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ABSTRACT The future of fast Internet needs powerful routers to support abundant network functionalities,
such as firewall, QoS, and virtual private networks, by classifying the packets into different categories based
on a set of predefined rules, so-called multi-field packet classification. Traditional packet classification that
considers only 5-tuple fields is not sufficient for today’s complicated network requirements. OpenFlow switch
was born to take care of these complex requirements using a rule set with the rich definition as the software—
hardware interface. This paper considers OpenFlow 1.0, consisting of 12-tuple header fields. We propose two
schemes to process the range fields. The first scheme has the same characteristic as StrideBV [15] using
specially designed codes to store the pre-computed results in memory. The second scheme uses a simple sub-
range comparison method to find the matching result in a sequential fashion. To show the performance and
compare with other proposed schemes, we implement the proposed schemes on Xilinx Virtex-6 XC6VLX760
FPGA device. Experimental results show that our designs can handle 5 K more OpenFlow rules on
Virtex-6 XC6VLX760. To the best of our knowledge, our proposed scheme is the first range supported method
that can sustain the throughputs of more than 380 MHz.

INDEX TERMS  Packet classification, pipelined architecture, FPGA, OpenFlow.

I. INTRODUCTION

Network security has become more and more important
these days because of the various attacks on the internet.
Many hardware solutions and software functions have been
widely invented to avoid attacks. Packet classification and
deep packet inspection (DPI) are operated in these systems
to detect and protect potential threats by dropping harmful
traffic. Packet classification acts as the initial filter to the net-
work in which network traffic is classified into flows based on
a pre-defined set of rules. It needs the inspection of multiple
fields of the packet header and is different with IP forwarding
where only the destination IP address is inspected.

When using hardware to implement packet classification
solutions, memory used to store the pre-defined rules is
often the bottleneck. Especially, for the platforms like Field
Programmable Gate Arrays (FPGAs), on-chip memory is
limited. Using external memory will cause lower clock
rate because of the connection delay between two devices.
To conquer these problems, numerous solutions have been
proposed in the literature to reduce the memory usage of
ruleset storage. Most of the existing papers take advantages

of some rule properties to reach the goal of memory
efficiency [3]-[7]. While these properties may not always
exist, different ruleset might affect the results. In some
cases, the heavily feature-dependent solutions may yield poor
memory efficiency.

The solutions that consider memory efficiency and high
throughput demand at the same time are difficult to imple-
ment and challenging due to many reasons. For example, in
trie or tree based approaches, on-chip resources are easily
exhausted due to pipelined tree traversal and multi-field
lookup. Therefore, it will be difficult to implement multiple
parallel pipelines to improve the throughput. In this work,
we consider improving throughput as the primary goal.

Software Defined Networking (SDN) has been proposed as
an innovative architecture for enterprise networks. SDN sep-
arates the software based control plane from the hardware
based data plane, and uses a flexible protocol - OpenFlow [1]
to manage network traffic. One of the most important func-
tions in OpenFlow platforms is the flow table lookup [8], [9].
The flow table lookup needs to check the incoming packet
to see if it is matched against multiple fields in a prioritized
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flow table. The method is similar to the classic 5-field packet
classification [10].

Many existing solutions for multi-field packet classifica-
tion are implemented by using ternary content addressable
memories (TCAMs) [11], [12]. But TCAMs are expensive
and power hungry. TCAM based solutions also suffer from
range explosion problem when converting ranges into
prefixes [12]. In [23], an extended TCAM was proposed to
solve the range explosion problem by introducing an iterative
structure of 1-bit range check circuit.

Field Programmable Gate Array (FPGA) technology has
been used to implement IP lookup, packet classification and
other solutions for real time network processing [13], [14].
FPGA based packet classification engine can achieve very
high throughput for rule sets of moderate size [15]. We can
increase the throughput by creating numerous parallel
pipelines. However, as the number of packet header fields or
the rule set size increases, FPGA based approaches still suffer
from clock rate degradation. Because OpenFlow protocol has
many packet header fields to be examined [14], OpenFlow
packet classification remains a challenging research problem.

Il. RELATED WORK

A. FIELD-SPLIT BIT VECTOR (FSBV)

The Field-Split Bit Vector (FSBV) algorithm is designed to
solve packet classification problems [3]. One of the most
important things for FSBV is to reduce memory consumption.
The studies on the 5-field traditional packet classification
rules appearing in the Snort [16] ruleset show that the source
address, destination address, and protocol fields of the rules
contain a pretty small number of unique values compared
with the ruleset size. Because reducing the requirement of
memory is the major goal in FSBYV, the authors applied
the field-splitting algorithm only to the source port and
destination port fields.

In FSBYV, a given field F of width w bits can be split to a
set of w sub-fields F[w;] for i = 0 to w — 1. Each w; has two
possible values, 0 and 1. Extending this to all the N rules in the
ruleset will result in two N-bit vectors (say Ro[N] and R{[N])
that correspond to the two possible input values of
sub-field F[w;]. If bit j is set in Ryo[N], sub-field F[w;] of
rule j is zero or don’t care. Similarly, if bit j is set in R{[N],
sub-field F[w;] of rule j is 1 or don’t care. Therefore, if
the input sub-field F[w;] is zero, we will examine Ry[N];
otherwise we will examine R1[/V]. We use an example ruleset
to explain this process. We set the header field bit length w
to 4. The bit vector generation method and packet lookup
process are illustrated in Figure 1.

