
GPEP: Graphics Processing Enhanced Pattern-Matching for High-Performance
Deep Packet Inspection

Lucas John Vespa

Department of Computer Science
University of Illinois at Springfield

Springfield, IL, U.S.A.
Email: lvesp2@uis.edu

Ning Weng

Department of Electrical and Computer Engineering
Southern Illinois University Carbondale

Carbondale, IL, U.S.A.
Email: nweng@siu.edu

Abstract—Graphics processing units (GPU) can be used to
accelerate deep packet inspection. However, the state transition
tables used to implement deterministic finite automata are very
large and must be stored in DRAM, which inhibits performance
and may cause non-deterministic scanning rates. In this work
we present GPEP, a GPU-based deep packet inspection engine.
GPEP uses an optimized version of our pattern matching
algorithm called P3FSM, which has low operational complexity,
but reduces the memory requirement such that the state tables
can fit into the small on chip memories of a GPU. This allows
GPEP to scan quickly and deterministically with no global
memory accesses to state tables. We optimize our P3FSM
(Portable Predictive Pattern Matching Finite State Machine)
algorithm for execution on SIMD devices and to exploit the
parallelism of the VLIW arrangement of the GPU processing
cores. We show that GPEP consistently achieves over 30 Gb/s
deep packet inspection.

I. INTRODUCTION

Deep packet inspection (DPI) is a key component in

detecting network attacks in network intrusion detection

systems [1], [2], [3], [4]. DPI scans every byte of incoming

packet payloads using pattern matching algorithms to iden-

tify the presence of known attack patterns [5]. Due to the

rapid increase in network attacks, current DPI cannot keep

up with the multiple gigabit rates of modern networks. This

lack of speed causes DPI to be a potential bottleneck of

traffic gateways and security systems, which affects service

availability and system vulnerability.

Methods to increase DPI speed by increasing packet stride

[6], [7], [8] have been developed, but these methods are

limited by pattern characteristics such as pattern length. The

potential performance improvement using these methods is

therefore limited.

Graphics processing units (GPU) [9] have tens to hun-

dreds of processing cores and can be used to accelerate

DPI to tens of gigabits per second. However, the SIMD

configuration of GPU processing cores requires a simple

pattern matching algorithm. Accordingly, deterministic finite

automata (DFA) have been implemented in a GPU [10], [11],

†This work was performed while at Souther Illinois University.

[12] due to the simplicity and determinism of DFA. Unfortu-

nately, state transition tables require excessive memory and

can require truncation of attack patterns, therefore acting as

a prefilter and not a full verifier. Also, the state transition

tables must be stored in large global memory on the GPU

and therefore require one global memory access for every

packet byte processed in the worst case.

We have previously presented a pattern matching algo-

rithm called P3FSM [13], [14] which has lookup complexity

similar to a state transition table, but reduces the memory

by over 90%. P3FSM is ideal for implementation in a GPU

because the required memory tables can fit in the local

memory of each processing core of the GPU. This allows

for fast and deterministic operation regardless of packet

content because there are no global memory accesses for

DFA operation. In addition, the small memory requirement

means that large pattern sets can be implemented in full,

allowing the GPU to act as a full verifier rather than a

prefilter.

In this work we present GPEP, a GPU-based DPI engine

that utilizes our P3FSM pattern matching algorithm. We

optimize P3FSM for SIMD operation by removing branches.

We also optimize P3FSM to increase the utilization of the

5-way VLIW processors on the GPU. We show that GPEP

achieves a deep packet inspection throughput of over 30

Gb/s on a single ATI Radeon GPU [15]. We also present

a performance model to aid in verifying our experimental

results.

The remainder of this work is organized as follows.

Section II gives background information on deep packet

inspection and our P3FSM pattern matching algorithm as

well as how to optimize it for GPU processing. Section III

presents the architecture and memory management of our

GPU-based engine, GPEP. Section IV presents performance

analysis. Other works related to accelerating DPI are dis-

cussed in Section V and the paper is concluded in Section

VI.

