, respectively. If the current checksum is not equal to
the corresponding checkpoint, the verification process will
be aborted.

The QSV module will report a match for patterns with
16 bytes if the input data matches the 15-bit hash index h1
(and in most cases some bits in h2) and the 16-bit prefix
checksum. There are 728 16-byte patterns in ΓQSV. Assume
the input data and hash function outputs are uniformly
distributed. The expected hit rate for 16-byte pattern is
728×2-31 = 3.4×10-7. For patterns with 17 to 21 bytes, the
input data must match the hash index h1, the prefix
checksum and the pattern checksum. About 82K patterns
in ΓQSV are longer than 16 bytes. The hit rate for patterns
with at least 17 bytes is less than 82000×2-47 = 5.8×10‐10.
Hence, the overall expected hit rate is about 3.4×10-7.

2.3 Construction of Lookup Tables
The 128-bit input stream buffer is divided into 15 regions.
The lower and upper bounds of the 15 regions are listed
in Table 1. The bit selection algorithm selects 2 bits from
each region. Regions R8 to R14 overlap with regions R0 to
R7. This arrangement ensures that the selected bits will
not be localized to a few bytes of the 16-byte prefix, and
provides flexibility to the bit-selection algorithm. The
hash index h1 is obtained by taking one selected bit from
each region, and h2 is composed of the remaining selected
bits. Dividing the 128-bit key into 15 regions also helps to
simplify the bit-selection circuit. For each region, we
require two 16-to-1 (or 18-to-1) multiplexors and two 4-
bit (or 5-bit) register that stores the offset of the selected
bits within the corresponding region. Generation of h1
and h2 requires another 15 bits of storage and 15 copies of
2-bit cross-bar switch. The hash function can be
reprogrammed by assigning new values to the registers.

The bit-selection algorithm is based on a greedy
approach that tries to limit the maximum bucket size to 8.
Given a group of x 128-bit keys, K = {k1, k2, … kx}, the bit-
selection algorithm will first compute the bit-count in
each bit position. Let bi be the number of keys with the i-
th bit equal to 1. By selecting the i-th bit, the set of keys is
divided into two groups, K0 and K1, with sizes equal to
x−bi and bi, respectively. Keys in K0 will have the i-th bit
equal to 0, whereas keys in K1 will have the i-th bit equal
to 1. The cost of selecting the i-th bit (cost[i]) is equal to
the minimum of bi and x−bi. If there are y groups of keys,
the overall cost of selecting the i-th bit is equal to the sum
of cost[i] for all groups. The system will select the bit
with highest cost subject to the constraint that 2 bits are

taken from the same region. When the bit-selection
algorithm terminates, the program will check if there are
any groups (buckets) with more than 8 items. If a bucket
contains x items, where x is larger than 8, then x−8
patterns of the corresponding bucket will be transferred
from ΓQSV to ΓPAC.

TABLE 1
 REGION BOUNDARIES FOR THE BIT-SELECTION ALGORITHM

region lower
bound

upper
bound

region lower
bound

upper
bound

R0 0 15 R8 1 18
R1 16 31 R9 19 36
R2 32 47 R10 37 54
R3 48 63 R11 55 72
R4 64 79 R12 73 90
R5 80 95 R13 91 108
R6 96 111 R14 109 126
R7 112 127 --- --- ---

//Pseudo code of the bit-selection algorithm
//initially all the 16-byte prefixes are put
//in 1 group
selectedBit = 0;
skipSmallGroup = 1; //ignore groups with fewer
 //than 8 elements in the
 //calculation of cost[]
while (selectedBit < 30)
{
for (i = 0; i < 128; i++) //reset totalCost[]

totalCost[i] = 0;

for each group of keys
{
 if (!skipSmallGroup || group.size > 8)

 for (i = 0; i < 128; i++)
 { compute cost[i] for keys in the group;

 totalCost[i] += cost[i];
 }
 }

 determine index j such that totalCost[j] has the
 largest non-zero value subject to the region
 restriction;

 if (j >= 0)
 {

add the j-th bit to set of selected bits;
 divide the groups using the j-th bit;
 selectedBit++;

 }
 else //try again and include the smaller groups
 //in the calculation of cost[]
 skipSmallGroup = 0;
}

Construction of tables T1 and T3 is straightforward,
they are indexed by h1 and pid, respectively. Table T2 is
implemented using up to 8 parallel memory modules as
shown in Fig. 6 to ensure that the look up operation can
be completed in 1 clock cycle. We can have 1, 3, 4, 6, and
8 parallel memories in different address ranges. The
group of 4 patterns, P5 to P8, that are hashed to the same
T1 bucket in the example of Fig. 4 can be allocated to a
single address in T2 with 4 parallel memory modules, or
allocated to an address block of size 4 in T2 with 1
memory module as shown in Fig. 4. In the former case,
the bit-mask will be set to zero. The preprocessing

routine can take advantage of the availability of parallel
memories in T2 to optimize the memory utilization. The
size of an address block is always a power of 2. The
availability of 3 and 6 parallel memories allow us to get
better memory utilization for handling group sizes within
9 to 12, and 17 to 23. For example, a group of 12 items
may fit into a block of size 4 with 3 parallel memories. For
a given group of items, the preprocessing routine will
calculate the storage cost for mapping the group to
address blocks with different number of parallel
memories, and selects the one with the best memory
efficiency. In principle, the availability of all possible
discrete number of parallel memories will allow us to get
the best storage efficiency. However, in practice the
address ranges are fixed once the FPGA is compiled,
reducing the number of discrete parallel memories may
offer more flexibility in handling dynamic updates. The
DIBS approach does not guarantee optimal storage
efficiency, however, we have the option to transfer a few
patterns to the P-AC module to avoid the worst case
performance if necessary.

Fig. 6. Physical structure of table T2.

3 PREPROCESSING OF PATTERN SET
The success of the QSV approach is subject to two
prerequisites. First, patterns in ΓQSV are required to have
distinct 16-byte prefixes. This requirement can be fulfilled
by a segmentation procedure. Second, the number of
CRC unit is limited. The preprocessing routine identifies
exception cases that can lead to overloading of the CRC
pool, and transfers the exception patterns to the P-AC
module.