When packet header arrives, the corresponding field F will
be used to fetch the related bit vectors. These bit vectors
will be sent to a bit-wise logical AND to compute matching
results. A bit vector in this packet classification algorithm
consists of N bits. Each bit represents a rule of the ruleset.
A bit in a bit vector is set to 1 to indicate a match or 0 to indi-
cate a mismatch. The correctness of this method has already
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FIGURE 1. Field-Split Bit Vector (FSBV).

been proved in [3]. The result of the bit-wise AND operation
is also an N -bit bit vector, where bit position k indicates if the
rule k is a match for the incoming packet header or not.

This field split algorithm is fully supported for wildcard (*)
matching. The method to support wildcards is to set the
corresponding bit vector to 1. In this example, wildcards
appear in rule R2 and R4, and the positions are at 0 and 2,
respectively. A wildcard means that the corresponding bit in
the header can be either O or 1. Therefore, both the bits in
positon O for R2 and in position 2 for R4 are set to 1.

Since the field split method does not support ranges,
direct range-to-prefix conversion is usually used. However,
the direct range-to-prefix conversion suffers a problem that a
single rule will be partitioned into multiple rules.

B. STRIDE BIT VECTOR (StrideBV)

As mentioned earlier, the field split algorithm is only
applied for source port and destination port fields due to the
consideration of memory consumption. For the other fields,
TCAM/CAM is used since the number of unique values
is small. Their goal is to find out a solution that avoids
relying on ruleset features and achieves high throughput.
Implementing TCAM on FPGA can be inefficient due to
high circuit complexity and poor performance compared with
pipelined architectures [6]. Implementing TCAM on FPGA
limits the scalability as well as performance of FSBV as
ruleset features change. The author considers memory
consumption as a secondary target mainly because FPGA has
various memory resources. Hence, the proposed field split
algorithm in [15] was applied to all the 5 fields.

In the case of traditional 5-field packet classification, using
the original FSBV method will result in 104 stages in a single
pipeline. This will cause serious latency problem. From a
hardware perspective, numerous stages will cause significant
routing delay, which leads to clock rate degradation.
Reducing the pipeline stages can be done by using multiple
bits instead of a single bit. This can be performed by storing
bit vectors corresponding to the 2F combinations of the & bit
stride and loading a single bit vector per stage. The authors
call it StrideBV scheme. StrideBV uses more memory while
it has lower memory bandwidth to achieve high throughput.
To be specific, for a rule containing the prefixes of W bits,
using stride d requires 2¢ x [W/d] bits.
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C. OpenFlow

The Open Networking Foundation (ONF), a user-led
organization dedicated to promotion and adoption of
software-defined networking (SDN), manages the OpenFlow
standard. ONF defines OpenFlow as the first standard
communications interface defined between the controls and
forwarding layers of an SDN architecture. OpenFlow allows
direct access to and manipulation of the forwarding plane
of network devices such as switches and routers, both
physical and virtual (hypervisor-based). It is the absence of
an open interface to the forwarding plane that has led to the
characterization of today’s networking devices as monolithic,
closed, and mainframe-like. A protocol like OpenFlow is
needed to move network control out of proprietary network
switches and into control software that’s open source and
locally managed.

An OpenFlow Switch consisting of one or more flow tables
and a group table performs packet lookups and forwarding
via a secure OpenFlow channel to an external controller. The
switch communicates with the controller and the controller
manages the switch via the OpenFlow protocol. Based on
the OpenFlow protocol, the controller can add, update, and
delete flow entries in flow tables, both reactively (in response
to packets) and proactively. Each flow table in the switch
contains a set of flow entries and each flow entry consists
of match fields, counters, and a set of instructions to apply to
the matching packets.

Matching process starts at the first flow table and may
continue to additional flow tables. Flow entries match packets
in the order of increasing priority, with the first matching
entry in each table being used. If a matching entry is found,
the instructions associated with the specific flow entry are
executed. If no match is found in a flow table, the outcome
depends on configurations: to forward the packet to the
controller over the OpenFlow channel, to drop the packet,
or to continue to the next flow table.

OpenFlow version 1.0 packet header includes 12 fields:
Ingress port, Ethernet source address, Ethernet destination
address, Ethernet type, VLan ID, VLan priority, IP source
address, IP destination address, IP protocol, IP ToS bits,
Transport source port/ICMP Type, Transport destination
port/ICMP Type. Each entry contains a specific value, prefix,
or don’t care. Details on the properties of each field are
described in Table 1.

OpenFlow-compliant switches come in two types:
OpenFlow-only, and OpenFlow-hybrid. OpenFlow-only
switches support only OpenFlow operations. In those
switches, all packets are processed by the OpenFlow pipeline,
and cannot be processed otherwise.

OpenFlow-hybrid switches support both OpenFlow opera-
tion and normal Ethernet switching operation, i.e. traditional
L2 Ethernet switching, VLAN isolation, L3 routing
(IPv4 routing, IPv6 routing...), ACL and QoS processing.
Those switches must provide a classification mechanism
outside of OpenFlow that routes traffic to either the
OpenFlow pipeline or the normal pipeline. For example,

216

TABLE 1. Field lengths of Openflow entries.

Field Bits
Ingress Port 6
Ethernet source address 48
Ethernet destination address 48
Ethernet type 16
VLAN id 12
VLAN priority 3
IP source address 32
IP destination address 32
IP protocol 8
IP ToS bits 6
Transport source port/ICMP Type 16
Transport destination port/ICMP Code 16
Total # of bits 243

a switch may use the VLAN tag or input port of the packet to
decide whether to process the packet using one pipeline or the
other, or it may direct all packets to the OpenFlow pipeline.
An OpenFlow-hybrid switch may also allow a packet to go
from the OpenFlow pipeline to the normal pipeline through
the NORMAL and FLOOD reserved ports.

