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Abstract - A dynamic multiwvay segment tree (DMST) is progagor IP lookups in this paper.
DMST is designed for dynamic routing tables that dgnamically insert and delete prefixes.
DMST is implemented as a B-tree that has all distendpoints of ranges as its keys. The
complexities of search, insertion, deletion, andmmoly requirement are the same as the
existing multiway range tree (MRT) and prefix inti@e (PIBT) for prefixes. In addition, a
pipelined DMST search engine is proposed to furgmred up the search operations. The
proposed pipelined DMST search engine uses off-&RAMs instead of on-chip SRAMs
because the capacity of the latter is too smalidiol large routing tables and the cost of the
latter is too expensive. By utilizing current FP@#Ad off-chip SRAM technologies, our
proposed 5-stage pipelined search engine can achkievworst-case throughputs of 33.3 and
41.7 million packets per second (Mpps) with 144-aitd 288-bit wide SRAM blocks,
respectively. Furthermore, a straightforward extam=f the pipelined search engine with
multiple independent off-chip SRAMs can achieve theoughput of 200 Mpps which is
equivalent to 102 Gbps for minimal Ethernet packétsize 64 bytes.

Index Terms - segment tree, elementary intervateB; Pipeline, FPGA

1. INTRODUCTION

The Internet applications such as World Wide WebWW) and P2P applications have
generated tremendous network traffic on the Inteane hence consume a large percentage of
the Internet bandwidth. If the Internet is ablectmtinue supporting good quality of service,
the next-generation IP routers have to provideefagtacket forwarding rate and quicker
adaptation to route changes. All tasks that haveetexecuted by the router after receiving a
packet can be divided into time-critical (fast paahd non-time-critical (slow path) operations
depending on the packet type and its frequencyeTéntical operations that are operated on

majority of the packets must be implemented in ghlyi efficient and optimized manner to



keep up with the high link speed and router banttwidmong all the tasks performed by the
router [2], IP table lookups are the most time conmisig. In table lookups, the destination
addresses are looked up again&iravarding tableby aforwarding enginghat determines the
next-hops in the network, where the packets shoelsent.

Existing IP table lookup schemes can be broadlgsdied into two categories: static and
dynamic. The static schemes are designed withdbenaption that the forwarding table is not
frequently updated. A forwarding table pre-compotais typically needed in static schemes
for improving lookup speed and reducing memory neguoent. The disadvantage of static
schemes is that when a single prefix is added letetg the entire forwarding table may need
to be rebuilt. Rebuilding a forwarding table hasegative impact on the lookup performance
of routers. On the other hand, in dynamic scherfneguent insertions and deletions [15] are
performed in real time, and thus forwarding taleleuilding is not required.

In this paper, we solve the IP table lookup problantreating prefixes in the forwarding
table as ranges. A range f] matches the destination addrelsf e< d <f. The proposed data
structure calleddynamic multiwvay segment treg@®@MST) is suitable for dynamic range
insertions and deletions. DMST is a B-tree in wheelth node is augmented with a range set
calledcanonical setThe detailed data structures of canonical sebeaiound in [5]. Although
both the multiway range tree (MRT) [29] and thegain B-tree (RIBT) [20] also use B-trees,
their structures have the following disadvantages:

1. The keys used to build the B-trees in MRT and R#@ the traditional endpoints. For
examplee andf are the keys for range,[f]. However, we use — 1 andf as the keys
based on the minus-1 endpoint definition proposd8]. The minus-1 endpoint scheme
uses fewer keys than the traditional endpoint sehétence, the height of the B-tree in
DMST is smaller than that in MRT and RIBT.

2. In MRT and RIBT, each key requires an additionakadist or heap to record which

ranges start or terminate at the key. Equal listerthine whether or not a key needs to
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be removed from the B-tree after a range is deléibé@ proposed DMST uses the
concept of elementary intervals to build the B-taeel the proposed key deletion rule
can determine if a key has to be removed withositnired of equal lists or heaps. As a
result, the DMST node structure is smaller than thdRT and RIBT.

Consequently, even though the asymptotic compéitf performing dynamic search
and update operations, and the asymptotic memouyreaments are the same in all the B-tree
based schemes, our performance experiments usihtiPrel routing tables show that DMST is
faster in terms of searches and updates and alswuews less memory than MRT and RIBT.

In addition to developing a data structure for cadint updates, we also propose a
pipelined search engine to further speed up theclsegperations. We choose off-chip SRAMs
instead of on-chip SRAMs because the former is tacleeaper than the latter [1][10].
Furthermore, the storage capacity of off-chip SRAM be as large as possible to meet our
needs for storing a very large routing table. Twaue contributions of our paper are:

1. In theory, our DMST extends on the binary versiérs@gment trees proposed in [5].
Since the height of multiway segment trees is sndéflan that of binary segment trees,
DMST achieves faster search speeds while still tamimg fast updates of a
logarithmic complexity. DMST is better than MRT amBT, the existing similar
B-tree based data structures for IP lookups.

2.In practice, our pipelined DMST search engine isigleed for achieving a high
throughput of up to 200 million packets per secbpdaking advantage of the fact that
a search operation traverses less number of nad@sultiwvay segment trees than
binary segment trees. The usage of off-chip SRANsva very large routing tables to
be accommodated in the proposed pipelined seargimeenwhich is not possible if
on-chip memory is used.

The rest of the paper is organized as follows. fedlavorks are discussed in Section 2.

The preliminaries and design model are given inti®ec3, and the detailed algorithms for
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DMST are presented in section 4. The detailed tachire of the pipelined DMST search
engine and its extension are proposed in Sectidin® results of the performance comparisons

are given in Section 6, and finally, the concludiamarks are presented.

2. RELATED WORKS

Although research in IP lookup problem [6][23] snducted intensively in recent years,
algorithms that balance among lookup speeds, menegpyirement, update performance, and
scalability are scarce. The existing schemes [B2],[[16], [22], [28], [25], [13], [14] are
mostly static and thus cannot afford frequent préifisertions and deletions. The trie-based
schemes [6][23] like the binary trie, multi-bitériand Patricia trie do not use pre-computation,
and thus are suitable for dynamic forwarding tabléswever, their lookup speeds degrade
linearly with the address length and their memanystimption is large.

