
Compact Architecture for High-Throughput
Regular Expression Matching on FPGA∗

Yi-Hua E. Yang, Weirong Jiang and Viktor K. Prasanna
Department of Electrical Engineering

University of Southern California
{yeyang, weirongj, prasanna}@usc.edu

ABSTRACT
In this paper we present a novel architecture for high-speed
and high-capacity regular expression matching (REM) on
FPGA. The proposed REM architecture, based on nondeter-
ministic finite automaton (RE-NFA), efficiently constructs
regular expression matching engines (REME) of arbitrary
regular patterns and character classes in a uniform struc-
ture, utilizing both logic slices and block memory (BRAM)
available on modern FPGA devices. The resulting circuits
take advantage of synthesis and routing optimizations to
achieve high operating speed and area efficiency. The uni-
form structure of our RE-NFA design can be stacked in
a simple way to produce multi-character input circuits to
scale up throughput further. An n-state m-character in-
put REME takes only O (n× log2m) time to construct and
occupies no more than O (n×m) logic units. The REMEs
can be staged and pipelined in large numbers to achieve high
parallelism without sacrificing clock frequency.

Using the proposed RE-NFA architecture, we are able to
implement 3 copies of two-character input REMEs, each
with 760 regular expressions, 18715 states and 371 char-
acter classes, onto a single Xilinx Virtex 4 LX-100-12 de-
vice. Each copy processes 2 characters per clock cycle at
300 MHz, resulting in a concurrent throughput of 14.4 Gbps
for 760 REMEs. Compared with the automatic NFA-to-
VHDL REME compilation [13], our approach achieves over
9x throughput efficiency (Gbps*state/LUT). Compared with
state-of-the-art REMEs on FPGA, our approach also indi-
cates up to 70% better throughput efficiency.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures;
C.2.0 [Computer Communication Networks]: General—
Security and Protection

∗Supported by U.S. National Science Foundation under
grant CCR-0702784.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’08 , November 6-7, 2008, San Jose, CA, USA.
Copyright 2008 ACM 978-1-60558-346-4/08/0011 ...$5.00.

General Terms
Algorithms, Design, Performance, Security

Keywords
Regular expression, FPGA, BRAM, intrusion detection, fi-
nite state machine, NFA

1. INTRODUCTION
Regular expression matching (REM) is an important mech-

anism used by popular intrusion detection systems such as
Snort [2] and Bro [1], et al., to perform deep packet inspec-
tion against potential threats. Due to the large number of
patterns to scan for and the increasing bandwidth of net-
work traffic, regular expression matching is becoming not
just a bottleneck, but itself a vulnerability of the network
security systems that use it [15].

Basic regular expressions are regular languages constructed
with character classes over a fixed alphabet. A regular lan-
guage offers three basic operators on the character classes:
concatenation (·), union (|), and Kleene closure (∗). Other
common operators, such as optionality (?) and quantified
repetitions ({a, }, {, b}, {a, b}), can be constructed by proper
arrangements of the three basic operators. Since regular
languages are exactly the class of languages that can be
accepted by finite state automata, a basic regular expres-
sion matching engine (REME) can always be implemented
as a finite state machine, either a non-deterministic finite
automaton (RE-NFA) or a deterministic finite automaton
(RE-DFA).

In a RE-NFA approach [7, 14], individual regular expres-
sions are processed in parallel independently from one an-
other. Each input character is sent to every state in ev-
ery REME, while matching outputs are collected from all
REMEs running in parallel. As a result, more than one state
in an RE-NFA can be active at any time. Optimizations such
as input/output pipelining [9], common-prefix extraction [9,
5], or multi-character input and centralized character decod-
ing [6, 5], etc., can be applied to improve throughput and
reduce the resource requirement of the overall design.

In an RE-DFA approach, several regular expressions are
grouped ([17]) into a single DFA by expanding different com-
binations of active states into new combined states. In prin-
ciple, only one combined state in an RE-DFA is active at
any time. Various techniques [8, 11, 10, 4, 3] are then ap-
plied to improve memory access efficiency and to reduce the
total number of states, which usually suffer from quadratic
to exponential explosion [17].

30

While both RE-NFA and RE-DFA approaches have their
respective advantages and drawbacks, and could share the
same performance enhancement techniques (such as multi-
character input matching), in this study we focus only on
improving the RE-NFA approach on FPGA. Specifically, our
main contributions are the following:

1. We slightly modify the original RE-NFA architecture
used in [7] and [14], resulting in a highly modular struc-
ture, easy to translate into FPGA circuits.

2. We propose an elegant, spatial and circuit-level ap-
proach to perform multi-character input matching, tak-
ing advantage of the simple and uniform structure of
our RE-NFA architecture.

3. We propose a simple way to utilize block memory avail-
able on modern FPGA devices to perform centralized
character classification. This greatly improves the area
efficiency of our design.

4. We design a two-dimensional staging and pipelining
organization of the REMEs. This allows us to local-
ize signal propagation and to obtain better clock fre-
quency.

5. We define a set of metrics to quantify the complexity
of a general regular expression. This allows us to more
accurately assess the complexity of the REMEs being
implemented.

The rest of this paper is organized as follows. We discuss
the background and prior work of RE-NFA on FPGA in Sec-
tion 2. Then in Section 3 we describe our basic RE-NFA ar-
chitecture on FPGA, and the algorithms we use to construct
it. Section 4 explains the optimizations we apply to our de-
sign, in particular the multi-character input extension, cen-
tralized character classification, and staging and pipelining
techniques. Section 5 discusses performance figures reported
by FPGA implementation tools on patterns extracted from
Snort rules. Finally Section 6 discusses the conclusions and
future work.