D. FIELD PROGRAMMABLE GATE ARRAY

A field-programmable gate array (FPGA) is an integrated
circuit designed to be configured by a customer or a designer
after manufacturing — hence ‘‘field-programmable”. The
FPGA configuration is generally specified using a hardware
description language (HDL), similar to that used for an
application-specific integrated circuit (ASIC).

Contemporary FPGAs have large resources of logic gates
and RAM blocks to implement complex digital computations.
FPGAs can be used to implement any logical function that
ASICs could perform. The ability to update the functionality
after shipping, partial re-configuration of the design, and
the low non-recurring engineering costs relative to an
ASIC design offers advantages for many applications.

Historically, FPGAs have been slower, less energy
efficient and generally achieved less functionality than their
fixed ASIC counterparts. More recently, FPGAs such as
the Xilinx Virtex-7 or the Altera Stratix 5 have come to
rival corresponding ASIC and ASSP solutions by providing
significantly reduced power, increased speed, lower materials
cost, minimal implementation real-estate, and increased
possibilities for re-configuration ‘on-the-fly’.

Vendors can take a middle road by developing their
hardware on ordinary FPGAs, but manufacture their final
version as an ASIC so that it can no longer be modified after
the design has been committed.

FPGA can be used to solve any problem which is
computable. This is trivially proven by the fact FPGA can
be used to implement a soft microprocessor. Their advan-
tage lies in that they are sometimes significantly faster for
some applications due to their parallel nature and optimal-
ity in terms of the number of gates used for a certain
process.
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lll. PROPOSED SCHEME

Our proposed scheme is based on the bit vector scheme [15].
A fixed number of rules are implemented in a pipelined archi-
tecture. Therefore, if the rule set is large, multiple pipelines
are needed. In each pipeline, the incoming packet’s header
first passes through several processing stages for range fields.
The partial bit vector results of range field stages will be
passed to the following stages of the prefix fields. Finally,
a pipelined priority encoder will aggregate multiple pipeline
results and find out the highest priority match. We use the
OpenFlow version 1.0, and we set the ingress port to 6 bits,
so the incoming packet header is of size 243 bits. Our design
takes the advantage of the statistic results of [18] with
consideration of reasonable number of stages.

A. RANGE BIT VECTOR ENCODING (RBVE) SCHEME

As the traditional packet classification rule tables, OpenFlow
rule tables only have the fields of source and destination
ports that contain 16-bit ranges. A 16-bit range is denoted by
[LB, UB], where LB and UB are its lower and upper bounds.
In this section, we propose a new range encoding scheme
called range bit vector encoding (RBVE) scheme. In RBVE
scheme, a 16-bit range is split into many d-bit sub-ranges,
where d is the fixed stride size that can be 1, 2, 4, or 8.
Note that the cases of variable stride sizes are not discussed
in this paper. For a fixed stride size of d, there are s d-bit
sub-ranges that can be implemented as a pipeline of s stages,
where s = 16/d. Figure 2 illustrates the general view of a
16-bit range [LB, UB] being split into four 4-bit sub-ranges,
[LB;, UB;] fori = 1 to 4. Let A be the 16-bit input address
and A is split into four sub-addresses, A; for i = 1 to 4.
As we can see, if UB; < A; < LBj, we can conclude
that UB < A < LB and so the first stride is sufficient to
decide if the input address A matches the range [LB, UB].
Figure 2 also shows the other three possible conditions,
(1) Ay > UB1|A1 < LBy, 2) LBy < UB; = A, and
(3) Ay = LB, < UBj. Another additional condition not
shown in Figure 2 is A = LBy = UB;.

{A|<LB]
o (LB LB, LB, LB,
] LB, LB, LB, 1111
LB, LB, LB, 1111 1111
LB, 1111 1111 1111
{LB1<A,<UB,
UB; 0000 0000 0000
‘71 UB, UB, 0000 0000
uB, | _UB, UB, UB, 0000
UB, UB, UB, UB,
{A1>B1

FIGURE 2. General view of a range being split into 4 strides.
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111: match, not depending on the following stage;

001: match, only depending on LB of the following stage;
100: match, only depending on UB of the following stage;
010: match, depending on LB and UB of the following stage;
000: mismatch, not depending on the following stage;

FIGURE 3. Meaning of the output signals from each stage.

Therefore, we propose to use a set of output signals that are
generated from each stage to perform the matching process.
Figure 3 shows these output signals and their meanings. Take
the first stride as an example. Output signals 000 and 111
mean always mismatch and always match for the two con-
ditions Ay > UB||A; < LBy and LBy < A; < UBjy,
respectively. Output signal 001 means A; = LB} < UB;
and so a match happens only when A>°A3°...°A; >
LB>°LB3°...°LBs, where ° is the concatenation operator.
Similarly, output signal 100 means LBy < UB; = A and so
a match happens when A;°...°A; < UB»°...°UB;. Output
signal 010 means A; = LBy = UB; and so a match happens
only when LB;°...°LB; < A2°...°Ay < UBy°...°UB;.

