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Abstract—Advances in optical networking technology are
pushing internet link rates up to 100 Gbps. Such line rates
demand a throughput of over 150 million packets per second
at core routers. Along with the increase in link speed, the
size of the dynamic routing table of these core routers is
also increasing at the rate of 25-50K additional prefixes per
year. These dynamic tables require high prefix deletion and
insertion rates. Therefore, rapid prefix update without disrupting
router operation has also emerged as a critical requirement.
Furthermore, IPv6 standard extends the current IPv4 prefix
length from 32 to 128 bits. Thus, it is a major challenge to
scale the existing solutions to simultaneously support increased
throughput, table size, prefix length and rapid update. While
the existing solutions can achieve high throughput, they cannot
support large routing tables and rapid update at the same time.
We propose a novel scalable, high-throughput linear pipeline
architecture for IP-lookup that supports large routing tables and
single-cycle non-blocking update. Using a state-of-the-art Field
Programmable Gate Arrays (FPGA) along with external SRAM,
the proposed architecture can support over 2M prefixes. Our
implementation shows a throughput of 348 millions lookups per
second, even when external SRAM is used.

I. INTRODUCTION

Most hardware-based solutions for network routers fall into

two main categories: TCAM-based and dynamic/static random

access memory (DRAM/SRAM)-based solutions. In TCAM-

based solutions, each prefix is stored in a word. An incoming

IP address is compared in parallel with all the active entries

in TCAM in one clock cycle. TCAM-based solutions are sim-

ple, and therefore, are de-facto solutions for today’s routers.

However, TCAMs are expensive, power-hungry, and offer little
adaptability to new addressing and routing protocols [1]. These

disadvantages are more pronounced when we move from IPv4

to IPv6, as the address length increases from 32 to 128 bits.

SRAM-based solutions, on the other hand, require multiple

cycles to process a packet. In SRAM-based solutions, the

common data structure in algorithmic solutions for performing

LPM is some form of a tree. In these solutions, pipelining

techniques are used to improve the throughput. These SRAM-

based approaches, however, suffer from either inefficient mem-

ory utilization (in trie-based solutions), lack of support for

quick updates (in tree-based solutions), or both. Additionally,
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overlapping in prefix ranges prevent IP lookup from employ-

ing tree searching algorithms without modification. The ability

to utilize external SRAM also becomes an important factor

in using devices with limited on-chip memory. Due to these

constraints, state-of-the-art SRAM-based designs do not scale

to simultaneously support the increased table size and rapid

update requirement.

We propose and implement a scalable high-throughput,
SRAM-based linear pipeline architecture for IP-lookup that

supports 1-cycle update. This architecture utilizes 2-3 tree

structure to achieve high throughput and supports rapid update.

Moreover, the lower levels of the tree can be moved onto

external SRAMs to overcome the limitation in the amount of

the on-chip memory.

This paper makes the following contributions:

1) A data structure that eliminate overlapping in IP prefix

ranges (Section III).

2) An architecture based on 2-3 tree that (i) can use

external SRAM to support a routing table consisting

of over 2M prefixes (Section IV), (ii) support single-
cycle update even in the worst case (Section V), and

(iii) achieve a sustained throughput of 348 MLPS (Sec-

tion VI).

The remainder of the paper is organized as follows. Sec-

tion II covers the background and related work. Section III

introduces the proposed IP-lookup algorithm. Sections IV

describes the architecture and its implementation. Section VI

presents implementation results. Section VII concludes the

paper.

II. BACKGROUND AND RELATED WORKS

A sample routing table with the maximum prefix length of

8 is illustrated in Table I. In this routing table, binary prefix

P5 (01001∗) matches all destination addresses that begin with
01001. Similarly, prefix P6 matches all destination addresses

that begin with 01011.
Despite the large amount of proposed IP-lookup solutions ,

most of them do not target FPGA platform. Since the proposed

work addresses FPGA implementation, we only summarize

the related work in this area. In general, architectures for

IP-lookup on FPGA can be classified into the following

categories: trie-based approach, tree-based approach, and hash-
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TABLE I
A SAMPLE ROUTING TABLE (MAXIMUM PREFIX LENGTH = 8)

Prefix Next Hop Prefix Next Hop

P1 0* 1 P7 011* 7

P2 000* 2 P8 1* 8

P3 010* 3 P9 10* 9

P4 01000* 4 P10 110* 10

P5 01001* 5 P11 11010* 11

P6 01011* 6 P12 111* 12

based approach. Each of the three approaches has their own

advantages and disadvantages.