2. BACKGROUND

2.1 Challenges of Hardware REM
There are two main challenges to performing REM on

hardware:

1. Processing large numbers of patterns in parallel.

2. Obtaining high concurrent throughput.

Large number of patterns require more hardware resources,
which in the case of RE-NFA are the amount of logic, reg-
isters, and block memory on-chip. As discussed in Section
1, in an RE-NFA approach the state transitions of different
REMEs are parallel in nature, making RE-NFA particularly
suitable to implement on FPGAs, which offers high circuit
parallelism. Nevertheless, efficient use of logic resources on
FPGA is still crucial to obtaining optimal REME capacity
and achieving maximum clock rate.

Definition 1. The concurrent throughput T of a circuit
of N REMEs is defined as the throughput of the input stream
processed concurrently by all N REMEs. The concurrent
throughput of a REM system is the total volume of inputs
fully processed per unit time by the system.

The concurrent throughput of any REM circuit is deter-
mined by three factors: (1) the size/complexity of the reg-
ular expressions, (2) the amount of available resources, and
(3) the achieved clock frequency. In general, to obtain the
same level of concurrent throughput, a larger number of
REMEs with more complex patterns require proportionally
more resources (i.e., number of slices). Similarly, for the
same set of REMEs, it is always possible to increase the
concurrent throughput linearly with respect to resource us-
age by replicating the REM circuit multiple times.

We note that the concurrent throughput is different from
the aggregated throughput, which sums up the throughputs
of individual REMEs in a REM system. For example, a
REM system consisting of five REM circuits, each process-
ing 1 Gbps input data, may have 5 Gbps aggregated through-
put but only 1 Gbps concurrent throughput. When evaluat-
ing the performance of a REM architecture, the concurrent
throughput must be used, and the resource usage must be
normalized.

2.2 Prior Work
Floyd and Ullman [7] first studied the implementation of

RE-NFA on hardware. They showed that, when translat-
ing directly from RE-NFA to integrated circuits, an N -state
REME requires no more than O (N) circuit area to imple-
ment. Sidhu and Prasanna [14] later proposed an algorithm
and strategy to translate a regular expression directly into
its matching circuit on FPGA. Both studies use the same
RE-NFA structure at the circuit level, which is later used
by most other RE-NFA implementations [9, 6, 5, 13].

Large-scale regular expression matching is first considered
in [9], where the global distribution of character inputs is
pipelined and broadcasted in a tree structure to reduce in-
put stream fan-outs and to increase clock rate. The paper
also proposed common prefix extraction and discussed the
minimization of state transition logic. A multi-character de-
coder is proposed in [6] to processes multiple characters per
clock cycle. It is also noted that character matching could be
performed more efficiently at a centralized location; only a
single bit of matching result must be sent to every NFA state.
In [16] the authors describe a 2-phase procedure to generate
NFA-based multi-character input REMEs. The algorithm
transforms an n-state NFA with 2i-character (i ≥ 0) state
transitions into an n-state NFA with 2i+1-character state
transitions in O

(
n3

)
time. This procedure is performed re-

peatedly to produce a 2k-character input REME with any
k > 0.

In [5] the use of shift registers and counters is proposed to
implement efficiently different types of single-character rep-
etition blocks (Exactly, AtLeast, and Between) on FPGA.
The paper also utilizes other techniques, such as common
prefix extraction and centralized character matching, to re-
duce resource usage to as low as 1.28 (4-input) logic cells
per state. Although the implementation of backreference
was mentioned in [5], its approach, which uses the regular
expression pattern rather then the input string for backref-
erence matching, actually negates the effect of the backref-
erence in the first place. In [12] the authors explore the idea
of pattern infix sharing to reduce the number of slices per
REME across many similar patterns.

The first real backreference implementation on FPGA that
we know of is done by [13], where block memory (BRAM) of
the FPGA device is utilized to store the referenced strings.

31

Figure 1: The McNaughton-Yamada construction.
Extra nodes and ε-transitions (shown as dashed
lines) are added for rules (c) and (d).

Figure 2: Modified McNaughton-Yamada construc-
tion. Note that in rules (c) and (d), the dashed
ellipses are not part of the current construction.

The number of characters in all backreferences is limited by
the amount of BRAM available, and backtracking is not sup-
ported due to the excessive memory size and logic complex-
ity required by the feature.1 The paper also features efficient
use of counters for matching fixed-length repetitions.

3. BASIC ARCHITECTURE ON FPGA
We implement a regular expression matching engine (REME)

on FPGA in three steps: (1) Parse the regular expression
into a tree structure. (2) Use a modified version of the
McNaughton-Yamada construction to construct an NFA with
highly modular structure. (3) Map the resulting NFA into
structural HDL suitable for FPGA implementation.

Our first step, converting a regular expression into a parse
tree, is the same as that described in [7]. Steps (2) and (3)
are unique from previous approaches, and are explained in
the following subsections.

3.1 From Regular Expression to NFA
Instead of using the McNaughton-Yamada construction

(see Figure 1), which generates an NFA with many interme-
diate nodes and redundant ε-transitions, we use a modified
version of the construction, shown in Figure 2, to construct
our RE-NFA state machine:

1. The union (|) operator does not conceptually combine
its operands into a single unit (ellipse). Instead, in-
puts to the union are sent to each operand individually,
while every operand sends its output independently to
the output destinations of the union.

1Private communication with author, 28 April 2008.