Kim and Sahni [24] developed a dynamic data strnectalled the collection of red-black
trees (CRBT). The basic interval tree of CRBT iastoucted from the traditional endpoints of
all prefixes. CRBT supports search, insert, aneétdebperations in O(log N) time each for a
routing table of N prefixes. Lu and Sahni proposedlynamic scheme [18] based on an
enhanced priority search tree [21] which arrivesOdéitog N) time complexity for search,
insertion, and deletion. The experimental resuit§18] showed that PST performs a little
worse than CRBT in terms of search time. Howev8iT Performs much better than CRBT in
terms of insertion, deletion, and memory usage.

Lu and Sahni also developed an enhanced intee@l[& which is called the binary tree
on binary tree (BOB) [19] for dynamic routing takl&Vith real routing tables, BOB and prefix
BOB perform the operations of insertion, deletiand search irD(log N) time. Also, the
prefix BOB and the longest matching prefix BOB peni much better than PST in terms of
search, insertion, deletion, and memory requirement

A dynamic multiway fat inverted segment tree (FiS)proposed in [11] for dynamic



insertions and deletions of ranges. The search ofr@(logN) can be achieved in a tree of
degreem. In [29], a B-tree-based multiway range tree (MRS proposed to find the longest
matching prefix inO(log,N) time, and insert or delete a prefix @(mlog,N) time. MRT is
suitable for both prefixes and ranges. Howevenettage many duplicate endpoints stored in
internal nodes, and a prefix may be stored in atmme- 1 nodes in each level of B-tree. This
drawback increases the update time and memory reeqant. Another B-tree-based data
structure called range in B-tree (RIBT) is propose[20] for solving this drawback by storing
a range in onlyD(1) B-tree nodes in each level of B-tree. The aggtipcomplexity of PIBT

to find the longest matching prefix is the samévi®l, and the measured time for the search
operations is almost the same for RIBT and MRT giseal routing tables. However, RIBT is
more memory efficient than MRT by a constant factor addition to the B-tree based
algorithms mentioned above, authors in [26] prodas®ane compression techniques that try to
put as many nodes as possible into the B-tree nimdesder to fit entire routing table in the
on-chip memory of a single chip. However, no eéfidi update algorithms can be supported
because their compression techniques need pre-tatigns. Also, the on-chip memory is
expensive and the capacity of the on-chip memorglwsays limited by the chip area. The
off-chip memory used in the proposed pipelined igecture is cheap and can be much larger
than the on-chip memory for holding a very largetirg table. Also, our proposed algorithm
support dynamic updates.

Since DMST, MRT [29], and RIBT [20] all use multiwasegment trees, the subtle
differences among them are worth discussing. Ttmeee major differences are (1) what are
the keys, (2) how to store the keys, and (3) howeiete an endpoint in the B-tree which are
specifically explained as follows:

The keys (i.e., endpoints) in MRT and RIBT are blage the traditional endpoint scheme
in which the keys of range R =¢,[f] are defined as and f. However, based on the

minus-1-endpoint definition [5]¢ — 1andf are used as the keys in DMST. Let(&) and
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Ec1/(R) be the sets of keys for a sRtof N ranges based on the traditional endpoint and
minus-1-endpoint, respectively. Obviously, botk:(®)| and |E.1:R)| are less than or equal to
2N. |E—14(R®)| is smaller than [ ®R)| if some ranges iR are contiguous (i.e., the finish
endpoint of a range is equal to the start endpadianother range minus one). As shown in [5],
the number of endpoints generated by the minusdp@nt scheme is about 69~73% of that
by the traditional endpoint scheme. As a resuét,rttemory requirement for DMST is less than
that for MRT and RIBT.

With the difference in key definitions, MRT, RIB&nd DMST define the fundamentally
different address coverage (callgganin MRT orinterval in RIBT and DMST) for a key or
node to facilitate the search process. BasicallRTMollows the span definition of thgnary
range searclhproposed in [16]. In MRT, the address span of a\kis defined as a half-open
interval ({, v], whereu is the predecessor gfin the increasing order of keys. If addresses 0
and 2¥ — 1 in theW-bit address space are always included, the eadieess space is the union
of all address spans. Thus, as done in the birsanrger search [16], if we can precompute the
highest priority range for each address span, alsirinary search can be applied to find
which address span the addrddselongs to, and then obtain the matched range. fdowever,
one problem is that the highest priority rangesafddress spam(v — 1] and singleton address
v may be different. Thus, extra information for eaammdpoint is needed to determine the
highest priority matched range for addressvhen d is equal tov or is larger than the
predecessor of. This is where the “=" and “>” ports of the binargnge search [16] come
from. In RIBT, the definition of interval is simildo the address span in MRT. Tkey equal
heapwhich is the same &y equal lisin MRT is needed for each key in RIBT. We willosh
later that the proposed DMST needs no key equadiiseap.

The key equal lists or heaps in MRT and RIBT cao d&le used to determine if a key can
be removed from a node after a range is deletedeample, if the" equal heap of a node in

RIBT is empty after a range is deleted, tA&ey in that node can be deleted. In MRT, range R
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= [e, f] is stored in the key equal list correspondindség e in some leaf nodes. Since R is not
stored in the key equal list of kdy a special counter is used to record how manyeasng
terminate at the key. Thus, when the counter aswmtiwith a key is zero, that key can be
deleted. On the contrary, each node in DMST ordyesta canonical set without tequallists.
Hence, a DMST node is smaller than an MRT or RIB@ilen DMST uses thieey deletion rule
(see Definition 4 as described later) to deternfiaekey can be deleted or not.

After knowing which are the keys, it is necessarglécide how to store these keys in the
B-tree. In MRT, all keys are stored in the leaf @®dt the bottom level of the B-tree. To build a
multiway search tree, some of the keys in the heafes are sent to upper levels. How many
keys are sent up depends on the node arddrhe process in which some of the keys in the
leaf nodes are sent to upper levels will be peréamepeatedly until the top level contains only
one node. A key may be stored twice in MRT. Thhe, process of inserting or deleting an
endpoint of the new range is complicated becaudeast two B-tree nodes are involved. In
RIBT and the proposed DMST, each key is only stanedne node. Because of the different

ways to store keys, the intervals in RIBT or adsligsans in MRT are defined differently.

3. Prerequisites and MODEL DESIGN

The core part of the proposed DMST is based orctineepts of elementary intervals and the
new endpoint definition proposed in [5]. By usirg thovel minus-1 endpoint definition, the
DMST data structure is simpler than MRT and PIB@.make this paper self-contained, we
show the following two definitions proposed in [5].
Definition 1 (elementary interval)Let the set of elementary intervals constructedthfa setR
consisting ofN W-bit arbitrary ranges in the address space of ®'te 1 beX = {X; | X =
[e, f] fori = 1 toS}. X must satisfy (1 = 0 andfs=2Y -1, (2)f =es1 — 1 fori = 1 to
S—1, (3) all addresses ¥ are covered by the same subseRathich is called theange

matching sebf X; denoted byel;, and (4) El# Eli., fori = 1 toS— 1.