3.1 Segmentation of patterns sharing common
prefixes

Patterns sharing common 16-byte prefixes are divided
into multiple segments with length greater than or equal
to 16 bytes, except for the last segment. By arranging the
patterns in ascending order, groups of patterns that share
common prefixes of length greater than or equal to 16

bytes can be easily identified. The segmentation
algorithm will then identify the common substrings
shared by the patterns in the group and divides the
patterns accordingly. In the example depicted in Fig. 7,
substrings are represented by rectangular boxes.
Substrings s1, s4 and s6 should have 16 bytes or more. The
lengths of the other substrings may be shorter than 16.
For all substrings with 16 bytes or more, they should
have distinct 16-byte prefixes. The segmented patterns
will be represented by an aggregation graph as shown in
the figure. Output nodes are labeled with the pattern
number. Assume segment s7 is shorter than 4 bytes,
hence, it will not be included in the aggregation graph. If
segment s6 is detected right after s4, the search engine will
report a possible match of P4 and the software layer will
then verify the possible match at the given location.

S1 S2

S1 S3

S4 S5

S4 S6 S7

S4 S6 S8

P1

P2

P3

P4

P5

q0

P1

P2

P3

P4 P5

S1

S4

S2

S3

S5

S6 S8

Patterns Aggregation graph
Fig. 7. Segmentation of patterns sharing common prefix and the
aggregation graph.

3.2 Capacity of the CRC Pool
When the prefix sampling unit finds a prefix match and
the length of the associated pattern is longer than 16
bytes, a verification command will be sent to a CRC unit.
The CRC unit can be kept busy for L−14 cycles. The
number of CRC units available in the system is limited. In
this subsection we shall first analyze possible scenarios
that may cause overloading of the CRC verification pool,
and then we shall discuss the strategy to prevent this
from happening. In the following discussion we assume
that patterns sharing common prefixes have been
properly segmented. Hence, all the patterns in the QSV
pattern set have distinct 16-byte prefixes.

A large number of CRC units may be required in the
following situations.

1. If the input stream consists of repeated occurrences
of the 16-byte prefix of a very long pattern, the prefix
sampling unit will find a prefix match as frequent as
every 16 cycles. Up to ⎡(L−14)/16⎤ CRC units can be
busy at the same time. Since the length of a pattern
can be arbitrarily long, the maximum number of CRC
units required cannot be determined in advance.

2. The prefix sampling unit may find a prefix match in
successive cycles in the following situations.

(a) A repeating-prefix pattern (RP-pattern) is a
pattern where its leading 16 bytes (or more) are
composed of repeated occurrences of a k-byte
block, where k ≤ 16. In the extreme case k is equal
to 1, i.e. the leading bytes of the pattern are
having the same value. If the input stream is
consisted of a long sequence of the same byte
value, the prefix sampling unit will find a prefix
match in successive cycles.

(b) Let pi denote the 16-byte prefix of pattern Pi.
There may exist a subset of patterns whose
prefixes are {p1, p2, …, pk} such that (i) the
prefixes are unique; and (ii) the leading s bytes of
p2 are equal to the last s bytes of p1, and the
leading s’ bytes of p3 are equal to the last s’ bytes
of p2, and so on. The patterns in the set are said
to have staggering prefixes. In the worst case, s is
equal to 15. The prefix sampling unit will find a
prefix match in successive cycles if the input
stream is equal to p1 + last byte of p2 + last byte of
p3 + … + last byte of pk, where ‘+’ represents the
concatenation operator.

Situation 1 can be resolved by a simple strategy.
Whenever the length of a pattern is greater than a
predefined threshold Lmax, the pattern is divided into
multiple segments such that each segment has no more
than Lmax bytes. For situation 2a, the preprocessing
routine identifies all RP-patterns where the length of the
repeating block is no more than 16 bytes. A RP-pattern
will be divided into the prefix segment that contains the
repeating blocks plus the first non-repeating block, and
the suffix segment that contains the remaining bytes. The
prefix segment will be transferred to the P-AC module,
and the suffix segment will be processed by the QSV
module. By attaching a non-repeating block to the prefix
segment we prevent the P-AC module from generating a
segment match in every k cycles, where k is the length of
the repeating block. If the length of the suffix segment is
less than 16 bytes, or the suffix segment is also a RP-
pattern, then the segmentation is abolished and the whole
pattern is transferred to P-AC module. By adopting this
segmentation policy, the maximum CRC units required
in situations 1 and 2a is no more than ⎡(Lmax−14)/16⎤. In
this study, the value of Lmax is equal to 180.

The prefix sampling unit makes a decision based on a
sampling window of 16 bytes. The problem of situation
2b can be resolved by extending the sampling window to
a larger size, e.g. 31 bytes, and apply a segmentation
strategy to reduce the number of “committed”
verification tasks in each extended sampling window to a
small value, e.g. 2. The extended sampling window is
realized by introducing 2 check-points in the CRC
verification process as explained in section 2.2. Referring
to the input described in situation 2b, if the prefixes are
not substrings of another pattern in the set (i.e. p2 is not a
substring of P1), then the CRC unit for handling the
verification of P1 will abort its operation after 7 cycles.

Hence, up to 7 CRC units can be temporarily in use for
the given input stream.

The check-pointing strategy alone is not sufficient if
the prefix of a pattern is also a substring of another
pattern. Let P[i..j] denotes bytes i to j of pattern P.
Consider two patterns P1 and P2 in the set, where P1 and
P2 are not RP-pattern. P1 and P2 are said to have a
dependency P2 → P1, if the prefix of P2 is a substring of P1
such that P2[0..α] is equal to P1[β..(α+β)], where α ≥ 15, 0
< β < 16 and α+β ≥ 30. If the input stream matches the
leading α+β+1 bytes of P1 at location i, the prefix
sampling unit will issue a verification command for P1 at
location i, and then issues another verification command
for P2 at location i+β. If α+β ≥ 30, the two CRC units may
pass the check-points and can be kept busy for a period
up to Lmax−14 cycles. In general, the dependency chain can
have more than 2 patterns. If there are j patterns in a
dependency chain, e.g. P1 → P2 → … → Pj, up to j CRC
units can be kept busy for Lmax−14 cycles in every 31+j
cycles, and the number of CRC units required can be up
to j×⎡(Lmax−14)/(31+j)⎤. To resolve this problem, we must
break the dependency chain.