Figure 3: The parse tree for regular expression
“b ∗ c (a|b) ∗ [ac]#”.

2. The closure (∗) operator neither prepends nor appends
extra nodes for the pass-by transition. Instead, a pass-
by signal is connected from the outputs of all imme-
diate previous nodes to inputs of all immediate subse-
quent nodes.

As a result, neither the union nor the closure operator in
the modified rules produces any extra intermediate nodes or
redundant ε-transitions. Applicability of the modified rules
(c) and (d) in the edge cases is ensured by adding extra
START and MATCH states to the NFA when translating the
root and the right-most leaf of the parse tree, respectively.

For example, using the original McNaughton-Yamada con-
struction, the regular expression “b ∗ c (a|b) ∗ [ac]#” with
the parse tree in Figure 3 is converted into an NFA in Fig-
ure 4. Using our modified construction, the parse tree is
converted into a much more modular NFA in Figure 5.

3.2 From RE-NFA to HDL
As shown in Figure 5, all pairs of nodes inside the lightly

shaded ellipses have an identical structure. Each of these
pairs constitutes a “basic state block” for a single matching
character. To translate the NFA (Figure 5) to a circuit on
FPGA, all we need to do is to connect the inputs and outputs
between different basic state blocks as specified by the state
transitions.

As it appears, all basic state blocks can be instantiated
from a single type of module (e.g., an entity in VHDL)
with only one parameter: the number of input ports, which

Figure 4: The NFA for “b ∗ c (a|b) ∗ [ac]#” con-
structed by the original McNaughton-Yamada rules
specified in Figure 1.

32

Figure 5: A “modular” NFA for “b ∗ c (a|b) ∗ [ac]#”
constructed using the modified McNaughton-
Yamada rules.

Figure 6: Circuits for matching “b ∗ c (a|b) ∗ [ac]#”
constructed by mapping Figure 5 directly to HDL.
The ⊕ and ⊗ symbols represent logic OR and AND

gates, respectively.

is determined by the number of “previous states” that im-
mediately transition to the current state. A single output
port connects the output value of the current state to the
inputs of the immediate “next states.” Inside a basic state
block, all inputs aggregate to a single OR gate, followed by a
character matching via logic AND and a state value register.

The circuit for the regular expression “b ∗ c (a|b) ∗ [ac]#”
is shown in Figure 6. On FPGA devices with 4-input LUTs
and 2 LUTs per slice, a k-input OR followed by the 2-input
AND can be efficiently implemented on a single LUT if k ≤ 3,
or on a single slice if 4 ≤ k ≤ 7. This makes our RE-NFA
circuits use no more than two LUTs per state. In practice,
the number of LUTs we use per state is much closer to 1,
and we rarely need an OR gate with k > 7 (less than 10 in
760 regular expression extracted from Snort rules).

3.3 BRAM-based Character Classification
In the basic state block module described above, the match-

ing result of character input is received as a 1-bit signal (true
or false) to the AND gate. The state transition logic does
not otherwise care about what the matching character class
is or what the matched input characters are; as a result, we
do not distinguish between single character matching and
character range or general character set matching, either.
All of these are referred to as character classification, which
takes one character as an input, and generates one bit of
matching result.

We observe that, for 8-bit characters, any character clas-
sification can be fully specified by 256 bits, one for the inclu-
sion of each 8-bit value. Thus character classification of an
n-state RE-NFA can be completely implemented on a block
memory of no more than 256× n bits. Furthermore, if two
states use the same character class for matching inputs, they
can share the same character classification output.

A drawback of this approach is that it would result in
much redundancy in the block memory, especially for en-
coding simple character classes. With a straight forward
implementation, the block memory would become the re-
source bottleneck when implementing a large number of
REMEs even on modern FPGA devices (e.g., Xilinx Vir-
tex 4 series). Memory compression or further BRAM out-
put encoding could be applied but with adverse effects on
logic complexity and achievable clock rate. This problem is
handled by centralized character classification described in
Section 4.2.

3.4 Differences from Previous Approach
While our REM architecture is functionally similar to that

of [14], there are three subtle but important differences:

1. State register occurs after, rather than before, the
character matching. This allows the character match-
ing latency to overlap with the state transition latency,
resulting in higher achievable clock rate.

2. The uniform structure is easy to construct, place and
route on FPGA devices. As is discussed later in Sec-
tion 4.1, individual circuits can be naturally stacked to
form a circuit that matches multiple input characters
per clock cycle.

3. Compared with [14], our REME construction does not
attempt to minimize circuit logic at the HDL level.
The same transition signal can be produced by differ-
ent OR gates for different destination states, as shown
in Figure 5 at the inputs of states 3 and 4.

Note that the last point above does not actually make our
circuits any less efficient. Since HDL syntheses generally
perform their own circuit-level optimizations, such redun-
dancy will be evaluated and reduced if necessary to meet
the implementation constraints.

4. ARCHITECTURAL OPTIMIZATIONS
We apply three optimizations to improve our basic design:

(1) multi-character input matching, (2) centralized character
classification, and (3) staging and pipelining. While these
concepts have been proposed in previous research [9, 6, 5],
the techniques used here are unique to our design and take
advantage of the modularity of the proposed architecture.

4.1 Multi-Character Input Matching
Previous designs of multi-character input matching [6, 16]

adopted temporal transformations at the NFA-level, where
state transitions are extended forward in time (clock cycle)
to construct a new NFA with multi-character state transi-
tions. In contrast, we adopt a circuit-level spatial approach
to construct multi-character input REMEs. A formal proce-
dure is described in Algorithm 1. An example two-character
input circuit for the regular expression “b ∗ c (a|b) ∗ [ac]#”
is shown in Figure 7.