Tablel. An exemple routing table of nine-bit prefixes

: endpoint
ID Prefix Range start | finish
P1 000000/2 [0, 15] - 15
P2 010000/2| [16, 31] 15 31
P3 000100/4 [4, 7] 3 7

P4 100000/1| [32,63] 31 63
P5 010111/5| [22,23] 21 23
P6 110000/2| [48, 63] 47 63
P7 110000/4| [48,51] 47 51
P8 110111/6 | [55,55] 54 55
P9 100000/3| [32, 39] 31 39

El, El, El; El, Els El El, Elg Elg Elp Ely  Elp
{P1} {P1P3} {Pl} P2} {P2P5} (P2} {P4P9} {P4}{P4P6P7}{P4P6}{P4P6P8}{P4P6}
Xe X7 Xo

X, X4
[0,3] [4,7] [8 15] [16, 21] [22 23] [24,31] [32, 39] [40, 47]48, 51] [52. 54] [55. 55] [56, 63]
(a) Elementary interva

# of keys Cset
(3 t key; key,
(15 W 2(4754)-_ child, child, child,
Pz P4P¢ P4P¢
3139V ,S 55 u
T ipEq . 121 SRR N3 N
Xa Xs Xs X7 Xg Xg X10 Xu X1z
[16,21] [22,23] [24,31] [32,39] [40,47] [48,51] [52,54] [55,55] [56,63]

(b) DMST
Figurel. Elementary intervals and a possible DMST built adow toTable 1

Definition 2 (minus-1-endpoint schemd he two endpoints of a range {] are defined to be

e — landf.

Based on the minus-1 endpoint scheme, the set dgoémts built from the nine 6-bit
ranges in Table 1 are {3, 7, 15, 21, 23, 31, 39,547 54, 55}. By taking addresses 0 and 63
into consideration, twelve elementary intervals to X;» can be constructed as shown in
Figure 1(a). Every two consecutive elementary vaksr cannot be covered by the same subset
of the original ranges. For exampley EI{P1}# El, = {P1, P3}. Figure 1(b) shows a possible
multiway segment tree for the proposed DMST whidhlve explained later. The advantage of
using multiway segment tree over the binary segnrertis that the number of multiway tree

nodes traversed for a search is small. This adgantaakes our pipelined search engine very



suitable for the proposed DMST and leads to a khigbughput design.

Figure 2 illustrates the design model for the pemablP lookup algorithm. The protocol
stack is divided intalata planeandcontrol plane The control plane generally consists of a
large number of sophisticated codes that implerttenslow-path protocols such as IP routing
protocol or higher-layer protocols. The slow-pathdtions in control plane are managed by a
standard RISC processor like the Xscale core &l IXP network processors. In this paper, we
assume that the slow-path RISC processor mainlgutae the route update operations based
on the proposed dynamic multiway segment tree. fakepath function is typically the IP,
ATM, and similar protocols in layer two or three thfe network protocol stack. We also
assume that the fast-path function implements Phidkups by using dedicated FPGA-based
search engine designed for the proposed DMST. Td@oped pipelined search engine uses the
off-chip instead of on-chip SRAMs because the memnstorage capacity in current FPGA
devices is too small for any existing IP lookup caithm that can concurrently support
dynamic routing table update operations and a lamgéng table of more than 100k routing
entries. For example, the size of the SRAM memaoyided by the current technology such
as Xilinx Virtex-5 XC5VLX330T FPGA [30] is 11,664 Kwhich is too small for large routing
tables.

As shown in Figure 2, the packets are receivetiatdceiving unit and transmitted to the
outside after determining the next port. If the ks are for updating routing table, they are
sent to the slow-path RISC processor which willcee the proposed update operations and
modify the contents of some memory blocks of thfechfp SRAM accordingly. If the packets
are the usual Internet packets, they are sentet@tbposed DMST search engine for finding

the next port numbers and finally are passed tdrémsmitting unit.

4. PROPOSED DYNAMIC MULTIWAY SEGMENT TREE (DMST)

In this paper, the elementary intervals are orgahlzerarchically as a segment tree called
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Figure 2. Design Mode
dynamic multiway segment trd@MST) which is efficient for dynamic insertions and elens.
DMST is implemented as a B-tree of orderFigure 1(b) shows a possible order-3 DMST for
the prefixes in Table 1. Every nogés associated with anterval denoted byntvl(x) which is
the union of elementary intervals in the subtresed at node. Thus, the interval associated
with the root node in DMST covers the entire adsirsgace [0, 2 — 1]. Each node is also
associated with a range set caltathonical set (CsetEach endpoint is stored in exactly one
node as its key.
Definition 3 (Range allocation rule): Range R is stored in the canonical set of a nodeand
only if intvl(x) is contained in R, but intvl(par€x)) is not contained in R.

Based on the range allocation rule, the range nmagcdet of an elementary interval is
equal to the union of the canonical sets travemethe path from the root to the elementary
interval. When range R1 is more specific than raRgeR1 must be stored in the lower level
than R2. For example, P5 is more specific thannFZgure 1(b). Thus, nodgstoring P5is in
the lower level than nodewhich stores P2.