In trie-based architectures ([2], [3], [4], [5], [6], [7], [8]),

IP-lookup is performed by traversing the trie according to the

bits in the IP address. Multibit-trie is also used in [4]. These

architectures are simple, have high throughput, and support

quick update. However, the main disadvantages of the trie-

based solutions are: (1) latency proportional to prefix length,

(2) moderate memory efficiency, and (3) difficult to interface

with external memory.

In tree-based architectures ([9], [10]), each prefix is treated
as a search key and the entire routing table is stored into

multiple binary search trees [9] or in one binary search

tree [10]. The advantages of these architectures are: (1) simple

architecture, (2) good memory efficiency, (3) high-throughput

(over 300 MLPS), (4) latency independent of the length of

prefixes, and (5) easy to use external memory. Their major

drawback is the lack of support for rapid update.

In hash-based architectures ([4], [11], [12]), hashing func-

tions or bloom filters are used. These architectures have fast

lookup rate (over 250 MLPS) with good hashing function, low

latency, and moderate memory efficiency. However, they suffer

from non-deterministic performance due to hash collisions and

slow update rate.

III. IP-LOOKUP ALGORITHM

A. Algorithm

Definition 1: Given two distinct prefixes, PA and PB

(|PA| < |PB |), if PA is a prefix of PB then PA is a child
prefix of PB , and PB is a parent prefix of PA. PA and PB are

said to be overlapped.
We propose a memory efficient data structure based on a

2-3 tree, which is a balanced search tree. A 2-3 tree has three
different types of nodes: a leaf node, a 2-node and a 3-node. A
2-node is the same as a binary search tree node, which has one
data field and references to two children. A 3-node contains
two data fields, ordered so that the first is less than the second,

and references to three children.

Let T be the given routing table. In order to use the 2-
3 tree as the data structure to perform IP-lookup, we need

to process T to eliminate prefix overlap. T can simply be

processed by merging the child prefixes with their parents.

For example, P3 is merged with P4, P5, and P6. We build

the trie from table T . The leaf-prefixes representing parent-

prefixes are grouped together in the parent-prefix table Tp. The
next hop routing information of the child-prefixes are stored

in child-prefix table Tc. The corresponding trie of the sample

TABLE II
SAMPLE ROUTING TABLE IN TABLE I AFTER PROCESSING

(a) Parent-prefix table Tp

Padded prefix Bitmap Next Hop

P2 00000000 10100000 2

P4 01000000 10101000 4

P5 01001000 10101000 5

P6 01011000 10101000 6

P7 01100000 10100000 7

P9 10000000 11000000 9

P11 11010000 10101000 11

P12 11100000 10100000 12

(b) Child-prefix table Tc

Prefix Length Next Hop

P1 00000000 1 1

P3 01000000 3 3

P8 10000000 1 8

P10 11000000 3 10
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Fig. 1. The trie and 2-3 tree of the sample routing table in Table I

routing table in Table I is shown in Figure 1(a). The edge

value represents a bit in the prefix. The value next to each

node indicates whether that node is a prefix, and is called

prefix bit.
Prefixes in parent table Tp are padded with “0s” up to

the maximum prefix length (32 for IPv4 and 128 for IPv6).

The bitmap column is introduced to keep track of the sub-

prefixes included in the current prefixes. The bitmap value of

a prefix is calculated by collecting all prefix bits from the root

to the prefix. The bitmap value is also padded with “0s” up

to the maximum prefix length. The padded prefixes are used

to build the parent-prefix 2-3 tree. Each entry is assigned a

next hop information associated with the parent-prefix. The

padded prefixes are used as index keys to build the tree. The

corresponding prefix table and 2-3 tree of the sample routing

table in Table I are depicted in Table II(a) and Figure 1(b),

respectively.

Table Tc is used to lookup the next hop routing informa-

tion of the child prefix. Entries in table Tc are identified

by the padded child-prefixes and their length. The padded



child-prefix, appended with its length, is used as an index

key to build the child 2-3 tree. Since all combinations of

{prefix, length} are uniquely identified in table Tc, any
search algorithm can be used. A similar 2-3 tree as the parent
tree is used to support the rapid update.

After building the parent and child tree, IP-lookup is per-

formed as follows. The input is the incoming IP address.

First, the parent-prefix tree is searched. Three data fields are

returned: matched prefix, matched length and next hop. At
each node of the parent 2-3 tree, 2 comparisons are performed
to determine (1) the direction of traversal and (2) the match

status. The first comparison involves the node value and the

incoming address IP . If the node is a 2-node, which has one
1 data field f1, then the direction is left (if IP � f1), or right
otherwise. If the node is a 3-node, which has 2 data fields f1
and f2 (f1 < f2), then the direction can be left (if IP � f1),
middle (if f1 < IP � f2), or right otherwise. In the second

comparison, all returned data fields are computed. Note that

the next hop is only updated if the IP address fully matches

the parent prefix at that node.