2011 IEEE International Conferences on Internet of Things, and Cyber, Physical and Social Computing

978-0-7695-4580-6/11 $26.00 © 2011 IEEE

DOI 10.1109/iThings/CPSCom.2011.36

74

�

�

�

�

�

�

�

	

��

 �

�

� �

�

�

�

(a) Example DFA for patterns
“SHE”, “HERS” and “HIS”

�

�

�

�

�

�

�

	

��

 �

�

� �

�

�

�
�

�

(b) Example optimized SDFA

Figure 1. DFA example

II. DEEP PACKET INSPECTION

In this section we introduce deep packet inspection using

deterministic finite automata (DFA). We begin by sum-

marizing DFA and what is required to optimize DFA for

use in multicore devices. We then introduce our P3FSM

algorithm and show how to efficiently optimize and encode

a DFA for use in graphics processing units. We show the

memory requirement of our P3FSM algorithm, demonstrate

how P3FSM operates and optimize it for SIMD operation.

A. Deterministic Finite Automata

Deterministic finite automata (DFA) are used for multiple

pattern matching in deep packet inspection. The performance

of DFA is deterministic, regardless of the number and length

of the patterns used to construct the DFA. An automata is

constructed from a set of many known attack patterns. Figure

1(a) shows a sample DFA for the patterns “SHE”, “HERS”

and “HIS”. Each state in the DFA has 256 labeled transitions,

one for each character in the ASCII alphabet. A DFA is

traditionally encoded in memory as a state transition table

(STT). The current state and input character form the address

for indexing the next state pointer in the STT.

B. DFA Optimized for Parallel Processing

The simple operation of a STT is ideal for the SIMD

operation. Unfortunately, a STT requires tens of kilobytes

per pattern. A state transition table, even for only a few

patterns, cannot fit into the on-chip memory of most devices,

especially that of multicore and multiprocessor devices.

Therefore a STT must be stored in the global memory

of these devices. Global memory accesses are slow and

therefore slow down pattern matching operations. P3FSM

uses a novel memory encoding technique that reduces the

memory requirement substantially while maintaining similar

operational complexity to a STT. This allows the memory

tables to fit into the local memory of any device.

Table I
CLUSTERING

Cluster Character Group
C1 H S E R G1 G5 G2 G7 G9 G3 G8 G6
C2 I G4

Table II
GROUP CODING

Group Char Sig State Sig
G1 0 0 0 1
G5 0 0 1 0
G2 0 1 0 1
G7 0 1 1 0
G9 0 1 1 1
G3 1 0 0 1
G8 1 0 1 0
G6 1 1 0 1
G4 0 1

Table III
STATE CODES

State Group Code
S1 G3 G4 1 0 0 1 0 1
S2 G5 0 0 1 0 0 0
S3 G6 1 1 0 1 0 0
S4 G7 0 1 1 0 0 0
S5 G8 G4 1 0 1 0 0 1
S6 G9 0 1 1 1 0 0
S7 G5 0 0 1 0 0 0
S8 0 0 0 0 0 0
S9 G5 0 0 1 0 0 0

𝑃 3𝐹𝑆𝑀 achieves these properties by only storing one

entry in memory for each state in a DFA, rather than storing

numerous DFA transitions as in typical memory based DFA

implementations. The code for each state is derived such that

it is predictive, in that, each state code contains information

that denotes all of its possible next states. The FSM formed

from these codes is able to isolate the appropriate next state

very quickly due to the unique properties of these codes.

C. P3FSM DFA Encoding

This section discusses how to optimize a DFA and then

encode a DFA for our P3FSM algorithm.

1) DFA Optimization: Before encoding a DFA into mem-

ory state tables, we optimize the DFA with an optimization

we call split-DFA. This optimization splits the DFA transi-

tions into primary and secondary blocks at the first level of

the DFA. All incoming transitions to the primary block are

removed from the DFA. An example split-DFA is shown in

Figure 1(b). The two blocks are encoded into two separate

memory tables. If a transition is not present in the secondary

block table, then the primary block table acts as a default

transition lookup for the current input character.

2) Deriving State Codes: The following example illus-

trates the derivation of state codes for the DFA in Figure

1(b). The first step in deriving the state codes is to group all

the states in the DFA that have the same next state into a

75

group, along with the character required for said transitions.