The data structure of an internal node consistinigkeys is formatted in a linear list &s |
Cset, child, key, child,, ..., key, child], wherechild; is a pointer to théh subtree for = 1 tot
and Cset is the canonical set. Also, tlkeys stored in an internal node satisfy the caodiof
key <key < ... <key. A leaf node only storeSset By saying fnsert a key ep and a pointer
ptr as keyand child in a nodé&, we mean key, child;, ..., key, child] are shifted to the right
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by one keyep andptr are inserted akey andchild;, andt is incremented by one. In case of
ambiguity, the filedld of nodex is denoted by.fld. If all keys are sorted in an increasing order,
the successor and predecessor of a lkeye denoted byguccessor(kand predecessdk),
respectively. Ifsuccessdk) does not exist, it is set td'2- 1, and ifpredecessdk) does not
exist, it is set to — 1.
4.1 Search in DMST

Given a destination addresk the searching process finds the matching rangaes t
contain d. If each range is associated with a priority, $earching process finds the
highest-priority range among all matching rangashis paper, we use the traditional priority
assignment rule to set the priority of a rangeallews. Range R1 is assigned with a higher
priority than range R2 if R1 is more specific tHaR. The routing table from an IP router is a
practical example. For IP routing tables, the lontde prefix, the higher is its priority.
Therefore, the routing table lookups find the lostgaefix among all matching prefixes af

Figure 3 shows the proposed DMST search algorithsimple tree traversal in thehile
loop is first performed from the root to the leaf ndldat corresponds to the elementary interval
containingd. While traversing the tree, all non-empty canohnseds encountered are stored in
the array Cset[X]. If the range set is conflict free, the highesbpty (the most specific)
range must exist in the non-empty canonical sethviias last visited. For example, when the
DMST search algorithm is applied to Figure 1(b)hadt= 48, the nodesv, z, s, andr are
traversed. The non-empty canonical sets are {P4,aR@ {P7}. As a result, the matching
ranges ofl are P4, P6, and P7, and the most specific matchimge is P7.

Complexity. The complexity of the search algorithm in Fig@ror an order-m DMST of
N arbitrary ranges depends on the data structutieeofanonical set which is assumed to be a
bitmap [5] in this paper. Currently, we make thldieing assumptions which are also used in
insertion and deletiorEach address is covered by at most maxR rangesitimy/deleting a

range into/from a canonical set of size Csize taB@¢Csize)) time, and accessing the highest
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Algorithm DMST _Searctroot, d)

{
01 x=rootk=0;
02 while (x# null) {

03 if (x.Csetz ¢) Csef++k] = x.Cset
04 if (xis a leaf node) break;
05 x.keyy = predecessg@r.key); X.Key t+1 = successqx.Key; 1);
06 Binary search on keykey to x.key t+1;
07 if

(x.key_; <d < xkey) x =x.childi_s;

08 }

09 if (range set is conflict-fre@gturn the highest priority range @sefk];
10 elsereturn the highest priority range Cse[3] to CselK];

Figure 3. The CMST search algorithr

priority range takes O(g(Csize)) time

The binary search is used to determine where thengaddressl is located in a B-tree
node. Thus, each iteration of the while loop taRdegm) time to determiné such thakey_; <
d < key. If mis small and the whole node can fit into a cadbelb(e.g., L1 cache in a modern
CPU), only a constant time is needed for the birsaarch in a node. The number of iterations
is O(logmN) (the height of the B-tree). After the tree traaady the main task of the search
algorithm is to find the highest-priority rangeancanonical set as shown in lines 9-10. If the
range set is conflict free, only the last canonsedlis searched, and thus the search complexity
is O(lognNxlogm + g(maxR). Otherwise, the search complexity ©(logmNxlogm +
logmN*xg(maxR). The number of nodes accesse@({®gN).
4.2 DMST Insertion Algorithm
We first propose an insertion algorithm that sefgdygouts the two endpoints of the range and
then the range itself into DMST. This approach wsed in MRT [29] and RIBT [20]. Next, we
will briefly describe the optimized insertion algbm that combines these three steps into one.
The optimized insertion algorithm avoids some retdum operations and thus performs better
than the un-optimized insertion algorithm.
4.2.1 Insert an endpoint

The proposed algorithm that inserts an endpginhto DMST isDMST _Insert_EndPoint

shown in Figure 4ADMST _Insert_EndPoinis an adaptation of the standard B-tree insertion
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algorithm [7] and is described as follows.
® Step 1: A tree traversal is performed to find tley &pin DMST. If epis already in
DMST, the search terminates at the node that amtae keyep. If epis not in DMST,
the algorithm terminates at a leaf node whose paredse will hold the kegp.
® Step 2kis first decremented by one axds set top[k]. Let p[k].keyy andp[k].key t+1
be the predecesspfkl.keyy) = gk] — 1 and the successpfk].key:) = f[K],
respectively. Based on inddéfk], the new keyep will be inserted betweerkey-1
and x. keyyq. Since the original elementary intervatkyy-1 +1, x.keyy] is
partitioned into two intervals bgp a new leaf node pointed to Byhas to be created.
Nodey is a duplication of the leaf node pointed to>ghild_;. Keysep andy are
inserted agey andchild of nodex, respectively and.t is incremented by one.
® Step 3: After insertingp, if x.t< m— 1, the insertion process is finished. Otherwise,
nodex has one key more than its capacity. Thus, in lii¢4, nodex needs to be split
into two nodes denoted by and y, and the middle kekey, of x is sent up toc's
parent, whereg =[nv2]. Specifically, the keys aof to the left ofkey, along with the
associated chilghointers remain irx, those to the right dfey, are placed into a new
nodey, andkey andy are inserted into the parent xf After nodex is split, the
canonicalsets inx' andy need to be adjusted to account for the factititat(x’) and
intvl(y) are not the same astvl(x). As stated in step 1, nodeis pointed to by
plk—1].child._, after the tree traversal, whepik—1] is the parent of andj = b[k-1].
Consider the example in Figure 5. Range R1 thatagw the intervalintvl(x) =
[p.key_1+1, x.key] was stored in all canonical sets of the childoémodex’ before splitting.
Thus, R1 needs to be removed from all these caalosgts of the children of and be inserted
into X'.Cset Similarly, range R2 that contains the intervavi(y) = [x.key + 1, p.key] need to
be removed from all canonical sets of the childseg and be inserted intpCset The above

canonical set adjustments are shown in lines 18fFgure 4. Finally, kekey and pointety
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Algorithm DMST _Insert_EndPoirroot, ef) // Assume tree is not em|

{
TN Sep 1: Traverse the tree for finding ke /11T
01 Perform tree_traversal to find arraofk 9], f[], b[], andk, where
p[i] for i = 1 tok are the nodes traversed;], f[i]] is the interval covered byfi],
b[i] is the index for nodg[i] such thap[i] .keyyi-1 <ep<pli] .keyy;
02 if (p[K] # leaf)return;
TN Sep 2: insert key ep which is not in the tree /111NN
03 k=k-1;x=p[K]; i=Db[K];
04 y=duplicate_a leaf node.child_;.Cse};
05 insertepandy asx.key andx.child; in nodex, andx.t++;
i Sep 3: node overflow, splik into two nodesx andy /I
06 while(x.t= m%{

07 g =[m/2]; keyg= x.key; .