Initialize a,a ay = 000;
If (LB; < A; < UB)) ayarao = 111; // special case
else

lf(UB]> LB[ andA; = UB]) a, = 1,

lf(A1 = UB[ :LBI) a; = 1,

lf(UB]> LB[ andA1 :LBI) ap= l,

(a)

Initialize c3cacico = 0000;
lf(A, = UB,) C3= 1; lf(Al =LB,) Cc1= 1,
lf(A, < UB,) Cr= 1; lf(Al > LB,) Co— 1,

(b)

Initialize fif; = 00;
if (4, <UBy) fi= 1.
if (LB; < 4y) fo= 1.

(©)

FIGURE 4. RBVE code design with the fixed stride of d bits for
the range fields, where s = 16/d and A; (i = 1..s) is any d-bit
address. (a) The 3-bit code (Code[A1] = azaqag) for the

first stage. (b) The 4-bit code (Code;[A;] = c3cacqCq) for

the middle stages. (c) The 2-bit code (Codes[As] = f4fg) for
the last stage.

Figure 4 shows the detailed code design for the
RBVE scheme. In RBVE scheme, 3-bit, 4-bit, and 2-bit
codes are used in the first, middle, and the last stages,
respectively. There are 2¢ possible input addresses denoted
by A; for the d-bit sub-ranges. Given the stride with
lower and upper bounds LB; and UB; for i = 1 to s
where s = 16/d, we pre-compute the 3-bit codes of the
first stage, the 4-bit codes of the middle stages, and the
2-bit codes of the last stages, for all the possible input
addresses.
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(a)

Case Code,(A) Description Case Codey(A) Description
axaap Condition 1: LB,<UB, fifo COIldlt.l()l’l 1: LB, <UB,
A>UB, 000 |Always mismatch, not depending on Codex(A»). Ay > UB, 01 Match if Code,(A1)=001.
A=UB, 100 Depend on Codex(Ay) LB.<A&A<UB] 11 Match if Code(A;)=010/001/100.
LB,<A,&A,<UB,| 111 Always match, not depending on Codex(A,). A, <LB, 1OC dition 3 %atihﬁgCOdel(A'Floo'
ondition 2: UB, )
A=LB, 001 Depend on Codes(As) A2> LB, 01 Match if Code;(A,)=001.
A<LB, 000  |Always mismatch, not depending on Code,(A,). UB,<A,&A,<LB) 00 Always mismatch
Condition 2: UB;=LB; B —
- - A, <UB 10 Match if Code;(A)=100.
A>UB, 000  |Always mismatch, not depending on Code,(A,). 2 Z Condition 3: UBazc: ﬁBz ode(A,)
A=UB, 010 _ Depend on Codey(Ar) A,>UB, 01 Match if Code;(A7)=001.
A<LB, 000 |Always mismatch, not depending on Code,(A,). A,=UB, 1 Match if Coder(A1)=010/001/100,
A, <LB, 10 Match if Code;(A7)=100.

(b)

FIGURE 5. Code details for range split into two sub-ranges. (a) Code4(A1). (b) Code,(A5).

1) CODE DESIGN FORd =8

In order to understand the proposed code design easily,
we first assume d = 8. Thus, only the first and the
last stages are needed because the range fields are 16 bits.
Figure 4(a) and 4(c) show the codes for these two stages. Let
LB (LB) and UB1 (UB») be the lower and upper bounds
of the first (last) stride of the range [LB, UB]. Similarly, let
A1 (A2) be the first (last) stride value of the input address.
In the first stage, LB| must be smaller than or equal to UB;.
As shown in Figure 4(a), code aajap = 111 is used for the
special case of LB < A} < UBj, where the first stage is
sufficient to know the input address matches range [LB, UB].
Other than this special case, bits a2, aj, and ag are set to one
for the cases of Ay = UB; < LB;,A1 = UB; = LB, and
UB; < LBy = Aj, respectively. The rationale of enabling
ay, ay, and ag is as follows. These three bits are designed to
be mutually exclusive. Therefore, at most one of these three
bits can be set to one, except the above special case. For the
case of Ay = UB; > LBj, we set ap = 1. A match is
only possible when the following stride of the input address
satisfies the condition of Ay < UB5. Therefore, we setf| = 1
when the address of the last stride A, < UB; as shown
in Figure 4(c). If both a; and f are set to one simultaneously,
we generate a final match result. Similarly, ag is set to 1 when
UBy > LBy = Ay and fy = 1 when LB, < Aj. Thus,
if both ap and fy are one, a final match is generated. For
the case of A; = UB; = LBj, a match occurs only when
LBy < Ay < UBj. Therefore, ay, f1, and fy are all set to one.
In addition to the cases considered above, the other two cases
happening at the first stage are A} > UB; and A| < LB;. For
these two cases, the initial code 000 is used. It is not possible
to have a match result for these two cases no matter what the
code for the last stride is.

The code designs of the first and last stages can be
understood clearly based on the relationship between
UB; and LB; and between LB, and UB,. Given a range
[LB, UB], the relationship between UB; and LB; only sat-
isfies two conditions: UB| > LB and UB; = LB as shown
in Figure 5(a). In other words, the condition of UB; < LB
will never occur. However, the relationship between
LB; and UB; meets all three possible conditions, UB, > LB,
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UBy = LBj, and UBy, < LBj as shown in Figure 5(b).
By using these conditions, all the possible cases are listed
in Figure 5(a) and (b) and their associated codes can be given
easily.