The result is one group for each state (i.e., G1[S0][H],

G2[S0][S], G3[S1][E], G4[S1, S5][I], G5[S2, S7, S9][H],

G6[S3][R], G7[S4][S], G8[S5][E], G9[S6][S]), where Gi is

the group representing states that transition to state i.

The second step is to combine these groups together to

form clusters. Groups with the same character are combined

into a cluster. Next, the number of clusters are reduced by

merging all the clusters that do not have common states to

form one cluster. The clustering result obtained is shown in

Table I. As seen in this table, characters ‘H’, ‘S’, ‘E’, ‘R’

do not have common states and hence, can be placed in one

cluster.

The third step in generating state codes is encoding the

groups. The encoding has two parts, the character signature

and state signature. The character signature identifies the

character required for transitions to a state. Characters are

assigned a unique signature beginning with 0. This signature

remains unchanged for the groups with same character.

The state signature identifies the next state and is assigned

beginning with 1. The resulting group codes are shown in

Table II. For example, from this table we see that the groups

G1 and G5 have the same character signature 00, this is

because both the groups have character ’H’. However, their

state signatures are 01 and 10 respectively because G1 and

G5 represent two different states.

Finally, a state code for each state is obtained by con-

catenating the group codes for the groups that a state is a

member of. The group codes are formed into a state code by

being placed in the position of the cluster that the group is

a member of. Table III shows the state codes for all states.

As an example, state S5 is a member of groups G8 and G4

and the codes for G8 and G4 are 1010 and 01 respectively.

The state code for S5 is formed by placing the code for G8

in the position of cluster C1 and the code for G4 in the

position of cluster C2. The state code for S5 is therefore the

concatenation of 1010 and 01, to yield 101001.

D. P3FSM Operational Tables

This section demonstrates how the P3FSM operational ta-

bles are formed and then gives an example of the algorithm’s

operation.

1) Character/Cluster Table: The character/cluster table

(CC) is created to contain several pieces of information.

Firstly, the character signature for each character is stored.

Secondly, the cluster that contains all the states associated

with that character. Thirdly, each character is given an offset

value. The offset starts at 0 for the first character and is

incremented for each character by the number of states with

the previous character. Finally, each character is assigned

an index. If a valid transition is not produced during DFA

operation, the index automatically becomes the next state

index. Table IV shows the final character/cluster table (CC)

for this example.

Table IV
CHARACTER/CLUSTER TABLE (CC)

Character Signature Cluster Offset Index
H 0 0 1 0 1
S 0 1 1 2 3
E 1 0 1 5 0
R 1 1 1 7 0
I 0 2 8 0

Table V
CODE TABLE (CODE)

Index State Code State
1 1 0 0 1 0 1 S1
2 1 0 1 0 0 1 S5
3 0 0 1 0 0 0 S2
4 0 0 1 0 0 0 S7
5 0 0 1 0 0 0 S9
6 1 1 0 1 0 0 S3
7 0 0 0 0 0 0 S8
8 0 1 1 1 0 0 S6
9 0 1 1 0 0 0 S4

�

2800

154

60

5.4 4.5 3.7

1

10

100

1000

10000

St
or

ag
e

R
eq

ui
re

m
en

t
(b

yt
es

 p
er

 c
ha

ra
ct

er
)

AC Bitmap AC Path Compr AC B-FSM SAM-FSM P3 F S M

Figure 3. P3FSM memory requirement comparison with related work

2) Code Table: The code table (code) consists solely of

the state codes placed in the correct order. The index position

for each state code in the code table can be calculated

by Equation 1, by adding the state signature (𝑆𝑠𝑖𝑔) to the

character offset (𝐶ℎ𝑜𝑓𝑓𝑠𝑒𝑡) for any given state. Table V

shows the final code table (code) for this example.

𝑆𝑖𝑛𝑑𝑒𝑥 = 𝐶ℎ𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑆𝑠𝑖𝑔 (1)

3) Example Operation: Figure 2 demonstrates how

P3FSM uses the current state and current input character

to find the next state. In this example the current state is 7

and the current input character is ‘H’. P3FSM requires two

steps to find that the next state is state 5.