The preprocessing routine will first find all
dependency chains, and processes the dependency chains
according to their length in descending order. RP-
patterns (where the length of repeating block can be
greater than 16) found in a dependency chain are
segmented as in situation 2a, and are removed from the
dependency chain. If the remaining number of patterns in
the dependency chain is greater than 2, patterns in the
middle portion of the chain will be segmented, i.e. P2 to
Pj-1. Let the pattern under consideration is Pi, and the
leading α+1 bytes of Pi is a substring of Pj. The
preprocessing routine will try to find a feasible cutting
point such that Pi is divided into two segments that
satisfy the following 4 conditions:

(a) length of the prefix segment is at least α+2 bytes (i.e.
the common substring plus at least one additional
byte) such that the prefix segment will not be a
substring of another pattern in the dependent chain;

(b) length of the suffix segment is at least 16 bytes;
(c) the suffix segment is not a RP-pattern;
(d) the suffix segment will not have any dependency

relation with patterns that are already members of
some dependency chain.

If a feasible segmentation can be found, the prefix
segment will be transferred to the P-AC module and the
suffix segment will be processed by the QSV module. If
no feasible segmentation can be found, then the whole
pattern Pi will be transferred to the P-AC module. By
limiting the maximum length of the dependency chain to
2, the number of committed verification tasks required in
each extended sampling window is at most 2. Number of
CRC units required is no more than 2×⎡(Lmax−14)/31⎤ =
12. Suppose the input data stream is composed of
repeated occurrences of a 32-byte block that matches the

prefixes of two dependent patterns followed by the input
sequence described in situation 2b, then the maximum
number of CRC units that can be in use at the same time
is 12 + 7 = 19.

3.3 Preprocessing Procedure
The major steps of the preprocessing procedure are listed
below.

1. Sort the patterns in ascending order. Eliminate
duplicated patterns. Put patterns with less than 16
bytes in ΓPAC, and patterns with 16 bytes or more in
ΓQSV. ΓQSV and ΓPAC are maintained in sorted order in
the subsequent steps.

2. Extract patterns in ΓQSV that start with sequence of
repeating character or short substrings. Segment
these patterns and put the prefix segments in ΓPAC,
and put the suffix segments in ΓQSV. Enter the
segment code sequences in the segment code table to
be used by the AU.

3. Extract patterns in ΓQSV that share common 16-byte
prefixes. Apply the segmentation algorithm to divide
the extracted patterns into segments with distinct 16-
byte prefixes. If a long segment is found to share a
common 16-byte prefix with an existing pattern in
ΓQSV, the segment will be transferred to ΓPAC. Note
that only the last segment of a pattern can be shorter
than 16 bytes. Segments with 4 to 15 bytes are put in
ΓPAC, and segments longer than or equal to 16 bytes
are put in ΓQSV. The last segment of some patterns
can be very short, e.g. less than 4 bytes. These last
few bytes will be verified by the post-matching
verification routine. Enter the segment code
sequences in the segment code table to be used by the
AU.

4. Find pattern chains with staggering prefixes in ΓQSV.
Divide the patterns and move exception patterns to
ΓPAC according to the criteria mentioned in section
3.2.

5. Extract distinct 16-byte prefixes from ΓQSV and apply
the bit-selection algorithm. If a bucket contains more
than 8 patterns, move the excess patterns to ΓPAC if
required.

6. Compute the prefix checksum, pattern checksum,
checkpoint_1 and checkpoint_2 for patterns in ΓQSV. Let
ΓH represent the group of patterns that are mapped
to the same address (bucket) in T2. Conflict is said to
have occurred if

(i) two patterns in a ΓH group share the same prefix
checksum; or

(ii) two equal-length patterns in a ΓH group share
the same pattern checksum.

When conflict is detected, one of the conflicting
patterns will be transferred to ΓPAC. The probability

of having conflicts is close to zero since the number
of patterns in a ΓH group is no more than 8. In our
evaluation using the ClamAV pattern set, no
checksum conflict has been found.

7. Set up the lookup tables.

4 AGGREGATION UNIT
A few percents of the patterns are divided into multiple
segments in the preprocessing phase. In our system,
patterns are numbered from 1 to N, and segments are
assigned IDs that starts from M, where M > N. Hence, if
the pattern ID associated with a match result is smaller
than M, then the match result is sent to the output
interface directly. If the pattern ID is greater than or equal
to M, then the match result corresponds to a partial
match (matching of a segment) of a long pattern. The AU
is responsible for aggregating the partial matches to
produce the final result.

A partial match result received from the P-AC/QSV
module is a 4-tuple <pid, patLoc, refLoc, verified>, where
pid is the pattern ID, patLoc corresponds to the location of
the last byte of the pattern found in the input stream,
refLoc is the location of last byte of the 16-byte prefix, and
the verified bit represents whether the pattern has been
verified by a CRC unit. The uses of the verified bit and
refLoc will be explained in section 4.1. The conventional
approach to aggregate partial matches is to model the AU
as a deterministic finite automaton (DFA). However, this
approach is not applicable to the hybrid P-AC/QSV
architecture. In our system, segments can have variable
lengths. Hence, input symbols (i.e. pid) to the FA are not
mutual exclusive. Typically the initial state, q0, of the
aggregation graph can have many out-going edges
(current state, input symbol, next state). Consider two
transition edges e1=(q0, pid1, ns1) and e2=(q0, pid2, ns2). The
length of segment pid1 and segment pid2 can be different,
and we do not rule out the possibility of having segment
pid1 to be a substring of segment pid2, or vice versa.
Assume the FA receives an input symbol pid1 and makes
a transition to state ns1. While the FA is waiting for the
next input symbol at state ns1, another valid input symbol
pid2 may arrive. To overcome this issue, we shall
implement the AU as a non-deterministic FA (NFA) that
allows multiple active states.

 A transition edge in the NFA contains 7 fields
(current state, segment ID, segment length, next state, bit-
mask, TTL, state-type). The TTL (time-to-live counter) is
equal to the maximum length among all segments that
appear in the out-going edges of the corresponding next
state. The state-type field indicates whether the next state
is an output state, a terminal state, both or none. There
are two transition rule tables, A0 and A1. Table A0 stores
all the transition rules originating from the initial state,
and table A1 stores the rest of the transition rules. If the
transition rule symbols for the edges originating from the
initial state are numbered from M to M+δ, where δ is

equal to the fanout of the initial state, then the address
used to access table A0 is equal to the segment ID – M.