Search in the child tree is only necessary if the next hop
returned from the first step is 0 and the matched length is non-

zero. In this case, the matched prefix and the matched length
from the parent tree are used as the search key. This problem
can be seen as finding the exact match of the search key.

B. IP-Lookup Algorithm Analysis

Let N be the number of prefixes and L be the length

of the IP address (L = 32 for IPv4 and 128 for IPv6).

The preprocessing step has the computational complexity of

O(NL) since every bit of the routing table needs to be scanned
to build the trie. The parent table Tp and child table Tc can be
built in O(NL) time. Let N1, N2 be the number of leaf nodes

(parent prefixes) and non-leaf prefix nodes (child prefixes) in

the trie, respectively. Clearly, N1 + N2 = N . If there is no

overlap in the routing table, then N1 = N,N2 = 0. The parent
tree and child tree can be constructed in O(N) time. Search,
insertion and deletion in 2-3 trees take O(log2N) time. It will
be clear in Section IV that these update time can be brought

down to exactly 1 cycle by using pipelining techniques and

parallelism in hardware.

IV. ARCHITECTURE

The overall architecture is depicted in Figure 2(a). As

mentioned above, there are 2 matching cores: (1) parent

matching and (2) child matching. The 2 cores are connected

in a tandem fashion. The first core matches the IP address of

the incoming packet against the parent table, while the second

core matches the prefix-length combination returned by the

first core to find the next hop of the matched child-prefix.

The number of pipeline stages is determined by the height

of the 2-3 tree. Each level of the tree is mapped onto a

pipeline stage, which has its own memory (or table). The major

difficulty in efficiently realizing a 2-3 tree on hardware is the

difference in the size of the 2-node and 3-node. The space

allocated for a 2-node cannot be reused later by a 3-node.
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Child Matching Core
(child 2-3 tree)

IP Address Prefix+Length Next hop
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Fig. 2. Block diagram of the proposed IP-lookup architecture

The available memory management is also more complicated.

To overcome this problem, a 3-node is divided into two 2-
nodes. The left pointer of the first node points to the left child.

The right pointer of the first node points to the second node.

The left pointer of the second node points to the middle child.

Finally, the right pointer of the second node points to the right

child. Although a pointer is wasted, the benefit is justifiable.

It creates uniformity in the size of the nodes, and simplifies

the memory management.

The parent table Tp has N1 entries. Since each 3-node
is split into two 2-nodes and each node hold one prefix,

the effective number of 2-nodes is also N1. Each 2-node
consists of a prefix field of L bits, a bitmap of L, and 2
pointers of logN1 bits each. Hence the size of each node

is (2L+ 2 logN1). The parent tree requires a storage size of
2N1(L+logN1). Similarly, the child 2-3 tree has N2 effective

2-nodes. Each node consists of a prefix field of L bits and 2
pointers of logN2 bits each. The child tree requires a storage

size of N2(L + 2 logN2). The total storage size S required

for both trees is S = 2N1(L + logN1) + N2(L + 2 logN2).
The maximum storage size is reached when N1 = N , in this

case Smax = 2N(L + logN). In reality, nodes in the last

level of the tree need not contain any pointer as they have

no children. The number of leaf-nodes is at least half the total

number of nodes, i.e N/2. The maximum storage size required

can be brought down to Smax = N(2L + logN). Hence, a
FPGA device with 18 Mb of on-chip memory can support a

routing table of over 200K prefixes (for IPv4), or up to 64K
prefixes (for IPv6), without using external SRAM. Note that

the on-chip memory of FPGA (BRAM) is dual-ported. To take

advantage of this, the architecture is configured as dual-linear

pipelines. This configuration doubles the lookup rate.

In our design, external SRAMs can be used to handle even

larger routing tables, by moving the last stages of the pipeline

onto external SRAMs. Currently, SRAM is available in 2 −
32 Mb chips [13], with data widths of 18, 32, or 36 bits, and

a maximum access frequency of over 500MHz. The largest



Virtex package, which has 1517 I/O pins, can interface with

up to 6 banks of dual port SRAMs for IPv4, and up to 2 banks
for IPv6. Hence, the architecture can support at least 2M IPv4

prefixes, or 512K IPv6 prefixes. Moreover, since the access

frequency of SRAM is twice that of our target frequency (200
MHz), the use of external SRAM will not adversely affect the

throughput of our design.

V. SUPPORTING QUICK UPDATE OPERATIONS

The insertion and deletion cause changes in at most two
nodes at each level of the tree, in the worst case [14]. For

the insertion, the first task is to find the (non-leaf) node that

will be the parent p of the newly inserted node n. There are
2 cases: (1) p has only 2 children and (2) p has 3 children.