E. P3FSM Memory Efficiency

The memory efficiency of P3FSM allows GPEP to fit the

state tables into the local memory of the stream cores on a

76

�

Character/Cluster Table
Char Signature Cluster Offset Index

H 0 0 1 0 1
S 0 1 1 2 3
… … … … …

Code Table
Index Code State

1 1 0 0 1 0 1 1
2 1 0 1 0 0 1 5
3 0 0 1 0 0 0 2
4 0 0 1 0 0 0 7

… … …����	
� ���	 � �� �
��� �����	� � �

�� ��	�� �����	� � �� ���	 ���	 ���� �����	� ���
���	 �� � �� ��
!� ��"���	
	#� ���	$ ���	 ���
���	 % �����	� ����	�

�� % � ! &'
	#� ���	 �
�	# ! �
	#� ���	 � ���	 (

Figure 2. Example operation of P3FSM engine. Transition from state 7 to 5 on input “H” from Figure 1(a).

Table VI
MEMORY REQUIREMENTS (KILOBYTES) OF P3FSM WITH INCREASING NUMBER OF ATTACK PATTERNS.

Patterns # Chars STT (KB) P3FSM (KB) Bytes/Char
100 1291 397 3.04 2.41
200 2129 600 5.85 2.82
300 4313 1258 14.26 3.38
400 6722 2116 23.79 3.62
500 7637 2304 27.04 3.63

1000 13525 4072 49.00 3.71

GPU. This allows for faster and more deterministic operation

of the GPU-based deep packet inspection. Table VI shows

the memory requirements for a state transition table (STT)

and for P3FSM, with and increasing number of patterns. The

equation used to compute the storage requirement in STT

implementation is 𝑄 ⋅ ⌈𝑙𝑜𝑔2𝑄⌉ ⋅ 28, where 𝑄 is the total

number of states of the DFA. This formula assumes that the

binary encoding scheme is used in the DFA implementation.

Thus, each state code needs ⌈𝑙𝑜𝑔2𝑄⌉ bits. The memory size

required by P3FSM is calculated by 𝑄⋅(𝐿+⌈𝑙𝑜𝑔2𝑃 ⌉), where

𝐿 is the length of state code. 𝑃 is the number of patterns

to be detected. The ⌈𝑙𝑜𝑔2𝑃 ⌉ term in the above expression

represents the additional tag bits used to indicate which

patterns are matched.

Table VI demonstrates that P3FSM reduces the memory

requirement from a STT by many times, but still scales with

an increasing number of patterns. Table VI also shows the

bytes per pattern character required for P3FSM, which is

about 3.7 bytes for 1000 patterns. Figure 3 compares storage

efficiency in terms of bytes per character with AC [16],

Bitmap AC [1], Path compressed AC [1] and B-FSM [17].

This figure shows that P3FSM requires only about 3.7 bytes

per pattern character.

F. P3FSM Flow Control

Each kernel instance on the GPU is called a work item.

If two work items within a compute unit diverge execu-

tion paths, then the paths must be executed serially. This

serialization of instructions severely decreases performance.

In order to mitigate this performance issue, we rewrite the

P3FSM algorithm as simple equations which uses logical

operations to replace the branch operations. In other words,

we flatten the algorithm so that it will execute the same

instructions for all work items, regardless of packet content.

The following are the final equations where ns
′

is an

intermediate value calculated before deriving the next state

(ns). ss stands for state signature, cs stands for character

signature, p is the current packet character.

𝑛𝑠
′
= (𝑐𝑐[𝑝].𝑜𝑓𝑓𝑠𝑒𝑡+ 𝑐𝑜𝑑𝑒[𝑝.𝑐𝑙𝑢𝑠𝑡𝑒𝑟][𝑛𝑠].𝑠𝑠)∗

!(!(𝑐𝑜𝑑𝑒[𝑝.𝑐𝑙𝑢𝑠𝑡𝑒𝑟][𝑛𝑠].𝑠𝑠))∗
!(𝑐𝑜𝑑𝑒[𝑐𝑜𝑑𝑒[𝑝.𝑐𝑙𝑢𝑠𝑡𝑒𝑟]][𝑛𝑠].𝑐𝑠− 𝑝.𝑐𝑠)∗!(!𝑛𝑠)

𝑛𝑠 = 𝑛𝑠
′
+!𝑛𝑠

′ ∗ 𝑐𝑐[𝑝].𝑖𝑛𝑑𝑒𝑥

III. GPEP ARCHITECTURE

This section presents the GPEP architecture. The func-

tionality of GPEP is split between the CPU and the GPU.