33

Algorithm 1 Construction of an (m+ p)-character input
regular expression matching engine.

INPUT: An n-state m-character input REME circuit Cm

and an n-state p-character input REME circuit Cp for
the same regular expression.

OUTPUT: An n-state (m+ p)-character input REME cir-
cuit Cm+p for the same regular expression.

BEGIN

1. For each i ∈ {1, 2, . . . , n− 1}, suppose the output of
state i connects to state inputs {i1, i2, . . . , it}:

(a) Remove the state register for state i of Cm; for-
ward the AND gate output of the basic state block
directly to the state output.

(b) Disconnect the state output i of Cm from all state
inputs of Cm, and re-connecting them to the state
inputs {i1, i2, . . . , it} of Cp.

(c) Disconnect the state output i of Cpfrom all state
inputs of Cp, and re-connecting them to the state
inputs {i1, i2, . . . , it} of Cm.

(d) The state i of the combined circuit receives
(m+ p) matching signals of (m+ p) consecutive
characters. The first m signals go to the original
Cm part, while the last p signals go to the original
Cp part.

2. Merge the START states of the original Cm and Cp into
a single START state; connect the output of the merged
START state to all destinations of the original START

states.

3. Merge the MATCH states of the original Cm and Cp into
a single MATCH state; take the inputs of the original
MATCH states and OR them as the input of the merged
MATCH state.

4. The resulting circuit is an n-state (m+ p)-character
input REME for the same regular expression.

END

Figure 7: A 2-input matching circuit for the regular
expression “b ∗ c (a|b) ∗ [ac]#”.

Each application of the algorithm requires O (n) time to
build an n-state m-character input REME (as in step 1d of
Algorithm 1), resulting in a circuit taking O (n×m) area.
A single application of the algorithm on two copies of the
same m-character input REME generates a 2m-character
input REME. Thus recursively, an n-statem-character input
REME can be constructed in O (n× log2m) time, starting
from the one-character input REME.

Lemma 1. The circuit constructed by Algorithm 1 over
two copies of a one-character input REME is a valid two-
character input REME.

Proof. First note that a state machine at any moment
is completely described by its current state values and the
next state transitions. Suppose we perform Algorithm 1 on
two identical one-character input circuits, CA and CB , for
the same regular expression, but without removing the state
registers of CA (i.e., do not perform step 1a of Algorithm 1):

1. The algorithm does not add, remove, or change order
of the states in either CA or CB , nor does it modified
the logic used to produce any state value, thus the
state values are preserved.

2. From CA’s outputs to CB ’s inputs, state transitions
are preserved by step 1b of Algorithm 1.

3. From CB ’s outputs to CA’s inputs, state transitions
are also preserved by step 1c of Algorithm 1.

4. The state transition labels of both CA and CB are kept
intact by step 1d of Algorithm 1.

The combined circuit, with the same state values and state
transitions, would function exactly the same as an original
one-character input state machine at every clock cycle. Re-
moving the state registers of CA simply merges the two-cycle
pipeline of the combined circuit into one cycle, resulting in
a circuit of 2-character input per clock cycle.

Theorem 1. Algorithm 1 constructs valid m-character in-
put REME circuits.

Proof. By the same arguments as for Lemma 1, a cir-
cuit constructed by Algorithm 1 over an m-character in-
put REME and a one-character input REME is a valid
(m+ 1)-character input REME. By induction, any circuit
constructed by Algorithm 1 with an integer m > 1 is a valid
m-character input REME.

Compared to the previous approaches, our multi-character
input construction is simpler, faster, and more flexible. It
takes advantage of the synthesis and implementation op-
timizations performed automatically at the circuit level to
generate an optimal multi-character input REME.

4.2 Centralized Character Classification
As discussed at the end of Section 3.3, when implementing

character classification on the block memory of FPGA de-
vices, the size of the memory can be a limiting factor on the
number of REMEs that can be implemented. While there
are many techniques to compress memory, we found that
simply aggregating the character classifications from several
REMEs into one place could by itself effectively solve the
problem.

34

Figure 8: Centralized character classification for 6
different REMEs.

When constructing the centralized character classification,
a function is called to examine and compare each state’s
character class to the character class entries collected in
BRAM so far. If the character class of the current state is
new, then a new entry (column of 256 bits) is added to the
character classification BRAM; if it was old, then a proper
connection is made from the BRAM output of the previous
character class entry to the input of the current state.

The time complexity of this procedure is O (n× w), where
n is the total number of states in all REMEs, and w is
the number of distinct character classes among the n states.
The space complexity is just 256× w. In the worst case, w
could be linear in n; in practice, however, we find w tends to
grow much more slowly than O (logn). Note that prudently
grouping REMEs can greatly help (slow down) the growth
of w with respect to n.

An illustration of the technique is shown in Figure 8. Here
a centralized block memory of character classes is shared by
6 different REMEs, preferably with many states matching
the same character classes.

4.3 Staging and Pipelining
A common issue of most RE-NFA implementations on

FPGA is the decline in achievable clock frequency with larger
numbers of REMEs, supposedly due to the more compli-
cated routing the synthesis and implementation software
have to perform. This is especially true with techniques
such as centralized character classification where a single
character matching output can be used in many disparate
states.