Table A1 is implemented using the DIBS approach,
the same method for implementing table T2 described in
section 2.2. The address used to access table A1 is equal to
the base address (current state value) plus an offset. The
address offset is generated using the bit-mask and the
input symbol (i.e. the segment ID). Note that the segment
IDs are assigned by the preprocessing routine. We can
incorporate simple heuristics in the ID assignment
process such that the bit-mask will contain a minimum of
‘1’. Segmented patterns and patterns processed by the P-
AC module are numbered within the range of 1 to 16K-1.
By doing so, the state ID of the aggregation graph can be
used to represented the pattern ID of the patterns
concerned.

The AU maintains a list of active states (AS_list).
Each active state is associated with a bit-mask, a reference
location and an expiry location. The bit-mask is used to
generate the address offset for accessing table A1. The
reference location of an active state is equal to the
location of the last byte of the segment (patLoc) that
triggers the state transition. The expiry location is equal
to the reference location plus the time-to-live counter
retrieved from the lookup table. Entries in the AS_list can
be purged using two approaches. The first approach is
based on the expiry location. If partial match events are
delivered to the AU in ascending order of the patLoc,
expired entries in the list of active state can be purged by
simple comparison of the expiry location of the active
state and the patLoc of the partial match. The second
approach is based on the “compatibility property” of
segments. Let pattern Pi is divided into segments s1, s2
and so on. Segment s1 is referred to as the first-segment of
a long pattern. If s1 is not a midfix of any other segmented
patterns, s1 is said to be an incompatible segment. When the
AU receives a segment match event of s1, all the current
entries in the AS_list can be removed. This is because if s1
is not a midfix of any other segmented patterns, then the
detection of s1 implies that the expected suffix segments
corresponding to the current active states in the AS_list
cannot be found within the required location range. To
avoid possible confusion, the definition of compatibility
property is based on the h1 hash code, the prefix and
pattern checksums rather than the actual byte values. Let
the length of s1 be len1. s1 is not compatible with pattern Pj
if there does not exist any midfix substring of length len1
in Pj that possesses the same h1 hash code, prefix and
pattern checksums of s1. If s1 is not compatible will all
segmented patterns, then the compatible bit of the
corresponding transition rule entry in table A0 is set to 0.
In our study, 84% of the first-segments have their
compatible bit equal to 0.

The operation of the AU is described by the pseudo
code shown below.
//pseudo code for the aggregation process
//PM = partial match result; AS = active state

for each entry in the AS_list before the arrival
of the partialMatch
{
 if((PM.verified==1 && PM.patLoc > AS.expiryLoc)
 ||(PM.verified==0 && PM.refLoc > AS.expiryLoc))
 remove the active state from the list;
 else
 {
 retrieve the transition rule from table A1;

 if(rule.segment_ID==PM.segment_ID &&
 AS.location + rule.segment_len == PM.patLoc)
 {
 if (rule.next_state is an output state)

 report a possible match(rule.next_state,
 PM.patLoc);

 if (rule.next_state is not a terminal state)
 addToList(rule.next_state,
 PM.location,
 PM.patLoc + rule.TTL,
 bit_mask);
 }
 }
}

if (PM.segment_ID is within the range M to M+delta)
{
 retrieve the transition rule from table A0;
 if (PM.verified == 1 && rule.compatible == 0)
 remove all current entries in AS_list;

 addToList(rule.next_state,

 PM.location,
 PM.patLoc + rule.TTL,
 bit_mask);

 if (rule.next_state is an output state)

report a possible match (rule.next_state,
PM.patLoc);

}

4.1 Buffering and Overflow Exceptions
The CRC pool contains 20 verification units divided into
5 groups. Each group of 4 CRC units is equipped with a
FIFO queue to buffer the match results as shown in Fig. 8.
Match results are inserted to the FIFO queues in
ascending order of the patLoc. For 16-byte patterns that do
not require CRC verification, the match result is inserted
into a dedicated FIFO queue, FIFO1. A separate FIFO is
provided for buffering the outputs of the P-AC module.
The competition network selects the front item among all
the FIFO queues with the smallest location value and
passes it to AU for processing.

Three types of overflow exceptions can be possible,
(i) overflow of the CRC pool, (ii) overflow of the FIFO
queues, and (iii) overflow of the AS_list. However, these
exceptions are very unlikely to happen. One possible
reason for the overflow of the CRC pool is the accidental
matches of checksums in the prefix sampling process and
the check-points of the CRC verification process. A prefix
match requires the matching of the hash index h1 (and
possibly some bits in h2) and the 16-bit prefix checksum.
The probability of an accidental prefix match is about
82000×2-31 = 3.8×10-5. Given a prefix match, the
probability of having an accidental match of the first
check-point is 2-16 = 1.5×10-5, and the probability of

FIFO0

FIFO1

FIFO2

FIFO3

FIFO4

FIFO5

FIFO6

FIFO7

From P-AC

From QSV (16-byte pattern,
no CRC verification required)

CRC units {0, 5, 10, 15}

CRC units {1, 6, 11, 16}

CRC units {2, 7, 12, 17}

CRC units {3, 8, 13, 18}

CRC units {4, 9, 14, 19}

CRC pool overflow

pid patLoc/ verified
refLoc AS_list

NFA Controller

Table A0 Table A1

Output interface

Final match
result

Partial match register

 Fig. 8. Buffering of match results and organization of AU.

accidentally matching the two check-points is 2-32 =
2.3×10-10. The chance of having 2 or more CRC units
accidentally pass through their respective check-points,
while sharing the same input data, is extremely low. Two
different CRC polynomials can be used in prefix
sampling and suffix verification. By keeping the CRC
polynomials private, we can prevent hackers from
constructing data traffic that attempts to overload the
CRC pool.