After reading the codes Code([A|] = azajap in the first
stage and Codeg[Az] = fi fo in the last stage, we still have to
perform a simple computation to determine if it is a match or
mismatch by the equation shown in Figure 6(c).

|u2u1u0= axado, |

(a)
U Uy=
111 if ((b2&b1&bo) | (b2&cr) | (bi&er&cy) | (bo&co)); (1)
100 if ((bz&C}) | (b]&C3&!C1)); (62)
001 if ((bo&Cl) | (b]&!C3&C1)); (63)
010 if (b]&C3&C1), (64)
(b)
|match = ((b:2&b1&bo) | (b:&.1)) | (0:1&1 &) | (bo&eho)); (€5) |
()

FIGURE 6. Output signals of the RBVE scheme with stride d = 8,
4, and 2, where bybqby is the input signals. (a) Output signals
(uauqug) of the first stage. (b) Output signals (usuqug) of the
middle stages. (c) Output signal (match) of the last stage.

2) CODE DESIGN FORd =4or2

The codes for the first and the last stages are the same as the
case of d = 8. The codes for the middle stages are shown
in Figure 4(b). Since all the three conditions of A; < UB;,
A; = UB;, A; > UB; are possible in the middle stages, we
need two bits (c3 and ¢7) to distinguish them. We use ¢3 and ¢;
independently. Bit ¢3 is enabled when A; = UB; and c; is
enabled when A; < UB;. Thus, c¢3 and ¢ cannot be enabled
simultaneously. Similarly, we need two bits (c; and cg) to
record the relationship between A; and LB;. Bit ¢ is enabled
when A; = LB; and ¢ is enabled when A; > LB;. By follow-
ing the same design rationale of bits a»ajay at the first stage,
we have to perform some computations to obtain the 3-bit
output signals (uoujug) as shown in Figure 6. As a result, the
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LB: 10000110
UB: 10101011
Stride 1 23456 7 8
0 [oo[T1[o1[T1[01]10[00[01
1 [T1]00[10[00[1001[T1]10

FIGURE 7. Code example of range [134, 171] with 1-bit stride.

2-bit code ab for every stage.
a='UB;
b=1LB;

FIGURE 8. Code design for range fields with 1-bit stride.

process of determining the final match in the last stage will
be same as the one shown in Figure 6(c).

3) CODE DESIGN FOR d =1

The code design for d = 1 can be the same as thatford = 8,4
or 2. However, this way seems wasting a lot of memory space
since 1-bit stride is much simpler than the multibit stride.
Therefore, we propose a memory efficient code design for
d = 1 as follows. As defined before, [LB;, UB;] is the
sub-range in stride i. We know that LB; or UB; can only
be 0 and 1. Therefore, the sub-range in the first stride can
be [0, 0], [0, 1], or [1, 1]. The sub-range in the other strides
can be [0, 0], [0, 1], [1, O], or [1, 1]. The sub-address of
stride i, A;, can be 0 or 1. Similar to StrideBV scheme, we
can store 2-bit codes xy for input address A; based on the
following pre-computation rule: (1) if A; = UB;, x is to 1;
otherwise x is setto 0, and (2) if A; = LB;, yisto 1; otherwise
y is set to 0. Figure 7 shows an example. Since the stored
code xy for A; = 0 is the complement of that for A; = 1,
we only store the former. As a result, we propose to store the
code ab as shown in Figure 8.

With the stored codes ab, the matching process is the same
as the design for d = 8§, 4 or 2 by using the output signals
defined in Figure 3. Figure 9 shows the matching process at
each stage.

First stage
010 if ((4;=1&ab=00) | (4,=0&ab=11));
001 if (4,=0&ab=01),
100 if (4;=1&ab=01);

Middle stages
LA ((papipo=111) | (po&A,&b) | (p2&!4:&\a));
010 if (p1&A4;:&ab=00) | (p1&'4:&ab=11));
001 if (01 &!4;&ab=01) | (po&A:&!b) | (po&!A;&D));
100 if (1 &A4:&ab=01) | (p2&A4:&!a) | (p,&!4:&a));

Last stage
match = ((pap1po=111) | (po&Dd) | (po&A&\D)) |
(p1&A&la) | (p1&!4,&D)) | (p2&!la) | (p2&!4:&a)));

FIGURE 9. Output signals (usuqug) for 1-bit stride, where pop1pg
is input signals from previous stage, and 4; is the input
address.
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B. SEQUENTIAL SUBRANGE COMPARE (SSC) SCHEME
We propose a range matching scheme called sequential
subrange compare (SSC) scheme that stores subranges
directly in the memory and performs subrange match oper-
ations sequentially. SSC does not perform precomputations
against input headers as in the bit vector based schemes.
SSC is similar to iterative structure of 1-bit range check
circuit of the extended TCAM [23]. The advantage of
SSC over the extended TCAM is that SSC is more general
than 1-bit range check circuit in that the stride size of SSC
can be any number of bits. The original intention is to
solve the range field processing errors occurring in the other
schemes [18], [22] since all the subranges split from an orig-
inal 16-bit range are not totally independent. The matching
process of a subrange cannot be done by using only
two comparators, e.g., the < lower bound comparator and
the > upper bound comparator. A correct and complete
implementation is much more complex. The subranges split
from a range are classified into three types, the first, the
middle, and the last subranges. Inferred from Figure 2, we
need four types of matching results that are represented
by the signals, Match, Mismatch, LBmatch, and UBmatch.
Mismatch can be deduced from Match, LBmatch, and
UBmatch. When none of Match, LBmatch, and UBmatch
is true, Mismatch becomes true. Therefore, Mismatch is
not needed. Also, Match and LBmatch/UBmatch are mutu-
ally exclusive and so they cannot be true simultaneously.
However, LBmatch, and UBmatch may be true at the same
time because lower and upper bounds can be the same. Let
the range be split into s subranges, [LB;, UB;] and the input
address A be split into s sub-addresses A; for i = 1 to s.
Therefore, each stage only has to compute three signals
using the signals generated from previous stage, the subrange
bounds LB; and UB;, and the input sub-address A;. The final
stage only computes the signal Match that will be the final
match result.