In our implementation we use an aggressive staging and
pipelining structure to improve the clock rate. An example
structure for 16 different REMEs is shown in Figure 9. As
shown in the figure, the 16 REMEs are first divided into
2 pipelines; each pipeline is further divided into 2 stages.
Every input character goes to a pipeline in the first clock
cycle, then forwarded to the next pipeline in the next clock
cycle. Within a pipeline, all the REMEs share the same
centralized character classification, whose output is buffered
at every stage in the pipeline.

Matching outputs of all REMEs are prioritized, with lower-
indexed pipelines and lower-indexed stages having higher
priority. Within a stage, matching outputs from different
REMEs are priority-encoded into a single value of logN
bits, N being the number of REMEs in the stage (2-bit in
the example of Figure 9). The encoded matching output is
buffered to the next stages and pipelines in the same way as
the input character classifications. This allows for a single
matching output from all 16 of REMEs at any clock cycle.

One drawback of this aggressive staging and pipelining
is that there is a latency from the clock cycle when a last

Figure 9: Structure of a staged pipeline for 16 dif-
ferent REMEs.

“matching character” is sent to the chip to the cycle when
the “matching found” signal is asserted by the chip. For a
structure of p pipelines and s stages per pipeline, the latency
is a fixed p+s clock cycles. We argue that, since this latency
is fixed, it does not impact our ability to find exactly on
which character the matching occurs.

5. PERFORMANCE EVALUATION
In this section we evaluate the performance of the pro-

posed architecture. We first define a set of metrics in Sec-
tion 5.1, to describe the complexity of an REME more ac-
curately in Section 5.2. We then study the proposed ar-
chitecture in Section 5.3 and compare our results with the
state-of-the-art in Section 5.4.

5.1 Hardware Complexity of Regular Expres-
sions

The one point that we must stress on here is that all reg-
ular expressions are not created equal when implemented
on hardware. Thus, when measuring the efficiency of a
RE-NFA architecture, it is very important to keep in mind
the types and complexities of the regular expressions being
implemented. We define the following metrics to quantify
the complexity of regular expressions when implemented as
hardware matching engines:2

State count - Total number of states needed by the regular
expression matching engine (REME).

State fan-in - maximum number of states that can imme-
diately transition to any state in the REME.

State fan-out - maximum number of states to which any
state in the REME can immediately transition .

Loop size - total number of transitions within a loop of
state transitions.

Branch-size delta - difference in number of transitions be-
tween two state transition paths with the same first
and final states.

2The character sets to be matched at each state can also
affect logic and routing complexity. Circuits for complex
character sets take more logic to implement, while character
sets matched at disparate states require longer signal routes.
This problem is eliminated in our architecture by prudent
use of block memory and pipelining.

35

Table 1: Snort rule categories whose regular expres-
sion patterns are (partially) implemented.

Snort rule cat. # of # of # of
implemented pat. states states/pat.

backdoor 154 3648 23.7
chat/ftp 18 163 9.1
deleted 23 607 26.4

smtp/pop2/pop3 22 306 13.9
spyware-put 446 11720 26.3

web-misc/web-php 51 1082 21.2
(others) 46 1052 22.9

760-REME 760 18578 24.4
523-REME 523 13379 25.6
267-REME 267 6551 24.5

The state count was used in [7] to describe the (linear) area
requirement of a REME, implemented on IC, with respect
to length of the regular expression. State fan-in and state
fan-out, created by the use of union and Kleene closure op-
erators, also affect logic complexity. We define state fan-in
and state fan-out as the maximum number of signals en-
tering and exiting any state, respectively, because the state
machine runs at the speed of its slowest state transition.
Note that in general, state fan-in and state fan-out could
be unequal to each other. For example, for regular expres-
sion “a (b| (c|d) e) f”, state fan-in is 2 (into states e and f),
but state fan-out is 3 (out of state a); on the other hand,
for “a (b|c (d|e)) f”, state fan-in is 3 (into state f) but state
fan-out is 2 (out of states a and b).

The last two metrics, loop size and branch-size delta, would
affect routing complexity when long and complicated regu-
lar expressions are implemented. In our experiments, how-
ever, most regular expressions from Snort rules have neither
long loop nor widely varying branch sizes. Thus the precise
quantization of these two metrics is beyond the scope of this
paper.

In addition to the union and Kleene closure operators,
most software implementations (flavors) of regular expres-
sion also add a number of features that are outside the
regular language construction. The most important feature
added by these software flavors is backreference – the ability
to refer to a previously matched string as the string pattern
to match against later inputs. Since backreference makes a
pattern context-sensitive, it also makes the regular expres-
sion non-regular. Other extensions include software-based
processing directives such as anchors, lookahead and lookbe-
hind, and conditionals.

In this paper we focus only on the matching for expres-
sions of regular languages, as opposed to the regular expres-
sions extended by any software flavor. We thus avoid the use
of backreferences and ignore the software-based directives in
the patterns we use. In Snort, the majority of the rules can
be described or reduced to regular languages without loss of
correctness or authenticity.

5.2 Implemented Regular Expressions
We used patterns from Snort rules for our RE-NFA evalu-

ation. The set of rules implemented are described in Table 1.
The goal of this study, however, was not to implement all
of Snort rules, but to offer a generic architecture for im-

Table 2: Distribution of regular expressions versus
state fan-in and state fan-out values.

value v 1 2 3 4 5 6 7 8 9

of state
fan-in = v

52 656 23 5 14 3 3 4 0

of state
fan-out = v

45 663 31 7 7 2 0 2 3

plementing any regular expression. Therefore, we avoided
pattern-level optimizations (i.e., patterns that are too short
or too simple were avoided; patterns that are identical were
counted as a single one even though they appear in different
Snort rules). The rule selection guidelines are as follows:3

1. Select patterns that are of average lengths. Avoid pat-
terns that are too simple, such as repetition of one or
a few characters.