If overflow of the CRC pool did happen, the
corresponding pattern is assumed to be detected without
verification. The unverified match result will be inserted
into a dedicated FIFO queue, i.e. FIFO7 in Fig. 8. The
design of FIFO7 is slightly different from the other FIFO
queues. Each item in FIFO7 contains 3 data fields <pid,
refLoc, patLoc>, where refLoc is the location of the last byte
of the 16-byte prefix, and patLoc is the expected location
of the last byte of the pattern, patLoc = refLoc+byteCount−2.
Items in FIFO7 are ordered by refLoc instead of patLoc. The
competition network uses the refLoc of the front item of
FIFO7 in its selection operation. If the front item of FIFO7
is selected, the partial match result sent to the AU will
have the verified bit set to 0. If the front item of the other
FIFO queues is selected, the verified bit is set to 1. Since
the partial match results from FIFO7 are ordered by
refLoc, purging of the AS_list will be based on refLoc
instead of patLoc if the verified bit is equal to 0.

In our study, the lengths of the FIFO queues are equal
to 32, and the size of the AS_list is equal to 16. Whenever
one or more of the FIFO queues overflow, the P-AC and
QSV modules are stalled. This will allow the AU to catch
up with the processing. When the FIFO queue overflow
condition disappears, the P-AC and QSV modules can
resume operation.

In the performance study, we shall show that the
frequency of segment detection is very low. Also, the
mechanisms used to purge the AS_list are very effective.
The probability of having AS_list overflow is extremely
low. If AS_list overflow did occur, the AU will simply
send the overflowed next state value to the output and let
the software layer to handle the exception. Alternatively,
the size of the AS_list can be increased to minimize the
probability of overflow.

5 PERFORMANCE STUDY AND COMPARISON
The ClamAV virus database (main.cvd version 51

released on 14 May 2009) is used in our study. A total of
82,888 static strings are found in the main.db and
main.ndb files. The minimum, maximum and average
pattern lengths are 4, 392, and 102 bytes, respectively. 114
duplicated strings are found. 1258 patterns are shorter
than 16 bytes, and 172 patterns are longer than 180 bytes.
About 94% of the long patterns have distinct 16-byte
prefixes. 102 long patterns are found to contain prefix
strings made up of repeating character or repeating short
substring. About 5K (6%) patterns are segmented.
Excluding segments that are shorter than 4 bytes, on
average a pattern is divided into 2.44 segments. The
average segment length is about 45 bytes. Number of
distinct first-segment is equal to 1841, and 84% of the
first-segments have the compatible bit equal to 0. When a
first segment with compatible bit = 0 is detected, current
entries in the AS_list can be purged.

The preprocessing routine is implemented using the
C language. The program takes the raw pattern file as
input and produces all the required lookup tables
automatically. The execution time of the program on a PC
with Intel Core2 E6400 2.13 GHz CPU is about 3 minutes.
The process to determine the values of h1 and h2 requires
the longest computation time. It is because the number of
groups is almost doubled when 1 more bit is selected.
This process takes about 130 seconds. The total file I/O
time is about 20 seconds, and the sorting, segmentation,
computation of checksums, and other analysis requires
about 30 seconds. When handling incremental updates to
the pattern set, we need not recomputed the selected bits
for h1 and h2. Assume the internal data structures are
available, incremental changes to the lookup tables can be
determined in a couple of seconds.

Considering the combined hash values of h1 and h2,
over 97% of the 16-byte prefixes are hashed to distinct
buckets. Only 3 buckets have more than 8 items. Two of
them contain 11 items, and 1 of them contains 10 items.
As a result, 8 patterns are transferred to the P-AC
module. After all the preprocessing steps, there are 82,091
patterns/segments in ΓQSV with a total length of 8,202,518
bytes, and there are 2,843 patterns/segments in ΓPAC with
a total length of 57,486 bytes. Hence, 99.3% of the pattern
set is handled by the QSV module.

Considering the first level hashing defined by h1
alone, 87.4% of the 32768 T1 buckets have no more than 4
items, and only 31 buckets contain 16 or more items. The
largest bucket size is 81. On average the number of
selected bits in the bit-masks of T1 is equal to 1.13. Only 3
buckets have more than 4 selected bits in their bit-masks.

The sizes of the lookup tables for the QSV module are
listed in Table 2. Address ranges of the parallel memories
in T2 are set to multiples of 1K. Some of the entries may
be vacant. These vacant entries can be used to
accommodate future updates to the pattern set. The total

memory cost for the QSV module is about 1.2 Mbyte. The
memory cost of the P-AC module is 194 Kbyte. The
overall memory cost is about 1.4 Mbyte, i.e. 1.4 bits per
character of the pattern set. Table T3 stores the
verification commands. One can sees that no verification
commands are required for patterns/segments handled
by P-AC. The physical size of T3 can be reduced to 82K if
the pattern/segment IDs are assigned properly. For
example, patterns handled by P-AC and those segmented
patterns are assigned IDs starting from 1, and segments
handled by P-AC are assigned IDs on the high end.
Suppose patterns 1 to z do not require any verification
command. Entries 0 to z in T3 are empty, and they need
not be stored in the physical table. The physical address
used to access T3 is equal to pid – z, where the value of z
can be stored in an internal register.

The hardware implementation cost is evaluated using
the Xilinx Virtex-5 XC5VSX240T device model. The
device contains 516 36-Kbit block RAMs and 37,440 slices.
Each slice contains 4 6-input LUTs and 4 register bits. A
6-input LUT can be used to implement logic functions, or
used as 64 bits distributed RAM, or SRL-32 shift register
for implementing FIFO buffers. Our design uses 324
(63%) 36-Kbit block RAMs, 4878 (3.3%) LUTs, 6989 (4.7%)
register bits and occupies 2163 (5.8%) slices. The LUT
usages for the major components are as follows: the CRC
circuit that generates the prefix checksum requires 144
LUTs, the bit-extraction circuit that generates the address
offset requires 64 LUTs, the CRC pool requires 1640
LUTs, the 8 FIFO queues requires 536 LUTs, the
competition network requires 336 LUTs, and the AU
requires 202 LUTs. With speed grade set to -2, the
maximum system clock frequency is 200MHz after place-
and-route. In an actual system deployment, the unused
block RAMs can be utilized to provide spare capacities in
the lookup tables for future updates to the pattern set.