Figure 10 shows the pseudo codes that compute the three
required signals. The match process at the first stage is

First stage 1

If(A]>LB]&A]< UB]) Match1:1 (fl)

If (4; = LB;) LBmatch; =1 (f2)

If (4,=UB)) UBmatch; =1 (f3)

Middle stagei (i =2 to s — 1)

If (Match;_; or (gl)
LBmatch; ; & UBmatch,; & A;> LB; & A; < UB; or (g2)
LBmatch;.; & 'UBmatch;; & A; > LB, or (g3)
\LBmatch;.; & UBmatch;.; & A; < UB;) Match;=1 (g4)

If (LBmatch;; & A;=LB;) LBmatch;=1 (g5

If (UBmatch;.; & A;= UB;) UBmatch;=1 (g6)

Last stage s

If (Matchy._; or (h1)
LBmatch,.; & UBmatch,.; & A;> LB; & A, < UB, or (h2)
LBmatch,.; & \UBmatch,.; & Ay > LBy or (h3)
\LBmatch,.; & UBmatch,.; & A; < UB;) Matchg=1 (h4)

FIGURE 10. Pseudo code of the proposed SSC scheme.
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FIGURE 11. Range field pipeline of the RBVE scheme with stride size d.
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FIGURE 12. Hardware range implementation of the SSC scheme.

simple, as shown in equations (f1)-(f3). For the middle stages,
the Match signal is true when one of the four cases
represented by equations (gl)-(g4) happens. Equation (gl)
similar to (f1) considers when the sub-addresses preceding
the stage is the same as both the lower and upper bounds
of the corresponding subrange and the sub-address is between
the lower and upper bounds of the subrange at the current
stage. Equation (g3) considers the case in which the
sub-addresses preceding the stage is the same as the lower,
not upper bounds of the corresponding subrange and the
sub-address is larger than the lower of the subrange at the
current stage. Equation (g4) is similar to equation (g3).
Consider the 4-stage example in Figure 2 and assume the
current middle stage is 3. Equation (g2) states that when
Ay = LBy = UBj and A, = LB, = UB5, the condition
of LB3 < A3 < UBs indicates a final match. Equation (g3)
states that when A;°Ay = LB1°LB; but A1°A> # UB1°UBy,
the condition of LB3; < Ajz indicates a final match due to
LB < A < UB, where ° is the concatenation operator.
For equations (g5) and (g6), the conditions of A{°...°A; =
LBi°...°LB; and A;°...°A; = UB;°...°UB; enable the
signals LBmatch; and UBmatch; at stage i, respectively. The
last stage is in fact the same as the middle stages, except
that the enabled LBmatch; and UBmatch; signals are also
considered as a match. As a result, equations (hl)-(h4)
modify equations (gl)-(g4) by replacing the > and <
comparators with > and < comparators.
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C. HARDWARE IMPLEMENTATION OF RBVE AND SSC
The pipeline implementations of RBVE and SSC schemes
are given in Figure 11 and Figure 12, respectively. These
two figures show the required resources for a single 16-bit
range that is split into s = 16/d stages of d-bit sub-ranges,
where d = 8, 4, 2, or 1. For the RBVE scheme in Figure 11,
5-input LUTs (denoted by 5-LUTs) are used to implement
the logic of all the stages. A memory array of 2¢ 3-bit,
4-bit, and 2-bit entries is needed for the first, the middle, and
the last stages, respectively. Notice that the middle stages are
not needed when d = 8. The values stored in these memory
arrays are the precomputed codes for all possible 2¢ d-bit
sub-addresses. For the SSC scheme in Figure 12, only two
d-bit memory spaces are needed for a sub-range to store
its lower and upper bounds. However, four comparators are
required in each stage. Each comparator for d-bit strides is
implemented by a 2d-input LUT.

1) BLOCK RAM STORAGE

The block RAM in Xilinx®6 and 7 series FPGAs stores
up to 36 Kbits of data and can be configured as either
two independent 18 Kb RAMs, or one 36 Kb RAM. Since
the stride size d of the proposed RBVE scheme is not larger
than 8 for the range fields, the basic unit of the block memory
we use is the 18Kb block RAM which is configured as
a 512 x 36 memory unit (i.e., an array of 512 36-bit entries)
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FIGURE 13. The block RAM layout for RBVE scheme.

in true dual-port mode. In the true dual-port mode,
two concurrent reads on the same block RAM can be
performed and so the throughput of the search operations can
be doubled.

Since the proposed RBVE scheme uses the bit array to store
the pre-computed initial matching results, the block RAM is
a good implementation choice. Also, the minimum number
of entries for a block RAM is 512, the proper choice of
the stride size d is 8, which requires only 256 entries. As a
result, a half of the block RAM becomes wasted. We will
address this problem later. Figure 13 shows the proposed
block RAM layout for RBVE scheme with stride size d = 8.
The pre-computed codes of 36 ranges are concatenated for
satisfying the minimum block RAM configuration
of 512 36-bit entries. BRAMI1 and BRAM?2 are the block
RAMs of 256 entries needed for Code;(A;) and Code;(Ajp)
at the stages 1 and 2, respectively. As shown in the figure,
the rightmost code of these 36 codes is for the range [3: 512].
So, for the input port number 513, the match signal for this
range is 0, which is a mismatch.