2. Count identical regular expression in different rules as
a single one.

3. Avoid long repetitions, such as regular expressions con-
taining “[ˆ\n] {256}”.

4. Avoid regular expressions that require backreference.

Guidelines 1 and 2 remove those regular expressions which
would inflate the number of REMEs. Guideline 3 is chosen
because long repetitions in our REME circuits are trans-
formed automatically by the FPGA synthesis into shift-register
structures (similar to [5]), which would inflate the number
of states in our REMEs without increasing the circuit areas
proportionally. Guideline 4 requires capability beyond reg-
ular languages and is beyond the scope of this paper; it also
affects relatively few patterns in the Snort rule sets.4

We implemented 3 sets of REME circuits from the 760
regular expressions. The “760-REME” set contains all im-
plemented regular expressions, and was the biggest circuit
we produced (for the same m-character input). All regular
expressions of rule numbers beginning with 1 or 5 went into
the“267-REME”set; all regular expressions of rules numbers
beginning with 1, 2, 3, 5, and 6 went into the “523-REME”
set. The purpose here was to form 3 groups of regular ex-
pressions - each a super set of another - and see how adding
more regular expressions affected scalability of our architec-
ture. As shown below, our architecture achieved almost per-
fect scaling with respect to number of REMEs implemented
on-chip.

The distribution of regular expressions with respect to
state fan-in and state fan-out are shown in Table 2. Most
regular expressions had values below 3, although a few reached
as high as 8 or 9. Note, however, that when implementing in
the same clock domain, the slowest REME determines the
overall clock frequency.

3Most regular expressions in the netbios category either
are too simple or contain backreferences. Many patterns
in deleted are identical and too simple for our use. The
oracle and web-client categories have many patterns with
long repetitions.
4Out of nearly 2000 distinct regular expressions in Snort
rules (Feb.2008), slightly more than 110 use backreferences,
mainly in the netbios and web-client categories. In partic-
ular, the netbios category reuses a single regular expression
with backreference in 174 different rules.

36

Figure 10: Throughput scaling of 760 REMEs
on Virtex 4 LX-100-12. Squares (left scale) are
throughput; triangles (right scale) are resource us-
age ratios.

As discussed in Section 5.1, a state fan-out of 1 means the
regular expression contains neither union nor Kleene clo-
sure (although it can still contain complex character classes).
The number of regular expressions with state fan-in being
1 was less than those with state fan-out being 1, because
in our implementations, the extra state fan-in produced by
a Kleene closure on the first state of a regular expression
(mostly in Snort chat category) could be safely ignored.

5.3 Implementation Results
To measure the performance of the “760-REME” (as in

Table 1) circuit, we implemented it as 1- to 3-character in-
put circuits and replicated the circuits 1 to 3 times on a
single Virtex 4 LX-100-12 device. The idea was is to see
how we could achieve higher throughput using increasingly
more resources. The result is shown in Figure 10. The high-
est throughput was 14.4 Gbps, aggregated over 3 copies of
m = 2 circuits.

There are two points to observe in this graph. First,
multi-character input offers a viable way to scale through-
put with fewer resources relative to circuit replication. The
is evidenced by comparing m = 1 (x3) and m = 2 (x2) test
cases (2nd and 3rd to the left, respectively), where scaling
with multi-character input in the latter case not only ob-
tains higher throughput but also uses fewer resources than
scaling with only circuit replication.

To study the effect of multi-character input more closely,
we implemented the “267-REME” set and scale m up to 8.
We used the smaller set here only because 760-REME would
take too may resources when implemented with m > 4. The
results are in Figures 11 and 12. A few points to note about
these graphs:

1. Comparing Figure 11 to Figure 10, the 267-REME tests
achieve higher concurrent throughputs while using fewer
resources than the 760-REME tests. This is expected
since the 760-REME tests do almost 3x more work in
parallel.

2. Figure 11 shows resource usage increases almost lin-
early with higher m-character inputs. However, con-
current throughput increases sub-linearly due to re-

Figure 11: Throughput of 267 REMEs on Virtex
4 LX-100-12 vs. different m-character input sizes.
Squares (left scale) are throughput; triangles (right
scale) are resource usage ratios.

Figure 12: Clock rate and LUT usage of 267 REMEs
on Virtex 4 LX-100-12. Squares (left scale) are clock
rate; triangles (right scale) are LUT usage in thou-
sands.

duced clock frequencies at higher m values (see Item 4
below).

3. BRAM usage increases linearly with every two incre-
ments of m, because each dual-port block memory can
serve the matching results of two input characters. The
use of centralized character classification allows BRAM
to stay underutilized in all cases.

4. In Figure 12, the clock frequency can be well approx-
imated by 440 MHz/ (1 + 0.10 log4m+ 0.20m), where
the 440 MHz in the numerator approximates the fastest
switching frequency of a Virtex-4 LX device of speed
grade −12, and the 0.10 log4m and 0.20m in the de-
nominator account for the additional gate and trans-
mission delays, respectively. The clock frequency at
m = 1 is limited by BRAM access and is excluded
from the regression calculation.

In Item 4 above, it can be inferred that the “logic only” fre-
quency without BRAM access is roughly 440/ (1 + 0.2) =

37

367 MHz when matching single-character inputs. This value
coincides well with the maximum frequency achieved in [5]
(362 MHz) on the same device technology (Virtex4-40-12).