TABLE 2
MEMORY COST FOR LOOKUP TABLES OF THE QSV MODULE

Lookup table No. of entries No. of bits
per entry

Total storage
(Kbit)

T1 32K 31 992
T2 93K

(sum of the 8
parallel memories)

33 3069

T3 91K 56 5096
A0 2K 39 78
A1 7K 60 420

We have also simulated the performance of the string
searching engine using different types of data files as the
data source. The results are summarized in Table 3. When
processing the word document file, the QSV module on
average finds a prefix match for every 3.3 Kbyte of data,
and finds a segment match for every 8.6 Kbyte of data.
When processing other file types, the QSV module on
average finds a prefix match for every 350 Kbyte of data,
and finds a segment match for every 2 Mbtye of data. Up

to 4 CRC units are active at the same time when
processing the ubuntu-7.10 ISO image file. The
aggregation unit has very light workload. There is at
most 1 entry in the AS_list throughout the simulations.

Three patterns are found in the installation program
of Java jdk 6 with Netbeans, and the ubuntu-7.10 ISO
image file. The data in the two input files match the
pattern values in all three cases. Hence, they are
considered true-match by the search engine. However,
these are not classified as true-match by the ClamAV
software because of mismatch of the file extension.
Comparing with the method of [10] when the ubuntu-
7.10 ISO image file is used as the input stream, the PERG
architecture reports 4 matches, where one of them is a
false positive.

5.1 Comparison with previous work
The proposed QSV method shares some common
concepts with the work of [5]. In Cho’s method, the
pattern detection module (PDM) uses some selected bytes
of the input data to compute a hash index. The pattern
stored in the given hash index is then retrieved and
compared with the input. Because of the limited memory
word length and other circuit design considerations, the
pattern length supported by the PDM is restricted to 8
bytes or less. Long patterns are divided into segments
with up to 8 bytes. Segments detected by PDMs are
aggregated using dedicated long pattern state machines
(LPSM). Our method differs from Cho’s method in 3
major aspects. First, the QSV method is checksum based,
whereas Cho’s method is character-based. Second, the
QSV method uses a CRC unit to check for the variable-
length suffix that may follow the detected prefix. In Cho’s
method, long patterns are simply divided into multiple 8-
byte segments and it relies on the LPSM to aggregate
short segments in order to detect long patterns. Third, in
our method we use a NFA to handle the aggregation of
partial-matches, and the workload of the NFA is
minimized by careful segmentation of patterns. In Cho’s
method, one LPSM is required to trace along each
potential matching long pattern. Cho’s aggregation
method has two limitations. The LPSM uses dedicated
delay elements and logic circuits to derive the final
match. Hence, the maximum pattern length must be
known a priori. Moreover, if predictive LPSM is used, the
number of LPSM required is equal to the number of
pattern that share a common prefix (which can be over
100). If retrospective LPSM is used, the number of LPSM
required is equal to the number of patterns that share a
common suffix. Both parameters are data dependent.

The idea of using bit-selection to implement lookup
tables can be found in [15, 16]. The DIBS lookup table
organization is similar to the BaRTS of [15]. In Lunteren’s
string matching method [16], the transition edges of a
state graph are partitioned into multiple groups and a
dedicated lookup table is used to store the transition rules

TABLE 3
SIMULATION RESULTS

data file

size

(Mbyte)

P-AC module QSV module no. of CRC
units required

max. length of
the AS_list segment

match
pattern
match

prefix
match

segment
match

pattern
match

JPEG picture 2.96 0 0 4 1 0 1 0
MP3 music 7.5 6 0 7 6 0 1 1
MP4 video 53 0 0 41 24 0 1 1
PDF document 1.05 1 0 6 0 0 1 0
Word document 3.1 275 0 921 359 0 2 1
jdk-6u14-nb-6 149 122 0 91 10 3 2 1
ubuntu-7.10 695 1998 0 2538 436 3 4 1

of each group. One bit-mask is shared by all entries in the
table. In general, the lookup tables are restricted to
relatively small sizes, e.g. 1K entries or less. In a physical
realization, the number of match engines, the number of
lookup tables per engine, and size of the lookup tables
can be determined based on detailed analysis of the given
pattern set, where the system parameters are not fixed a
priori. When new patterns are added to the system after
it has been built, the new patterns may not fit to the
existing lookup tables. We may need to repartition the
state graph, or even repartition the pattern set subject to a
rigid set of constraints, where the system parameters
have already been fixed. This is a complicated
combinatorial optimization problem with exponential
time complexity.

The P-AC and QSV architectures are composed of
multiple pipelined stages, and table lookups are involved
in each stage. To ensure deterministic throughput, we
need to guarantee that each table lookup operation can be
completed in 1 clock cycle. We have demonstrated that
this can be achieved using the DIBS approach. The
construction of lookup tables using the DIBS approach is
fairly simple and the memory efficiency is quite good.
The occupancy of tables T2 and A1 are 86% and 82%,
respectively. In the recent proposal of Ficara et al. [11] for
the construction perfect hardware hash table using
additional discriminator bits, values of the discriminator
bits are determined using a trial-and-error approach. The
time to find suitable values for the discriminator bits can
be very long, especially when the number of keys is large.
If the number of discriminator bits is fixed, there is no
guarantee that a perfect hash table can always be
obtained when the pattern set is expanded.

A few recent studies had also used the ClamAV
pattern set in their evaluations. Ho and Lemieux [12]
used Bloomier filters in their PERG architecture. For the
conventional Bloom filter [8], the system can only
determine if the input key is a member of the pattern set
or not. It does not identify the matching pattern. Bloomier
filter is an extension of Bloom filter. If the hash functions
are carefully selected, the pattern that may match the
input data can be identified. However, the selection of
hash functions can only be done using trial-and-error.
Since the hardware hash functions operate on fixed-

length data, long patterns are divided into overlapping
fragments in PERG. A total of 26 Bloomier filter units
(BFUs) are used in [12], where each BFU checks for
segments of a given length. Detected segments are
consolidated by a reassembly unit. Information regarding
the consolidation of segments is called metadata, and it is
stored in off-chip 50MHz SRAM. The BFUs operate at 200
MHz. Because of the slower speed of the external SRAM,
the reassembly unit takes at least 4 clock cycles to process
one segment match. Some segments are shared by
multiple patterns. Processing of these segments requires
multiple passes. The 26 BFUs can report segment matches
simultaneously. A FIFO buffer is used to store the
outputs of the BFUs. If the FIFO buffer is full, the BFUs
are temporarily stalled. In their performance study using
the ubuntu-7.10 ISO image file as input, the BFUs were
stalled for 5% of the time because of FIFO buffer
overflow.