08 y = create_new_node(); %1- t

09 move childy, [key+1, childg1], ..., [key, childy] in nodex to nodey; né‘ég 3 ane

10 y.Cset=x.Cset

11 yt=m-g;xt=g-1;

12 xSet= {R|R O x.childy-1.Csetand R coversgK], keyd}; 3.2:

13 for (h= 0 ;h < xt; h++) x.child,.Cset= x.child,.Cset— xSet djust

14 x.Cset= x.Cset+ xSef x.Cset

15 ySet= {R|R O y.childy.Csetand R coverskeyg+ 1,f[K]]}; 3.3

16 for (h=0 ;h<y.t;h++)y.child,.Cset=y.child,.Cset— ySet Adjust

17 y.Cset=y.Cset+ ySef v.Cse

18 if (k= 1) {root = create_nodé€E 1, child = x, key = ep child; =y); break;}

19 k=k—1;x=p[K]; ] = b[K]; x.t++;

20 insertkkeygandy asx.key andx.child; in nodex; } }3 4
}

Figure4. The algorithm that inserts a new endpoint intoD&ST.

are inserted akey andchild; in p[k-1], respectively. Since noggk—1] gets one more key, the
same split process may need to repepllatl] if p[k—1] were overflowed. Ultimately, the split
process may reach the root of the tree. As indlgalar B-tree, a new root node may need to be
created and thus the height of the tree is inctebg®ne, as shown in line 18 of Figure 4.
4.2.2 Insert a range
After inserting the two endpointss— 1 andf which are induced by the new range Resf],
algorithm DMST _Insert_Range shown in Figure 6 entpresented to insert range R based on
the range allocation rule and described as follows.
® Step 1 (line 1): The LCA nodeof R is found first. It is the lowest common artoesode

of keyse — landf in DMST.
® Step 2 (lines 2): If R contains the interval codet®y the LCA nodey of R, then R is

added iny.Cset
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Figure5. Node splitting arounx.keyg.

® Step 3 (lines 3-5): If R contains the interval asst@d with any of the children of LCA
nodey, R is added in that child’s canonical set.

® Step 4 (lines 6-16): I — 1 is equal to any key in LCA node y, no furtlpeocess is
needed. Ify.key 1< e — 1 < ykey, the tree is traversed from nogieto the node that
contains the keg — 1. At each node traversed, R is added in the canonical sets oesom

of x's children as shown in line 10 or 13.
® Step 5: this step is similar to step 4.

For example, if range P4 = [32, 63] in Table 1ase inserted, the endpoint 31 is first
inserted in DMST as shown in Figure 1(b). Stepntidithat the LCA node & Step 2 does
nothing, and step 3 inserts P4 it@setandu.Cset because P4 containsvl(s) andintvi(u)
but notintvl(2). In step 4, the leaf nodecontaining key 31 is reached and range P4 isteder
in v.child;.Csetandv.child,.Csetas shown in line 10 of Figure 6.
4.2.3Complexity

In the complexity analysis, the same assumptioms B8ST search algorithm are used.

(1) Algorithm DMST _Insert_EndPoinh Figure 4: Step 1 (lines 1-2) travers@dognN)
nodes. In each node traversed, the binary searthedreys take®(logm) time. Thus, the time
complexity of step 1 i©(log-Nxlogm). Step 2 (lines 3-5) tak&3(m) time because inserting a
key and a pointer in a node is needed. Each iterati the while loop in step 3 is divided into
four parts. Part 3.1 (lines 7-11) takegn) time because a new nogeonsisting ofO(m) keys
is created. In part 3.2 (lines 12-14), the candng= in nodex is adjusted. With the

assumption that the size of a canonical s€(maxR, O(f(maxR) time is needed to remove a

15



Algorithm DMST_Insert_Rangroot, R) // assume R=[e,

{
s s e N,
01 FindLCAnNodey and the intervallp, ub] covered byy;
s s e A
02 if ([lb, ub] is contained in R ) { Add R ig.Cset return;}
s e e W,
03 Sety.key =Ib—1,y.key+1 =ub
04 for (k=1 toy.t+1)
05 if (R coversy.key.1, y.key]) { Add R iny.child_1.Cset}
s e R
06 if (ykeyi<e—-1<ykey){//iO{1, ..., yt+1} ande — 1# any key in nodg
07 x =y.childi_y;

08 while (x # leaf nodég{

09 if xkey=e-=2D{//i10{1, ..., xt}

10 for (k=i tox.t) Add R inx.childi.Cset
11 break; }

12 if (xkey_1 <e —1<xkey){

13 for (k=i tox.t) Add R inx.childi.Cset
14 x =x.childi_y; }

15

16 }

s oy

if clause which is the same as line-16 excey.

1. ‘e—1"is replaced withf*,

2. line 10 is replaced witfor (k=0 toi — 1) Add R inx.childy.Cset
3. line 13 is replaced witfor (k = 0 toi — 2) Add R inx.child,.Cse

Figure6. The algorithm of the MST range allocation rul.

range fromx.childy_1.Cset and the number of ranges removed froohild,-1.Csetis O(maxR.
As a result, the complexity of part 3.20¢maxRcmxf(maxR). Parts 3.3 and 3.4 are similar to
parts 3.2 and 3.1, respectively. The number odiitens isO(log-N) which is the height of the
tree. Therefore, the total complexitydglogmNxmaxRmxf(maxR).

(2) Algorithm DMST Insert Rangen Figure 6: The complexity of step 1 is
O(logmnxlogm) by using a binary search @a(m) keys in a node. Adding R mnCsettakes
O(f(maxR) time with the same assumption described in stilmse4.1. Thus, the complexities
of Step 2, 3, and 4 a®(f(maxR), O(mxf(maxR), and O(logNxmxf(maxR), respectively.
Step 5 is similar to step 4. Overall, the time ctexpy of inserting a range and the associated
two endpoints is O(lagNxmaxRmxf(maxR)).

4.2.40ptimized DMST insertion

In the optimized DMST insertion algorithm, range=Re, f] and the two associated keys
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e — landf are inserted in DMST at the same time. Since keysl andf may not exist in
DMST before R is inserted, a different definitiamr the lowest common ancestor (LCA) node
of R is presented as follows. Let G be the seiddtiag keys contained in range 1,f]. If G

is empty, the LCA node is defined to be the node which keyse — 1 and will be inserted. If

G is not empty, the LCA node is defined to be thedst common ancestor of all nodes that
contain any key in G. In practice, the LCA nod¢his first DMST node encountered when the
B-tree is traversed from the root by usieg-[1,f]. For example, to insert a range R = [34, 53]
into the DMST in Figure 1(b), the LCA(R) is noddecause contains key 47 as covered by
[33, 53]. However, if R = [34, 35], the LCA nodeRfisv.