In this first case, n is inserted as the appropriate child of p;
p becomes a 3-node. A new 2-node needs to be added for p,
and a new 2-node is allocated for n in the next level. In the

second case, n is still inserted as the appropriate child of p.
However, p has 4 children. An internal node m is created with

p’s two rightmost children. m is then added as the appropriate

new child of p’s parent (i.e., add m just to the right of p). If
p’s parent had only 2 children, insertion is done. Otherwise,

new nodes are created recursively up the tree. If the root is

given 4 children, then a new node m is created as above, and

a new root node is created with p and m as its children. The

deletion process is similar, with merging instead of splitting.

Once all the changes in each level of the tree are pre-

computed, the update operation is performed starting from

the root of the tree. This update can easily be done by

inserting only one write bubble [2]. There is one dual-ported

write bubble table (WBT) in each stage. Each table consists

of 2 entries, each composes of (1) the memory address to

be updated in the next stage and (2) the new content for

that memory location. When a prefix update is initiated, the

memory content of the write bubble table in each stage is

updated, and a write bubble is inserted into the pipeline. When

it arrives at the stage prior to the stage to be updated, the

write bubble uses the new content from the WBT to update

the memory location. At most 2 nodes can be simultaneously

updated at each stage, using the dual-ported memory. When

the bubble moves to the next level (stage), the tree up to

that level is fully updated, and the subsequent lookup can be

performed properly. This updating mechanism supports non-

blocking prefix updates at system speed.

VI. EVALUATION RESULTS

We collected 4 IPv4 routing tables from Project - RIS [15]

on 06/03/2010. The number of parent prefixes, child prefixes
and the total number of prefixes for each routing table are

shown in Table III. The proposed IP-lookup architecture

was implemented on Virtex-5 FX200T. The implementation

showed a minimum clock period of 5.75 ns, or a maximum

frequency of 174 MHz. With a dual pipeline architecture, this

design can achieve a throughput of 348 MLPS, or 111.4 Gbps.
With a lookup rate of 340 MLPS, our design achieves a

throughput comparable to that of the state-of-the-art (Sec-

TABLE III
EXPERIMENTAL ROUTING TABLES (AS OF 03/24/2010)

Table # prefixes # parent prefixes # child prefixes

rrc00 325984 295066 30918

rrc11 317716 288416 29345

rrc12 316409 287347 29062

rrc16 324919 294199 30720

tion II). Our architecture, however, can support single-cycle
updates, which include prefix modification, insertion and

deletion, even in the worst case. Among other solutions,

the trie-based approaches, which are known to support rapid

updates, require multiple cycles to preform an update. The

tree-based approaches may require the entire memory to be

reloaded, and the hash-based solutions may need partial/full

chip reconfiguration.

VII. CONCLUDING REMARKS

This paper proposed a data structure and a scalable high

throughput, SRAM-based pipeline architecture for IP-lookup,

that does not use TCAM. The data structure eliminates the

prefix overlapping. By employing a pipelined 2-3 search tree

architecture, dynamic routing updates (modification, insertion

and deletion) can be done in exactly 1 cycle. The architecture
can easily interface with external SRAM to handle larger rout-

ing tables. Our design sustained a lookup rate of 348 MLPS

even when external SRAM is used. This throughput translates

to at least 111.4 Gbps (using the minimum packet size of 320
bits), which is 2.8× the speed of an OC-768 data line. The

proposed architecture can also be scaled to support IPv6.
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[8] O. Erdem and C. F. Bazlamaçi, “Array design for trie-based ip lookup,”
Comm. Letters., vol. 14, no. 8, pp. 773–775, 2010.

[9] H. Le and V. K. Prasanna, “Scalable high throughput and power efficient
ip-lookup on fpga,” in Proc. FCCM ’09, 2009.

[10] H. Le, W. Jiang, and V. K. Prasanna, “Scalable high-throughput sram-
based architecture for ip-lookup using fpga.” in FPL. IEEE, 2008, pp.
137–142.

[11] R. Sangireddy, N. Futamura, S. Aluru, and A. K. Somani, “Scalable,
memory efficient, high-speed ip lookup algorithms,” IEEE/ACM Trans.
Netw., vol. 13, no. 4, pp. 802–812, 2005.

[12] H. Fadishei, M. S. Zamani, and M. Sabaei, “A novel reconfigurable
hardware architecture for IP address lookup,” in Proc. ANCS ’05, 2005,
pp. 81–90.

[13] SAMSUNG SRAMs [Online]. [http://www.samsung.com].
[14] Y.-H. E. Yang and V. K. Prasanna, “High throughput and large capacity

pipelined dynamic search tree on fpga,” in Proc. FPGA ’10, 2010.
[15] RIS RAW DATA [Online]. [http://data.ris.ripe.net].