The PERG architecture requires 0.335 bit of embedded
memory per character of the pattern set. In addition to
the embedded memory, the system also requires 4 Mbyte
of external memory to store the metadata, i.e. 4 bits per
character. Hence, the overall memory cost is about 4.3
bits per character. PERG has better scalability than our
method because the metadata can be stored in external
SRAM. However, it has two weaknesses. First, updates to
the pattern set may cause hash collisions. When hash
collision occurs, a new set of hash functions should be
selected. Consequently, the hardware circuits for
computing the hash functions should be reconfigured.

Second, the reassembly unit of PERG can be a
performance bottleneck. In PERG, patterns with length
between k to 2k−1 bytes will be processed by a BFU with a
predefined segment length of k bytes. Patterns longer
than k bytes will be divided into 2 overlapping k-byte
segments. For example, one of the 7-byte patterns in the
ClamAV pattern set has the values “90, 90, 60, 90, 90, 90,
90” (hexadecimal numbers). This pattern is processed by
a BFU for 4-byte segments. After segmentation, the
pattern is divided into 2 segments “90, 90, 60, 90” and
“90, 90, 90, 90”. If the input contains a long sequence of
bytes ‘90’, the BFU will generate a match result in each
cycle and fill the FIFO buffer. Consequently, the BFUs
will be stalled and the system throughput can be

degraded significantly. Other scenarios that will cause
FIFO overflow are possible. For example, two 7-byte
patterns in the pattern set have the values “52, 52, 83, c4,
04, 89, 3c” and “52, 57, 03, fa, 5f, 52, 52”. After
segmentation, two of the segments are “52, 52, 83, c4” and
“fa, 5f, 52, 52”. If the input contains repeated occurrences
of the 6-byte block “fa, 5f, 52, 52, 83, c4”, the BFU will
generate 2 matches in every 6 cycles.

Hua et al. [13] presented an interesting idea to reduce
the memory cost and improve the processing speed of the
Aho-Corasick automaton. In their approach, the input
data as well as the patterns are transformed to another
alphabet set using a “content-invariant” variable-stride
segmentation method. A symbol in the new alphabet set
may represent 1 to w characters (bytes), where w is the
window size used by the preprocessing unit in
transforming the input data. On average, one symbol in
the new alphabet set represents 2 to 3 bytes of the original
data. A pattern is divided into the head-block, core-block,
and tail-block. The search engine will only compare the
input against the core-block. Verifications of the head-
block and tail-block are performed by dedicated
hardware. Short patterns with empty core-block are
handled using other techniques, e.g. TCAM. The
advantages of Hua’s method diminish if the pattern or
input stream is composed of a long sequence of the same
byte value. The memory cost of Hua’s design is about 2.5
bytes per character of the pattern set.

In the method of Song et al. [22], the DFA maintains
one additional cached state in addition to the normal
active state. By doing so, backward transition edges
pointing back to nodes that are two hops from the initial
state can be eliminated. The memory cost of Song’s
method when applied to the ClamAV pattern set is 4.2 to
6.0 bytes per character.

6 CONCLUSION
In this paper we have presented a memory efficient
method to do string searching. The proposed QSV
method is based on quick sampling of fixed-length data
segments and on-demand verification of the variable-
length suffix segment. The QSV method has good
scalability. The prefix sampling (PS) unit has 3 lookup
tables, T1, T2 and T3. The size of T1 is fixed with 32K
entries. The sizes of T2 and T3 are proportional to the
number of patterns. For a pattern with distinct 16-byte
prefix, the system only need to store up to 3 entries in
tables T1 to T3. The storage cost is independent of the
pattern length.

In the QSV method, patterns are required to have
distinct 16-byte prefixes. Patterns that share common 16-
byte prefixes will be divided into multiple segments with
distinct prefixes. In our evaluation with the ClamAV
pattern set, about 6% percents of patterns are segmented.
Short patterns with less than 16 bytes, and a small
number of exception patterns that cannot be handled by

the QSV module will be processed by a pipelined Aho-
Corasick (P-AC) string matching engine [17, 18]. The
memory cost of P-AC is considerably higher than that of
QSV. However, the P-AC module will only be
responsible for handling 0.7% of the pattern set in terms
of byte count. The overall memory cost of the search
engine is only 1.4 bits per character of the pattern set,
which is much lower than other known methods. For the
current ClamAV pattern set with 82888 static strings, the
total memory required is about 1.4 Mbyte.

Comparing version 50 (released on 15 Feb. 2009) and
version 51 (released on 14 May 2009) of the ClamAV
database main.cvd, version 51 contains 653 new static
strings. Hence, on average 7 static strings are added to
the database per day within the 3 months period. Both P-
AC and QSV are memory-based. When new patterns are
added to the pattern set, the lookup tables can be
modified without reconfiguring the hardware circuits.
This is an essential feature for anti-virus applications,
where updates to the pattern set can be quite frequent
and the system would require short update latency.

The method presented in this paper is only for the
handling of static strings. Given the fact that over 90%
patterns in today’s ClamAV pattern set are static strings,
the result of this study is significant. Our future work [19]
will focus on the study of hardware architecture for
matching regular expressions. It is generally agreed that
the matching of regular expressions is a more difficult
problem, especially when one aims to optimize for speed,
hardware efficiency (memory and logic elements),
scalability, and flexibility (i.e. ability to update the
pattern set without hardware reconfiguration).

ACKNOWLEDGEMENTS
The authors would like to express their sincere thanks to
the reviewers for their critical comments and valuable
suggestions. The reviewers gave us very detailed reports
that helped us a lot in improving the paper.

REFERENCES
[1] A. V. Aho, and M. J. Corasick, “Efficient string matching: an

aid to bibliographic search”, Communications of the ACM,
Vol. 18, No. 6, 333-340, 1975.

[2] M. Alicherry, M. Muthuprasanna and V. Kumar, “High speed
matching for network IDS/IPS”, In Proceedings of the IEEE
Int. Conf. on Network Protocols, 187-196, 2006.

[3] Z. K. Baker and V. K. Prasanna, “A computationally efficient
engine for flexible intrusion detection”, IEEE Trans. on VLSI
Systems, Vol. 13, No. 10, 1179-1189, 2005.

[4] Z. K. Baker and V. K. Prasanna, “Automatic synthesis of
efficient intrusion detection systems on FPGAs”, IEEE Trans.
on Dependable and Secure Computing, Vol. 3, No. 4, 289-300,
2006.