The optimized DMST insertion algorithm to insemge R is briefly described as follows.
The first step finds nodgwhich is the LCA node of R. If R contaimgvl(y), R is immediately
added iny.Csetand insertion process stops. Now, consider the rasvhich endpointe — 1
andf of R are inserted between two consecutive keymdey. If y.key ; <e— 1 <f <y.key,
keyse — 1 andf, along with two newly created leaf nodesindx, will be inserted iry. The
canonical sets of nodas and x are assigned witly.childi_;.Cset+{R} and y.child,_;.Cset
respectively. The canonical sgichild_;.Csetis duplicated in nodes and x because the
original elementary intervalylkey_;+1, y.key] is divided into three smaller intervals by keys
e— 1 and. The node splitting process is needed onyyis overflowed.

Finally, the case that intervad £ 1,f] covers at least one existing key in the treetbdse
considered. First, R is directly inserted yithild,_;.Cset if R containsylkey_i1+1, y.key],
wherey is the LCA node. Next, the insertion process 18d#id into two independent steps to
inserte — 1 andf, respectively. Since they are similar, only thegess of inserting — 1 is
described. The DMST tree is first traversed from CA node to a node that contains leay
1 or to a node that will hold the new key 1. Let the interval covered by a traversed node
be [Ib, ubl. Range R must contair,[ub]. Therefore, R must be insertedxichildc.Csetif e — 1

< xkey for k =i to x.t. When keye — 1 is not equal to any key in nodethe process will be
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repeated at the next level. After the last regatate is reached, if keg/— 1 does not still exist,
a new leaf node is created and inserted. The tiomptexity of the optimized insertion
algorithm is O(log\NxmaxRemxf(maxR), which is the same as that of the un-optimized
version.
4.3 DMST Deletion Algorithm

We only present the un-optimized deletion algoritinet divides the deletion process into
three separate steps. The optimized deletion #hgorihat combines these three steps into one
single step can be developed easily by using theequ of the LCA node and is thus omitted.
To delete a range =[e, f, R is first deleted from all canonical sets tbanhtain R by using the
reverse process of algorithm DMST _Insert_rangeBigure 6. Then we determine if key- 1
andf need to be removed from the tree based on the D@ Teletion rulelescribed below.

Assume keye —1 orf of R =[e, 1 is key in nodex that delimits the elementary intervals
Xx andXy+1. After R is removed from DMST, if Eland E}., become the samk&ey must be
removed from node to satisfy Definition 2. As stated, [Eis equal to the union of the
canonical sets in the path from the root to thé éesresponding to elementary intervgl.
Since the ranges in the canonical sets of néglancestors cover boi and Xy, and thus
belong to both Kland Ej.1, they can be ignored when determining if EIEk.1. As a result,
El; and E}.1 can be computed as follows (refer to Figure 7):

Elx =x.child_;.Csetl] uy.childy, +.Csetd ... O un.child,, +.Cset (1)

El+1 = x.child;.Cset O vy.childg.Cset O ... O vh.childg.Cset (2)

wherey; andy; for j = 1 ton are the descendent nodexaf the paths fronx to u, and

from x to v,,, andu, andv,, are the nodes that contain k@ysdecessdk.key) and

successdi.key), respectively.
Definition 4 (DM ST key deletion rule). The key must be removed from nodaf and only if
Elx = Ek+1, where E| and Ej}.+1are computed based on Equations (1) and (2).

For example, in Figure 1(b), the elementary inteXgis contained in intervalstvi(w),
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intvl(z), intvl(v), andintvl(v.childy). Thus, the range matching seg Bt Xs is {P2} which is the
union ofw.Csef z.Csetv.Cset andv.childy.Cset Similarly, Ek is {P2, P5} which is the union
of w.Csety.Cset u.Cset andu.child;.Cset If P5 = [22, 23] is deleted, key 23 in nogéhas to
be deleted. Similarly, key 21 can also be deleted.

Like the B-tree deletion algorithm [7], deletingkey from DMST can be divided into two
cases: deleting a key in a leaf node or in an iotdr.e., non-leaf) node. The detailed key

deletion algorithms are omitted in this paper beeaaf the space limit.

5. The DMST Search Engine

In this section, we present the pipelireedhitecture of the search engine designed for the
proposed DMST search algorithm. The pipeliredhitecture simulates all the operations
needed for searching a B-tree node in DMST. IfDIMST to be searched is adevel B-tree,
all the stages of the pipelinedchitecture will be circulated throughtimes to complete a
search operation for an incoming IP address. Fi@{eg shows an example of a 5-stage
pipelined architecture that uses 144-bit nodes emeihted by four 36-bit memory modules
accessed in parallel. With the 5-stage pipelinetiigacture, five different IP addresses can be
searched in the search engine concurrently at epdle and thus the lookup throughput is
improved.

To efficiently utilize all the 144 bits in the 144t nodes, a 12-bit segmentation table [17]
is used. As a result, up td?2ndependent multiway segment trees are built &hdis are
needed to represent the endpoints. The number #bitdnodes in the maximal multiway
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segment tree is less than 2048, as shown in cotupfriTable 3. Hence, eleven bits are needed

for representing the offset address of a nodermuliiway segment tree. The offset address is

relative to the absolute address of the root nodéhé multivay segment tree. These two

addresses (absolute address of root node and affdetss of a node) are added together to get

the absolute address of the node. Note that tisetodiddresses correspond to the child pointers

of the B-tree nodes in the software implementabbthe DMST described in Section 4. In
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addition to the 20-bit endpoints and 11-bit offaedresses, each node also need one bit to
indicate if it is leaf node (denoted by 1-bitish flag and an 8-bit default port number. The
default port (denoted bP) field is the next-port number of the prefix tleatirely covers the
address space of the node. Therefore, as showrigureF8(b), all the 144 bits can be
completely utilized to build a 5-way DMST. The Ofidld of a node in Figure 8(b) indicates
that the search outcome obtained from the nodéhsrethe offset address of the next-level
node or the final next port number of the currezdrsh operation. The fieldto record the
number of keys in the node data structure prewodsscribed in section 4 is not needed in the
search engine. Therefore, if there are less thanKeys in the node, the values of the unused
key slots are set to the largest key value. Aneexé&r case is as follows. Since a 12-bit
segmentation table is used in DMST, there will bme segments containing no prefixes of
length longer than 12. For this kind of segments store the largest address of the segment in
all the four key slots. Also, the 1-bit finish flagset to 1 and the next port number which must
be O/NO field is set to the port number of the lestgprefix that completely covers the
segment’s address space. As a result, no additiogil is needed to process this exceptional
case. The worst-case search performance will berrdeted by the size of the maximal
multiway segment tree. Thel2-bit segmentation tableery small compared with the memory
used for all the multiway segment trees. Similaifhg search engine of 288-bit nodes can be
designed to build a 10-way DMST.
The functionalities of all five stages in the pipeld search engine consisting of 144-bit
DMST nodes are described as follows.
® Stage 1. The most significant 12 bits of the IPradsd are used to index the 12-bit