Finally, as illustrated in Figure 10, we were able to put
three copies of the 760-REME-2 circuit on a single Virtex 4
LX-100-12 device and still reach the same clock frequency,
achieving 14.4 Gbps concurrent throughput for the 760 reg-
ular expressions.

5.4 Performance Comparison
Table 3 shows the comparison of our results with previ-

ous highest-throughput RE-NFA architectures on FPGA.
We implemented single copies of our 760-, 523-, and 267-
REME circuits on Virtex 4 LX-40-12 and calculated the
throughput and LUT efficiency of the circuits according to
Xilinx PAR reports. To compare performance across dif-
ferent implementations, we define throughput efficiency as
follows:5

Definition 2. The throughput efficiency of an REME
circuit on FPGA, in units of Gbps*state/LUT, is defined
as the concurrent throughput of the circuit divided by the
number of LUTs the circuit uses per state.

Comparing “760-REME-2” to Bispo et al. [5], our architec-
ture required roughly the same amount of LUT per state
but achieved almost 65.5% higher throughput (4.8 Gbps vs.
2.9 Gbps), due to our efficient architecture to match mul-
tiple input characters per clock cycle. In [5] the authors
used counters to match repeating characters, which helped
them reduce total LUT usage. We note that this technique
is also applicable to our basic architecture but was not ap-
plied to our implementations here (see Section 6). They also
performed common-prefix extraction on similar NFAs to re-
duce the total number of states. However, it is not clear
to us that this pattern-level property should be treated as
architectural improvement, since the same effect could have
been accomplished by joining the common-prefix regular ex-
pressions by a union operator with distinct MATCH states. In-
stead of obscuring the difference between REM pattern and
REM architecture, we focused on the architectural property
in handling arbitrary mix of regular expressions.

Comparing “523-REME-4” to Clark et al.-4 [6], our ar-
chitecture used 29% less LUT per state (2.2 vs. 3.1) while
achieving slightly higher throughput (7.46 Gbps vs. 7.0 Gbps).6

Although their throughput was also improved by multi-character
input matching, they didn’t describe a complete procedure
to construct the multi-character input circuits automati-
cally. While their analysis on the resource usage of the
resulting circuits is in agreement with our findings (Sec-
tion 4.1), it is not clear how simple or complicated the con-
structing process is to build their multi-character input cir-
cuits.

These REME implementations report the total number of
non-meta characters in the patterns. However, this value
was of no significance to us due to our use of BRAM for
character classification (Section 3.3). As shown in Table 1
and discussed in Section 5.1, what most significantly affected

5The throughput alone is insufficient because it does not
account for the length and complexity of every regular ex-
pression. The LUT efficiency alone, on the other hand, does
not reflect clock frequency or multi-character input.
6However, we are using a newer device (Virtex 4) than the
one used in [6] (Virtex II).

our resource usage was the number of character-matching
states, which were 5-25% lower than the number of non-meta
characters, depending on how complex the character classes
were. In the right-most two columns of Table 3, however, we
assumed every state in our architecture equal to only one
non-meta character reported by others.

Comparing our results to those obtained by the NFA-to-
FPGA compilation in Mitra et al. [13], we achieved over
9x (3.3 vs. 0.34) the throughput efficiency. Although in
[13] the authors reported a high throughput of 12.8 Gbps
for 200 REMEs, the value was aggregated over 16 circuits,
each consisting of up to 14 REMEs in parallel. On the same
device (Virtex 4 LX-200) we would be able to replicate the
“267-REME-4” circuit 24 times and obtain ∼ 180 Gbps con-
current throughput for 267 REMEs (the scalability was ac-
tually limited by number of available I/O pads). To com-
pare the throughput efficiency in [13] with others, we used
their single-stream throughput and estimated their use of
LUT per state. Note however [13] use an automatic PCRE-
to-VHDL compilation. They also implemented (partially)
PCRE backreference and the SGI RASC core service mod-
ules to interface with a host, both of which are ignored in
other research but can have negative impact on the through-
put efficiency.

Because the REMEs in [16] are implemented on a differ-
ent type of FPGA (Altera Stratix II EP2S180), their LUT
usages and clock rates are not directly comparable to ours.
Their (6-input) LUT usages are much lower than (4-input)
ours, but they also achieved 20%-50% lower clock frequencies
than our design. It takesO (n× log2m) time to construct an
n-state, m-character input RE-NFA in our approach, while
it takes O

(
n3 × log2m

)
in [16]. The spatial transformation

used by us is also more flexible, in the sense that an m-
character input circuit with any m ∈ N can be produced in
our approach, but only if m = 2k in [16].

6. CONCLUSION AND FUTURE WORK
We presented a novel and compact architecture for high-

performance REM on FPGA. We used a modified McNaughton-
Yamada construction to build the REME circuit, which was
modular, uniform, and easy to map to structural HDL for
FPGA implementation. Our design utilized the BRAM on
modern FPGA devices to achieve high REME density. Copies
of the same REME circuit can be stacked spatially to match
multiple input characters per clock cycle. A 2-dimensional
staging and pipelining architecture is used to localize signal
routing and to achieve high clock frequency.

A number of improvements can be applied to our REME
design. We can group REMEs into stages more intelligently
to exploit pattern-level properties such as the common pre-
fix extraction. We can also separate simple and complex
regular expressions into different clock domains available on
an FPGA device. Supposedly a pipeline of simple REMEs
can be clocked higher than a pipeline of complex REMEs. It
is also interesting to see how backreference could be imple-
mented in our architecture, although due to the theoretical
complexity of backreferencing, only to a limited degree.