77

This is illustrated by Figure 4.

A. CPU

The CPU host has several responsibilities as shown in

Figure 4. The host creates and optimizes the DFA according

to the encoding techniques previously discussed. The host

then transfers the resulting tables to the memory of the

GPU. The tables are store in the local memory of the GPU

compute units. The host also maintains the current packet

buffer which is mapped to the global memory of the GPU.

Finally, the host reads the matching results buffer on the

GPU and reports any attack pattern matches as a potential

attack.

B. GPU

As shown in Figure 4, the P3FSM kernel runs on each

stream core in the GPU. The following are specifics about

the functionality of the kernel as well as GPU memory

management.

1) Kernel: In order to more efficiently utilize the five

element VLIW processors, we thread multiple, non-adjacent

bytes simultaneously per work item. This increases the uti-

lization of the individual processing elements in each stream

core. For example, with only one copy of the P3FSM code

per work item, the processor utilization is around 20%. This

means that only about one of the five available processing

elements is being used on average. If we increase the number

of copies to four, the utilization increases to over 50%. This

means that on average about 2.5 processing elements are

being used simultaneously. This roughly translates to about

2.5 bytes processed in parallel by a single work item.

Most GPUs have the ability to run more work items than

available stream cores. The GPU will trade off active work

items in order to help hide the latency caused by memory

accesses. The ATI Radeon HD 5970 has 640 stream cores

so this is the minimum number of work items that we will

run on the GPU.

2) Memory: The memory tables necessary for the P3FSM

kernel operation are stored in the local data store (LDS) of

each compute unit, and the private memory of each stream

core. Storing these tables locally is possible because of the

reduced memory footprint of the P3FSM algorithm. Local

access to the state tables allows for faster performance.

Packet data is stored in a memory buffer on the CPU

host. The map buffer OpenCL command creates a mapping

between this host buffer and a buffer in the GPU global

memory. This mapping is used for DMA between the GPU

memory and host memory. This method is faster that using

a write buffer command to explicitly write packet data from

the host the the GPU global memory. The kernel requests

16 byte vectors from the global packet buffer. Fetching 16

byte vectors most efficiently utilizes the memory fetch unit,

which can access 128 bits at a time.

Table VII
PARAMETERS USED TO MODEL PERFORMANCE

Parameter Description

𝑝 processing elements per stream core
𝑓 clock frequency
𝑚 DRAM access time

𝑀𝑊 DRAM channel width (bytes)
𝐼 number of instructions
𝑐 cycles per instruction
𝑠 number of stream cores on device
𝑤 number of work items
𝐿 number of local memory accesses
𝐼𝐿 instructions per local memory access
𝑢 processor utilization
𝑛 threads per work-item

C. Performance Model

In this section we present our performance model which

can be used to estimate the performance of GPEP with

different GPU configurations. The parameters of the model

are described in Table VII. The throughput (𝑇) can be

estimated as follows, where 𝑡𝐼 and 𝑡𝑀 are the instruction

and memory time to process one byte and s is the number

of stream cores:

𝑇 =
𝑠

𝑡𝐼 + 𝑡𝑀
(2)

Instruction time (𝑡𝐼) is calculated as follows:

𝑡𝐼 =
𝐼 ⋅ 𝑐

𝑓 ⋅ 𝑢 ⋅ 𝑝 (3)

given the number of instructions (𝐼), the clock frequency

(𝑓), processor utilization (𝑢) and number of processing

elements in a stream core (𝑝). The memory time (𝑡𝑀) can

be calculated as follows:

𝑡𝑀 =
𝑚

𝑀𝑊
− 𝑚 ⋅ 𝑤 ⋅ 𝑢

𝑀𝑊 ⋅ 𝑠 ⋅ 𝐼 (4)

using the number of work items (𝑤), memory access

time (𝑚) and channel width (𝑀𝑊). In order to analytically

estimate the processor utilization, we use the following

equation for utilization which comes from [18], where 𝑛
is the number of threads per work-item and 𝐿 is the number

of local memory accesses:

𝑢 =
𝑛

𝑛+ 𝐿
⌊ 𝑝
𝐼𝐿

⌋
(5)

Later, we compare our model to our experimental results.