segmentation table to obtain the absolute addifey® @oot node of the corresponding

multiway segment tree. Since the number of 14bites is less thart 2for all the

routing tables we experimented as shown in colunai Bable 3, seventeen bits are

needed for representing the absolute address. B$mute address of the root node
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and the offset address of the DMST node to be aedeare summed up by an adder
and output to the pipeline register of next stddee address and data_in lines are used
by the slow path processor for update operations.

® Stage 2: The address of the DMST node to be aatéssesed to read the off-chip
SRAM memory to get the 144-bit data which will dered in the stage 3 pipeline
register and processed in the following stages.

@ Stage 3: The real search process is performeddrsthge which consists of a DMST
node search logic shown in Figure 8(c). Four enugodivide the node’s address
space into five intervals. Thus, the node seargitlbnds which interval matches the
least significant 20 bits of the IP address. Theensearch logic returns a 5-bit search
result in which only one bit corresponding to thatohed interval is set.

® Stage 4: The O/N field selector uses the 5-bitcteaesult computed in stage 3 to
select the O/N field value of the matched interddle lower part of the logic in this
stage determines that if the default port (DP) essed in stage 3 is valid, it will
replace the old default port found in the parenthaf node currently processed. We
assume the invalid default port is OxFF. So, thple@mentation of this functionality is
simply a combination of an 8-bit input AND gate anéx1 multiplexer.

® Stage 5: The finish flag is examined to determiretiver the leaf node is reached in
the search process. If the finish flag is off, @ field extracted from stage 4 is the
child offset address of the current node which Wwél fed to the first stage pipeline
register to start another run of the search proc@tgerwise, when the finish flag is on,
the search process of the current lookup operagi@one. The final task is to extract
the final next port number. If the next port numfeeg., the least significant 8 bits of
the selected O/N field value) is not OXFF, it viné# the final port number implemented
by the two concatenated NAND gates andcka ghultiplexer. Otherwise, the final next

port will be the current default port computed tage 4.

22



Finally, the design of the search engine for 10-W&4ST is briefly described. Each node
of the 10-way DMST is represented by a 288-bit farnA 12-bit segmentation table is also
used to deal with the most significant 12 bits bfraute prefixes. Further, as shown in the
fourth column of Table 3, the number of 288-bit esdf the largest DMST is less thah 2
Thus, each O/N field only occupies 9 bits. In cosan, the 288-bit format consists of nine
20-bit endpoints, ten 9-bit O/N fields, one 1-lnigh flag, one 8-bit default port field, and nine
bits are unused. The DMST node search logic showigure 8(c) in stage 3 is extended to
compare ten keys in parallel that can output aifl®darch result
5.1 Extending the DMST search engine

As stated above, each lookup operation of a pagkktirculate through all the stages of
the search engine times if the destination IP address of the padetbngs to the address
space of a multiway segment treendevels. Notice tham is at most six for the routing tables
we experimented in this paper. Because the off-ai@mory is cheap and the on-chip cost of
the search engine is small, a straightforward esx¢enis to avoid circulating through the same
search engine many times by usmgeparate search engines connected serially. Ba#ing
architecture will be arbstage pipelined search engine caliedended DMST search engine
that contains) separate off-chip SRAMs that can be accessed ocamtly. Since & packets
can be searched concurrently in the extended DM@&Mck engine in one cycle, the throughput

will be 1k, wherer is the memory access delay of the off-chip SRAM.

6. PERFORMANCE EVALUATION

In this section, we present the experimental redaltthe proposed DMST IP lookup schemes.
The simulation results in terms of memory requiretnsearch, and update times conducted on
the general-purpose CPU, i.e., Intel Core 2 Qua@0Q9PC, are first given to show the
performance of the proposed DMST implemented ire maftware. Next, the performance of

the proposed pipelined search engine for DMST basedXilinx Virtex-5 XC5VLX330T
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FPGA is shown.

There are two parts of the operations that imgeeupdate and search performance of the
proposed scheme. The first part is the update tpesaof the dynamic multiway segment tree
executed in the slow-path CPU presented in secliorThe slow-path CPU runs in a
full-fledged operating system that has its own mgn{PRAM or SDRAM) different from the
off-chip SRAMs accessed in stage 2 of the seargmenThe multiwvay segment trees stored
in the off-chip SRAM are duplicated in the slow panhemory. Each DMST node in the
slow-path memory corresponds to a DMST node inSRAM of the search engine. When a
slow-path node is modified, it does not necessanigan that the corresponding SRAM node
also needs to be modified. For example, if a prefixserted in th€Setof a slow-path node
and it is not the longest prefix in tl&Set the corresponding SRAM node remains intact. The
second part of update operations is that the slath-GPU computes which SRAM nodes need
to be modified and perform the write operationsttoa off-chip SRAMs. We will explain the
impact of updates on search performance is miniate.

To measure the search time, the simulation IPi¢reffobtained by first collecting the start
addresses of all prefixes in the original routiaflé. Then, the IP addresses are randomized
and fed them into our simulator that implements pheposed DMST scheme to obtain the
average search times. In order to obtain the upggatermance results, the data structure for
the proposed DMST scheme is first constructed aaoagrto the original routing table. Next,
we randomly delete 10% prefixes from the structueebuilt and then insert these deleted 10%
prefixes back into the structure. The average w@dtiates in the slow path and number of
SRAM nodes to be modified are reported. The perémee of the proposed DMST scheme is
also compared with two existing B-tree-based sclsem&mely MRT [29] and PIBT [20]. The
experimental results are based on five real-lifetlPouting tables obtained from [4] and [27].
The simulation programs are written in C and gé&zZ.compiler of Redhat 9.0 with an

optimization level —O4 is used. The simulationsrareon a 2.5-GHz Intel Core 2 Quad Q9300
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PC that has 32 KB 8-way set associative L1 cache of 64-bytekdp 23072 KB 12-way set
associative L2 cache of 64-byte blocks, and 4-GBnnmaemory. The instruction called
RDTSC (ReaD Time Stamp Counter) is also used t@ kaeaccurate count of every clock
cycle that occurs in the processor.