38

Table 3: Comparison of our REME implementation with previous results.
Tput. efficiency

non-meta char. Multi-char. m Tput. (Gbps) # LUT per state (Gbps*state/LUT)

760-REME-2 ∼ 20k 2 4.8 1.27 3.8
523-REME-2 ∼ 15k 2 4.88 1.24 3.9
523-REME-4 ∼ 15k 4 7.46 2.2 3.4
267-REME-4 ∼ 8k 4 7.5 2.25 3.3

Bispo et al. [5] 19580 1 2.9 1.28 2.3
Clark et al.-1 [6] 17537 1 2.0 1.7 1.9
Clark et al.-4 [6] 17537 4 7.0 3.1 2.3
Mitra et al. [13] N.A. 1 12.8/16 ∼ 2.3 ∼ 0.35

7. REFERENCES
[1] Bro Intrusion Detection System. http://bro-ids.org/.

[2] SNORT.ORG. http://www.snort.org/.

[3] Michela Becchi and Patrick Crowley, “A Hybrid Finite
Automaton for Practical Deep Packet Inspection”,
CoNEXT ’07: Proceedings of the 2007 ACM CoNEXT
conference (New York, NY, USA), ACM, 2007,
pp. 1–12.

[4] , “An Improved Algorithm to Accelerate Regular
Expression Evaluation”, ANCS ’07: Proceedings of the
3rd ACM/IEEE Symposium on Architecture for
networking and communications systems (New York,
NY, USA), ACM, 2007, pp. 145–154.

[5] Joao Bispo, Ioannis Sourdis, Joao M.P.Cardoso, and
Stamatis Vassiliadis, “Regular Expression Matching for
Feconfigurable Packet Inspection”, FPT ’06:
Proceedings of the IEEE International Conference on
Field Programmable Technology, 2006., Dec. 2006,
pp. 119–126.

[6] C.R. Clark and D.E. Schimmel, “Scalable pattern
matching for high speed networks”, FCCM ’04:
Proceedings of the 12th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines,
2004., April 2004, pp. 249–257.

[7] Robert W. Floyd and Jeffrey D. Ullman, “The
Compilation of Regular Expressions into Integrated
Circuits”, “J. ACM” (New York, NY, USA), vol. 29,
ACM, 1982, pp. 603–622.

[8] Christopher L. Hayes and Yan Luo, “DPICO: A High
Speed Deep Packet Inspection Engine Using Compact
Finite Automata”, ANCS ’07: Proceedings of the 3rd
ACM/IEEE Symposium on Architecture for
networking and communications systems (New York,
NY, USA), ACM, 2007, pp. 195–203.

[9] B. L. Hutchings, R. Franklin, and D. Carver,
“Assisting Network Intrusion Detection with
Reconfigurable Hardware”, FCCM ’02: Proceedings of
the 10th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines
(Washington, DC, USA), IEEE Computer Society,
2002, p. 111.

[10] Sailesh Kumar, Balakrishnan Chandrasekaran,
Jonathan Turner, and George Varghese, “Curing
Regular Expressions Matching Algorithms from
Insomnia, Amnesia, and Acalculia”, ANCS ’07:
Proceedings of the 3rd ACM/IEEE Symposium on
Architecture for networking and communications
systems (New York, NY, USA), ACM, 2007,

pp. 155–164.

[11] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu,
Patrick Crowley, and Jonathan Turner, “Algorithms to
Accelerate Multiple Regular Expressions Matching for
Deep Packet Inspection”, SIGCOMM ’06: Proceedings
of the 2006 conference on Applications, technologies,
architectures, and protocols for computer
communications (New York, NY, USA), ACM, 2006,
pp. 339–350.

[12] Cheng-Hung Lin, Chih-Tsun Huang, Chang-Ping
Jiang, and Shih-Chieh Chang, “Optimization of
regular expression pattern matching circuits on
FPGA”, DATE ’06: Proceedings of the conference on
Design, automation and test in Europe (3001 Leuven,
Belgium, Belgium), European Design and Automation
Association, 2006, pp. 12–17.

[13] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan,
“Compiling PCRE to FPGA for accelerating SNORT
IDS”, ANCS ’07: Proceedings of the 3rd ACM/IEEE
Symposium on Architecture for networking and
communications systems (New York, NY, USA),
ACM, 2007, pp. 127–136.

[14] R. Sidhu and V.K. Prasanna, “Fast Regular
Expression Matching Using FPGAs”, FCCM ’01:
Proceedings of the 9th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines,
2001., 2001, pp. 227–238.

[15] R. Smith, C. Estan, and S. Jha, “Backtracking
Algorithmic Complexity Attacks against a NIDS”,
ACSAC ’06: Proceedings of the 22nd Annual
Computer Security Applications Conference, 2006.,
Dec. 2006, pp. 89–98.

[16] Norio Yamagaki, Reetinder Sidhu, and Satoshi
Kamiya, “High-Speed Regular Expression Matching
Engine Using Multi-Character NFA”, FPL ’08:
Proceedings of the International Conference on Field
Programmable Logic and Applications, 2008., Aug.
2008, pp. 697–701.

[17] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman,
and Randy H. Katz, “Fast and Memory-Efficient
Regular Expression Matching for Deep Packet
Inspection”, ANCS ’06: Proceedings of the 2006
ACM/IEEE symposium on Architecture for
networking and communications systems (New York,
NY, USA), ACM, 2006, pp. 93–102.

39