2) DISTRIBUTED RAM STORAGE

The function generators (LUTs) in SLICEMs of the
Xilinx®6 and 7 series FPGAs can be implemented as a
synchronous RAM resource called a distributed RAM
denoted by distRAM. The other type of slices in Xilinx®6
and 7 series FPGAs is SLICEL that is usually 2-3 times larger
than SLICEM. SLICEL cannot be configured as distRAM.
Multiple 6-input LUTs in a SLICEM can be combined
in various ways to store larger amount of data as follows,
single-port distRAM of 32 x 1/64 x 1/128 x 1/256 x 1 bits,
dual-port distRAM of 32 x 1/64 x 1/128 x 1 bits, and
quad-port distRAM of 32 x 2/64 x 1 bits. Specifically, four
6-input LUTs can be configured as one single-port distRAM
of 256 x 1 bits, or one dual-port distRAM of 128 x 1 bits,
or one quad-port distRAM of 64 x 1 bits.

For choosing smaller stride size while still considering
reasonable number of stages, we choose stride size d = 4
for the range fields of the proposed SSC scheme. Another
advantage of choosing d = 4 is the comparators of
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decreasing order of rule priorities. Therefore, this priority
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FIGURE 14. A super-pipeline of range pipelines using RBVE and
prefix pipelines using StrideBV with cross-pipeline links.

two 4-bit inputs can be implemented with one 4-input and
one 5-input LUTs. The cost of implementing comparators
with two d-bit inputs for d > 4 will be too expensive. So, the
number of stages for a 16-bit range field is 4. As a result, each
range field value in the SSC scheme takes eight 4-bit
memory space to store the lower and upper bounds of
four 4-bit sub-ranges. Sixteen range values are grouped in
a cluster and so that the distributed RAM of 8 x 16 bits is
needed in each of the four stages for a 16-bit range field.

D. PREFIX FIELD MATCHING
We use StrideBV method for the prefix field stages. Assume
the stride size is k. So, we will have [(243 — 32)/k] stages
for all prefix fields. For k < 8, we can use distRAM and
16 rules are grouped in a cluster. For k > 8, we can use block
RAM and 36 rules are grouped in a cluster. The prefix field
stages are placed after the range field stages and so the partial
N-bit bit vector result of range field will be passed in, where
N = 36 for RBVE scheme and N = 16 for SSC scheme.
Figure 14 shows an overall architecture of the range and
prefix field implementations by RBVE and StrideBV schemes,
respectively. The RBVE scheme for range fields is imple-
mented by using block RAMs, where stride size is 8 bits
and 36 ranges are grouped together in a range pipeline as
shown in Figure 14. The StrideBV scheme for prefix fields is
implemented by using distRAMs, where stride size is 5 bits
and 16 prefixes are grouped together in a prefix pipeline.
Since the sizes of the groups in the range and prefix fields
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are different, cross-pipeline links are needed as shown in
the figure. We call it the super-pipeline that combines the
range and prefix pipelines. As a result, totally 144 rules are
in a super-pipeline when all fields are considered. We refer
to this super-pipeline architecture as Design I. If the range
fields are implemented by distRAM based on SSC scheme,
we use 16 ranges in a group which is the same as the
prefix fields implemented by StrideBV scheme. Therefore,
no cross-pipeline link is needed. We refer to this architecture
as Design II. Table 2 summarizes the implementations of
Design I and Design II.

TABLE 2. Comparisions of design | and II.

Implementation Ranges Prefixes
RBVE scheme
Design I Stride = 8 bits )
blockRAM StrideBV
36 ranges/group Stride = 5 bits
SSC scheme 6 distRA/M
. = ranges/grou
Design 11 Str(i?;R:hE[nts gesigroup
16 ranges/group

In order to process more rules, we need to implement
multiple pipelines. Restricted by the on-chip resources, the
total number of rules that can be supported by design I is
limited by the size of the block RAM. However, total number
of rules that can be supported by design II is limited by the
size of the distributed RAM.

E. IMPROVING THE UTILIZATION OF BLOCK RAMs

As stated earlier, a half amount of the block RAM is wasted
for range fields that are implemented by the RBVE scheme.
We propose a simple indexing scheme to avoid wasting any
block RAM. This indexing scheme is based on the observa-
tion that all the prefix fields except the source and destination
IPs in the Openflow tables contain only the singleton values.
In other words, (211 — 64) = 147 bits of a rule must not be
don’t care. Therefore, it is possible to select one bit (say bit x)

out of these 147 bits such that the number of rules with bit
x = 0 is roughly equal to that with bit x = 1. If it is not
possible, we can select more bits (say » bits) to divide all the
rules into 2" segments. Then it is simple to find m out of
2" segments such that the number of rules in these m segments
is roughly equal to that in the other 2" — m segments. Based
on this indexing scheme, we can always divide the rules into
two groups of the same size. The real implementation can be
done by an additional stage. For a block RAM of 512 entries,
the rules in the first group use the upper 256 entries and the
rules in the other group use the lower 256 entries. Since one
or more out of the 211 bits in the prefix fields are consumed
in the additional stage of the indexing scheme, the number of
stages in the prefix fields will be reduced at least one stage.
As aresult, the overall number of the stages after applying the
proposed indexing scheme will not grow. Specifically, if the
indexing scheme picks one bit, the number of prefix stages
reduces from 43 to 42.