IV. PERFORMANCE ANALYSIS

In this section we evaluate the performance of GPEP. We

begin by describing our experiment setup. We then evaluate

GPEP in detail including our kernel optimizations.

78

�

������� ��	
����

����������
��������

�����������
 !��"�#��$�%

�����

��	���

��"!&���&�����
��"!&���&�����

��"!&���&�����

�
��
�"
��

�
��
�"
��

�
��
�"
��

�
��
�"
�"

��'&(�'

���

�������� �������

����
������
������

��� ! "#$%# &
'����

��	���

��������
$�%

Figure 4. GPEP system architecture. The CPU creates the DFA memory tables from the attack pattern database and transfers incoming packets to the
GPU. Deep packet inspection is performed by the GPU where each stream core processes a separate packet and any matches are reported back to the CPU.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 0.2 0.4 0.6 0.8 1

th
ro

ug
hp

ut
 (G

b/
s)

attack bytes / trace bytes

flattened
w/branches

Figure 5. Kernel branch optimization

A. Experiment Setup

In our experiments we implement GPEP on an ATI

Radeon HD 5970, or Hemlock GPU. The Hemlock has

640 stream cores and 2GB of DDR memory. Our host

system contains an Intel Pentium G6950 processor running

at 2.8 GHz and 4GB of DDR3 memory. The GPU and

host interconnect via a PCIe 2.0 x16 bus. GPEP is written

using Open Computing Language (OpenCL) [19] which

abstracts the programming of various parallel computing

devices. Using OpenCL allows GPEP to be portable amongst

most newer graphics processing units. The data processed by

GPEP comes from network trace files[20].

B. Kernel Optimization

In this section we evaluate the performance of GPEP using

different kernel optimization techniques. We examine the

performance of the kernel with and without branches. We

also evaluate the processor utilization of the kernel.

1) Kernel Path: In this section we evaluate the throughput

of GPEP using trace files that have varying numbers of

attack patterns. We use both our original P3FSM kernel with

branches, as well as the flattened kernel without branches.

 0

 10

 20

 30

 40

 50

 60

4321ut
ili

za
tio

n
(%

) a
nd

 th
ro

ug
hp

ut
 (G

b/
s)

threads per work-item

utilization (actual)
utilization (model)

throughput (actual)
throughput (model)

Figure 6. Kernel processor utilization and throughput with increasing
number of threads per work-item

Figure 5 shows the throughput of GPEP as more attack

patterns are added to the trace files. The throughput of

the flattened algorithm is not affected by the presence of

attack patterns in the trace files. The original algorithm with

branches suffers a performance decrease when more attack

patterns are present. This is because the attack patterns cause

an increased instruction path divergence between the work

items.

Figure 5 also demonstrates that the flattened algorithm is

significantly faster than the algorithm with branches. This is

because if just one work item executes a different path than

the other work items, all work items must wait for said path

to execute. This severally decreases kernel performance.

2) Kernel Processor Utilization: In this section we evalu-

ate how threading multiple non-adjacent bytes per work item

increases processor utilization and throughput. According

to our performance model, processor utilization increases

by threading multiple bytes. This is shown in Figure 6

by the utilization(model) line. We tested different num-

bers of threads to confirm this experimentally as shown

by the utilization(actual) line. Figure 6 also shows how

multi-threading affects throughput in our model and actual

79

 20

 25

 30

 35

 40

12800960064003200640

th
ro

ug
hp

ut
 (G

b/
s)

number of work items

Figure 7. Performance versus number of work items

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 0.2 0.4 0.6 0.8 1

th
ro

ug
hp

ut
 (G

b/
s)

attack bytes / trace bytes

local memory
global memory

Figure 8. Performance for globally and locally stored state tables

experiments. Increasing the number of threads increases

throughput because of the increase in processor utilization.

C. Global Optimization

In this section we evaluate the performance of GPEP

using different global design optimizations. First we evaluate

the performance of GPEP using a varying number of work

items. We also evaluate GPEP by using global memory and

local memory to store the state tables.