[5] Y. H. Cho and W. H. Mangione-Smith, “Fast reconfiguring
deep packet filter for 1+ Gigabit network”, In Proceedings of
the IEEE Symp. on Field-Programmable Custom Computing
Machines, 2005.

[6] ClamAV anti-virus software, http://www.clamav.net
[7] C. R. Clark and D. E. Schimmel, “Efficient reconfigurable logic

circuits for matching complex network intrusion detection
patterns”, In Field-Programmable Logic and Applications,
LNCS, 2778, 956-959, 2005.

[8] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull and J. W.
Lockwood, “Deep packet inspection using parallel Bloom
filters”, IEEE Micro, Vol. 24, No. 1, 52-61, 2004.

[9] S. Dharmapurikar and J. Lockwood, “Fast and scalable pattern
matching for network intrusion detection systems”, IEEE J. on
Selected Areas in Comm., Vol. 24, No. 10, 1781-1792, 2006.

[10] V. Dimopoulos, I. Papaefstathiou and D. Pnevmatikatos, “A
memory-efficient reconfigurable Aho-Corasick FSM
implementation for intrusion detection systems”, In
Proceedings of the IEEE Int. Conf. on Embedded Computer
Systems: Architectures, Modeling and Simulations, 186-193,
2007.

[11] D. Ficara, S. Giordano, S. Kumar, B. Lynch, “Divide and
discriminate: algorithm for deterministic and fast hash
lookups”, In Proceedings of the ACM/IEEE ANCS, 133-142,
2009.

[12] J. T. L. Ho and G. F. Lemieux, “PERG: A scalable FPGA-based
pattern-matching engine with consolidated Bloomier filters”,
in Proceedings of IEEE Int. Conf. Field-Programmable Tech.,
73-80, Dec 2008.

[13] N. Hua, H. Song and T. V. Lakshman, “Variable-stride multi-
pattern matching for scalable deep packet inspection”, In
Proceedings of the IEEE INFOCOM, 415-423, 2009.

[14] D. Knuth, J. Morris and V. Pratt, “Fast pattern matching in
strings”, SIAM J. Computing, Vol. 6, 323-350, 1977.

[15] J. van Junteren, “Searching very large routing tables in wide
embedded memory”, In Proceedings of the IEEE GlobeCom,
1615-1619, 2001.

[16] J. van Lunteren, “High-performance pattern-matching for
intrusion detection”, In Proceedings of the IEEE INFOCOM, 1-
13, 2006.

[17] D. Pao, W. Lin and B. Liu, “Pipelined architecture for multi-
string matching”, IEEE Computer Architecture Letters, Vol. 7,
No. 2, 33-36, July-Dec. 2008.

[18] D. Pao, W. Lin and B. Liu, “A memory efficient pipelined
implementation of the Aho-Corasick string matching
algorithm”, ACM Trans. on Architecture and Code
Optimization, accepted for publication.

[19] D. Pao, “A NFA-based programmable regular expression
match engine”, In Proceedings of the ACM/IEEE ANCS, 60-
61, 2009.

[20] G. Papadopoulos and D. Pnevmatikatos, “Hashing + memory
= low cost, exact pattern matching”, In Proceedings of the
IEEE Int. Conf. on Field Programmable Logic and
Applications, 39-44, 2005.

[21] Snort intrusion detection system, http://www.snort.org
[22] T. Song, W. Zhang, D. Wang and Y. Xue, “A memory efficient

multiple pattern matching architecture for network security”,
In Proceedings of the IEEE INFOCOM, 673-681, 2008.

[23] I. Sourdis and V. Pnevmatikatos, “Pre-decoded CAMs for
efficient and high-speed NIDS pattern matching”, In
Proceedings of the 12th IEEE Symp. on Field-Programmable
Custom Computing Machines, 2004.

[24] I. Sourdis, V. Pnevmatikatos and S. Vassiliadis, “Scalable
multigigabit pattern matching for packet inspection”, IEEE
Trans. on VLSI Systems, Vol. 16, No. 2, 156-166, 2008.

[25] L. Tan, B. Brotherton and T. Sherwood, “Bit-split string-
matching engines for intrusion detection and prevention”,
ACM Trans. on Architecture and Code Optimization, Vol. 3,
No. 1, 3-34, 2006.

[26] N. Tuck, T. Sherwood, B. Calder and G. Varghese,
“Deterministic memory-efficient string matching algorithms
for intrusion detection”, In Proceedings of the IEEE
INFOCOM, 2628-2639, 2004.

[27] F. Yu, R. H. Katz and T. V. Lakshman, “Gigabit rate packet
pattern-matching using TCAM”, In Proceedings of the IEEE
Int. Conf. Network Protocols, 174-183, 2004.

Derek Pao received the B.Sc.(Eng.) degree in
Electrical Engineering from the University of
Hong Kong, and the M. Comp. Sc. and Ph.D.
degree in Computer Science from Concordia
University, Canada. He is an Associate
Professor with the Electronic Engineering
Department, City University of Hong Kong.
His research interests include architectures
for network processing, and high speed

pattern matching for network and system security.

Xing Wang received his M.Sc. degree from
Peking University in 2007. He is currently an
Engineer in Peking University Shenzhen
Graduate School. His research interests
include network security, architecture for
network processing and computer network.

Xiaoran Wang received the B. Eng. degree in
Information Engineering with 1st Class
Honors from the City University of Hong
Kong in 2010. He will pursue graduate
studies at Carnegie Mellon University, USA.
His research interests include network and
system security, and forensic.

Cong Cao received the B.Eng. degree in
Information Engineering with 1st Class
Honors from the City University of Hong
Kong in 2010. He will pursue graduate
studies at the same university. His research
interests include performance analysis of
telecommunications networks.

Yuesheng Zhu received his B.Eng. degree in
Radio Engineering, M. Eng. degree in
Circuits and Systems, and Ph.D. degree in
Electronic Engineering in 1982, 1989 and
1996, respectively. He has been working with
the Communication and Security Lab,
Shenzhen Graduate School of Peking
University since 2005. Prof. Zhu is a senior
member of IEEE, Fellow of China Institute of

Electronics, and senior member of China Institute of
Communications. His current interests include cryptography and
internet security, digital home networking, multimedia signal
processing and wireless communications.