F. PIPELINED PRIORITY ENCODER

The pipelined priority encoder is to aggregate multiple
pipelines together to find out the final matched rule. The
input of pipelined priority encoder is multiple multi-match
results produced by each pipeline. And the output is the ID of
the single highest-priority matched rule. Because the number
of pipelines is often large, this encoder uses the pipeline
to reduce clock period. The rules are arranged from top to
bottom in the decreasing order of rule priorities. Therefore,
this priority encoder outputs the index of the first set bit from
top in the bitmap of the matching results. The design of the
priority pipeline for the set of 6K rules is shown in Figure 15.
Figure 16 shows the overview of the complete pipeline
architecture.

IV. EXPERIMENTAL RESULTS
We conducted experiments using Xilinx ISE Design
Suite 14.7 where speed grade is set to —2. The device used
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FIGURE 15. The pipelined priority encoder of 6K rules.
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TABLE 3. Performance of the proposed schemes.

Slices SLICEM (132,480 LUTs = 8Mb single-port distRAM)|  SLICEL (341,760 LUTs) Block Bonded [Through
XC6VLX760 Registers . . RAMs 10Bs -put
(948,480) Prefix Range total PriEnc logic Total (720x36Kb) | (1,200) | (MHz)
Design I 6K o 126K 126K (99%) 256x5x2x6 Kb o
Single port 433,276(45%) (25><42><6K bits) N/A (25><42><6K bits) 3.2K 68.5K 71.7K (59%) 257(21%)| 283
Design I 3K o 126K 126K (99%) 256x5x2x3K o
Dual port 433,276 (45%) (25x42x3K bits) N/A (25><42><3K bits) 3.2K 70.5K 73.7K (30%) 266(22%)| 566
. o 107.5K 10K (7.7%) 117.5K (94%) o
Design II 5K | 195,291(20%) (25><43><5K bits) |(64x2x5Kbits)|  (7520K bits) 3.2K 139.5K 142.7K N/A 252(21%)| 380
TABLE 4. Performance comparisons.
Approach Throughput | Latency | # of Fields Speed Range Field # of Rules
PP (MHz) (Clocks) | Supported |Depending on ruleset|  Support Supported
Design I-dual port 566 53 12 No Yes 3K
Design 11 380 57 12 No Yes 5K
Scalable Packet
Classification [21] 125 36 12 Yes No 1K
High-performance *
architecture [18] 373 2 15 No Yes 1K
StrideBV [15] 235 30 5 No No 0.5K
Scalable and Modular x
Architecture [22] 326 28 > No Yes 28K

*: Range field is supported but incomplete

Incoming Range Field Prefix Field

Packet Stages Stages
[
- J— [] Multi-Match
Result
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Priority
L L L | Pipelined | Match
: Priority |——p
Encoder
] ] [] Multi-Match
Result
L >

FIGURE 16. Multi-pipeline System Overview.

in the experiments is Xilinx®6, Virtex-6 XC6VLX760 [19].
Virtex-6 XC6VLX760 has 1200 I/0O pins, 25,920 Kb BRAM
(720 36Kb BRAM blocks), 118,560 logic slices where
SLICEM can be configured to realize a large distributed
RAM (up to 8,280 Kb). Each slice contains four 6-input
LUTs and 8 flip-flops. The numbers of rules in Design I and
Design II are 6K/3K (single/dual port) and 5K, respectively.

The resource utilization and performance statistics of the
Design I and II are shown in Table 3. The SLICEM that
can be configured as distRAM limits the size of rule tables
in the implementation. In Design 1 with single port, one
bit from 211 prefix field bits is used for the block RAM
utilization improvement stated in section IIL.D. As a result,
only 42 stages for prefix fields are needed. Utilizing 99%
of the distRAM provided in FPGA device can support up
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to 6K rules. In addition, the block RAM for range fields
takes 59%. In Design I with double port, the number of sup-
portable rules is 3K because double ported distRAM doubles
the usage of LUTs in SLICEM. However, the throughput
can be doubled. In Design II, only the distRAM can be
used because the constraint of 512 entries in block RAM is
hard to overcome. We set the stride of range fields to
four because large distributed RAM causes serious clock
degradation. Compared to Design I, the additional distRAM
used for range fields in Design I is 128 bits per rule. Totally,
5K rules can be supported.

We will compare our proposed designs with other related
work based on StrideBV algorithm or OpenFlow rule sets as
shown in Table 4. Depending on ruleset characteristic, the
performance of the scheme proposed in [21] varies because
it uses decision tree based method. Others use StrideBV
algorithm and so the performance will not vary. Scalable and
Modular Architecture proposed in [22] supports 5-field rules
and can achieve very high throughput. To our knowledge, our
proposed designs are the first range supported method that
can achieve the throughput of 380 MHz. Method in [18] can
also sustain a high throughput but its range field design is not
complete and thus cannot always get correct results. Methods
in [22] also support arange processing solution. The proposed
designs are also much faster than the original paper [15] and
even store 10 times larger ruleset.

V. CONCLUSION

In this paper, we proposed two designs for processing
the range fields. The proposed RBVE scheme for range
fields is similar to the StrideBV scheme in that both use a
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special encoding to store the pre-computed results in
memory. The proposed SSC scheme is a simple sub-range
comparison method that using pipeline to sequentially
find matching result. By performing experiments on
Xilinx Virtex-6 XC6VLX760 FPGA device, the proposed

designs can achieve the throughputs of 380 MHz and 566 MHz

based on single-ported and dual-ported memory.
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