1) Work Item Optimization: In this section we evaluate

the throughput of GPEP using different numbers of work

items. Each stream core can execute more than one work

item. Only one work item is active at any given point in time,

but work items are intermittently executed. Using multiple

work items per stream core helps to hide the overhead of

memory accesses, by executing one work item while another

waits for a memory access. Figure 7 shows the throughput of

GPEP verses the number of work items. A small increase in

throughput occurs when the number of work items increases.

2) Memory Optimization: This section evaluates the dif-

ference in throughput when using local memory verses

global memory to store the P3FSM state tables. Figure 8

shows that the throughput of GPEP is higher when the

state tables are stored in local memory. This is because

local memory accesses are faster than global accesses.

This figure also shows that the throughput of GPEP is

deterministic regardless of packet content for both local and

global memory. Normally, storing the state tables in global

memory would result in unpredictable throughput. However,

the global memory accesses on the Hemlock GPU are not

cached. Therefore, each state table access requires the same

amount of time. Figure 8 also shows that the throughput

of GPEP when using local memory is consistently over 30

Gb/s.

V. RELATED WORK

This section discusses work related to accelerating deep

packet inspection. The two methods to accelerate deep

packet inspection are intra-stream parallelism and inter-

stream parallelism. Intra-stream parallelism scans multiple

bytes of a packet simultaneously whereas inter-stream paral-

lelism scans multiple packets simultaneously using multiple

copies of the pattern matching engine.

Methods have been presented to exploit intra-stream

parallelism to increase DPI performance. Wu and Manber

[21] and derivatives [6] have produced multiple-pattern,

multiple-stride average case algorithms. The stride of these

algorithms is heavily based on pattern characteristics and

may require sequential pattern comparison. This limits the

potential speedup of these algorithms. Brodie et al [22]

increases throughput by allowing multiple DFA transitions

to be traversed simultaneously. This system uses a specially

designed hardware approach and is therefore limited in its

implementation possibilities.

Hua et al [7] introduces a variable stride DFA (VS-DFA)

which partitions patterns into variable size blocks using a

fingerprinting scheme. These blocks are used to construct a

multiple byte striding DFA. The same fingerprinting scheme

is also used as a preprocessing step on the input source such

as incoming packets. This guarantees that the correct size

block of characters is fed to the VS-DFA. This preprocessing

requires hashing of every byte of the packet before the input

is given to the VS-DFA. The VS-DFA operation and the

fingerprinting operation must be performed in parallel, again

requiring special hardware.

Methods have been presented to exploit inter-stream par-

allelism to increase DPI performance. Commercial content

inspection products use specialized hardware to accelerate

pattern matching. Commercial chips such as the LSI Tarari

T2000 series [23], the Cavium Networks CN1700 series [24]

and the Netlogic NLS2008 [25] are advertised to achieve

content inspection speeds of multiple Gb/s. Unfortunately,

these are specialized hardware chips and therefore the im-

plementation platforms are very limited.

Graphics processing units (GPU) have been used to

exploit inter-stream parallelism. Vasiliadis et al [10], [11]

have implemented deterministic finite automata (DFA) in

80

a GPU. Unfortunately, the state transition tables have a

large memory requirement, which has to be stored in global

memory and resulted in slow performance. Our work uses an

optimized algorithm called P3FSM, therefore it can therefore

use local memory to store the pattern matching tables which

improves performance.

VI. CONCLUSION

Deep packet inspection (DPI) is important for detecting

the presence of an attacker. Accelerating DPI by imple-

menting DFA on graphics processing units is one way to

increase the effectiveness of DPI. Unfortunately, memory-

based DFA cannot fit into local memory of any devices.

Therefore, in this paper we have presented GPEP, a GPU-

based pattern matching engine which exploits the low-

memory low-complexity of our P3FSM pattern matching al-

gorithm, to address the problem of implementing pattern sets

in GPU on-chip memory. In addition, we demonstrate how

to optimize our algorithm for SIMD and VLIW systems.

We experimentally evaluate GPEP using an ATI Radeon

HD 5970 GPU and show that GPEP achieves a sustained

throughput of over 30 Gb/s. The simple design of GPEP

will allow for deep packet inspection acceleration on many

different GPU platforms.

REFERENCES

[1] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Determin-
istic memory-efficient string matching algorithms for intrusion
detection.” in Proc. of the IEEE Infocom Conference, 2004, pp.
333–340.

[2] D. Denning, “An intrusion–detection model,” IEEE Transac-
tions on Software Engineering, pp. 222–232, Feb. 1987.

[3] M. Roesch, “Snort – lightweight intrusion detection for net-
works.” in Proc. of the 13th Systems Administration Confer-
ence, 1999.

[4] V. Paxson, “Bro: a system for detecting network intruders in
real-time,” Computer Networks, pp. 2435–2463, 1999.

[5] Snort Rule Database, http://www.snort.org/snort-rules.

[6] Y. D. Hong, X. Ke, and C. Yong, “An improved wu-manber
multiple patterns matching algorithm,” in 25th IEEE Interna-
tional Performance, Computing, and Communications Confer-
ence., 2006, pp. 680–686.

[7] N. Hua, H. Song, and T. Lakshman, “Variable-stride multi-
pattern matching for scalable deep packet inspection,” in IEEE
INFOCOM 2009, April 2009, pp. 415–423.

[8] L. Vespa, N. Weng, and R. Ramaswamy, “Ms-dfa: Multiple-
stride pattern matching for scalable deep packet inspection,”
The Computer Journal, pp. 285–303, December 2010.

[9] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: a
gpu-accelerated software router,” in Proceedings of the ACM
SIGCOMM conference, 2010, pp. 195–206.

[10] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. Markatos,
and S. Ioannidis, “Gnort: High performance network intrusion
detection using graphics processors,” in Proceedings of the
11th international symposium on Recent Advances in Intrusion
Detection, 2008, pp. 116–134.

[11] G. Vasiliadis and S. Ioannidis, “Gravity: a massively parallel
antivirus engine,” in Proceedings of the 13th international
conference on Recent advances in intrusion detection, 2010,
pp. 79–96.

[12] R. Smith, N. Goyal, J. Ormont, K. Sankaralingam, and C. Es-
tan, “Evaluating gpus for network packet signature matching,”
in IEEE International Symposium on Performance Analysis of
Systems and Software, 2009, 2009, pp. 175 –184.

[13] L. Vespa, M. Mathew, and N. Weng, “P3fsm: Portable pre-
dictive pattern matching finite state machine,” in 20th IEEE
International Conference on Application-specific Systems, Ar-
chitectures and Processors, Boston, MA, USA, 2009, pp. 219–
222.

[14] L. Vespa and N. Weng, “Deterministic finite automata char-
acterization and optimization for scalable pattern matching,”
ACM Transactions on Architecture and Code Optimization,
vol. 8, no. 1, 2011.

[15] ATI Radeon 5970 GPU, note=http://www.amd.com/us/products
/desktop/graphics/ati-radeon-hd-5000/hd-5970/Pages/ati-
radeon-hd-5970-overview.aspx year= 2011.

[16] A. Aho and M. Corasick, “Efficient string matching: An aid
to bibliographic search,” Communications of the ACM, vol. 18,
1975.

[17] J. van Lunteren, “High-performance pattern-matching for
intrusion detection,” Proceeding of 25th IEEE International
Conference on Computer Communications, pp. 1–13, 2006.

[18] T. Wolf and M. Franklin, “Performance models for network
processor design,” IEEE Transactions on Parallel and Dis-
tributed Systems, pp. 548–561, 2006.

[19] OpenCL (Open Computing Language,
http://www.khronos.org/opencl.

[20] S. Shanbhag and T. Wolf, “Anombench: A benchmark for
volume-based internet anomaly detection,” in IEEE Global
Telecommunications Conference, December 2009, pp. 1–6.

[21] S. Wu and U. Manber, “A fast algorithm for multi-pattern
searching,” Tech. Rep., 1994.

[22] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scal-
able architecture for high-throughput regular-expression pattern
matching,” In SIGARCH Computer Architecture News, pp.
191–202, 2006.

[23] LSI Tarari T2000, LSI Corporation, 2011.

[24] Cavium NITROX CN17XX, Cavium Networks, 2011.

[25] Netlogic NLS2008 NETL7, Netlogic Microsystems, 2011.

81