Table 2 and Figure 9 present the performance sestilorder 32 for DMST, MRT [29],
and PIBT [20]. The results for MRT and PIBT repdrie [29] and [20] also use the order of 32.
DMST consumes much less memory than MRT and PIBRume of the following reasons.
First, DMST uses fewer keys and smaller nodes (witlequal lists or heaps) than MRT and
PIBT. Second, DMST and PIBT store each prefix at)@(des per level (at mo€log N)
levels) and MRT stores each prefix atodes per level, wherais the order of the B-trees.
In terms of search, DMST is only 4-5% and 11-18%dathan MRT and PIBT, respectively.
However, the update performance of DMST is 35-31#h47-50% faster than MRT and PIBT,
respectively. The average search performance s sidewn in terms of million packets per
second (Mpps). By using the minimal Ethernet padiet which is 64 bytes, the proposed
DMST search algorithm with software implementatiming Intel Core 2 Quad Q9300 PC can
achieve the throughput of about 2.56 to 3.42 Ghpisiwis better than OC-48 (2.45 Gbps).

Table 3 shows the performance results of the pep&VST search engine using 144-bit
and 288-bit nodes based on Xilinx Virtex-5 XC5VLXB3 FPGA containing 51,840 slices
(each slice contains four LUTs and four flip-flos)d 324block RAMblocks of 36 Kb each.
The third and fourth columns show the total numifenodes and the number of nodes in the
maximal segment for all the five routing tables.l@an 5 summarizes the off-chip SRAM
usage in Mb which is equivalent to the total numiienodes multiplied by the node size. For
example, the search engine of 144-bit nodes fag table AS6447aneeds 6.23 Mb (i.e.,
45,400<144 bits) of off-chip SRAM. We can see that the bemof 144-bit nodes in the
maximal segment tree of table AS6447c is 1,036 wiscthe largest among all the maximal

segment trees of the routing tables we experimenthds, eleven bits are enough for O/N
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Table2. Theperformance of all -tree based schemes of ordel

Routing Tabl_|AS6447{AS6447I[AS6447(AS766(| AS249:
Year-month 2000-4 2002-4 | 2005-4 | 2005-4| 2005-4

# of prefixes 79,560 124,824| 163,574/ 159,816 157,118
ORAM | MRT | 2,640 | 4,117 | 5368 5,232 5,15(
(KByte) PIBT [ 2568 | 4,006 | 5223] 5091 5,01
DMST| 1,434 | 2,187 | 2,780| 2,671 2,624

Search MRT | 017 | 022 | 024 0.24 0.24
(wseq)| .PIBT [ 016 | 019 [ 022 021 0.2]
DMST| 0.5 | 0.18 | 0.0 0.20 0.2Q

Searci MRT | 588 | 455 | 417[ 417] 4.7
(Mpps)| PIBT [ 6.25 | 526 | 455[ 4.76] 4.7
DMST| 6.67 | 5.56 | 500] 5.0 500
Updatd MRT | 108 [ 112 [ 118] Li7] 117
(hsec) PIBT [ 0.83 [ 001 [ 096] 096 0.96
DMST| 052 | 0.59 | 0.62] 0.61] 0.61
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Figure9. Performance compariso
fields. Similarly, nine bits in O/N field are endufpr the search engine of 288-bit nodes.
For the on-chip costs, column 6 shows that the cheangines containing 144-bit and 288-bit
nodes need 463 and 575 slices, respectively. A®saltr the needed on-chip cost only
accounts for one percentage of the on-chip cordigierlogic available in Xilinx Virtex-5
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XC5VLX330T FPGA. Notice that the 12-bit segmentatitable is implemented by block
RAM which is faster than the implementation by tHistributed RAM of the on-chip
configurable logic. Based on our experiments, tBebit segmentation table consumes only
two block RAM blocks.

For the search performance, we report the averagwers of nodes accessed per search
and the worst-case number of nodes accessed pahs@athe maximal segment tree in
column 8 of Table 3. The latter represents the ta@ase number of off-chip memory accesses.
Other than stage 2 that performs the read operatoon off-chip SRAMSs, stage 3 of the
proposed pipelined architecture is the slowestestalgich takes a processing delay of 4.94 ns
and 5.11 ns for 144-bit and 288-bit nodes, respelgti Since the off-chip SRAMs only have a
few operating frequencies available (e.g., 250,, 288, and 133 Mhz), we have to select the
one that meets the processing delay requiremenb agmaller than 4.94 ns or 5.11 ns. Thus,
the best operating frequencies of the off-chip SRAMe 200 Mhz and 166 Mhz for the
pipelined architectures of 144-bit and 288-bit rgdespectively. The processing time taken by
stage 2 depends on I/O delays of both FPGA dewdeadf-chip SRAM. In our case, Xilinx
Virtex-5 XC5VLX330T FPGA has an output delay of 2.8s and an input delay of 2.03 ns.
Cypress Pipelined Sync SRAM CY7C1347G-200Mhz [&] igossible solution because of the
following reasons. First, Cypress CY7C1347G hasnant delay of 1.2 ns. By including the
output delay of Xilinx Virtex-5 XC5VLX330T FPGA whh is 2.83 ns, the total delay from
FPGA to SRAM becomes 4.03 ns. Second, Cypress C34133 has an output delay of 2.8 ns.
By including the input delay of Xilinx Virtex-5 XCA.X330T FPGA which is 2.03 ns, the
total delay from SRAM to FPGA becomes 4.83 ns. Bhthdelays from FPGA to SRAM and
from SRAM to FPGA are less than 5 ns. As a redwitsing Cypress Pipelined Sync SRAM
CY7C1347G-200Mhz as the choice of off-chip SRAMe firoposed pipelined architecture of
144-bit nodes can be set at the cycle time of HHasvever, for the pipelined architecture of

288-bit nodes, we have to use Cypress Pipelined SRAM CY7C1347G-166Mhz and thus
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Table 3. Theperformance of DMST search engine, where we asgatieets are the minirr
Ethernet packet of size 64 bytes.

Memory usage and on-chip cost Search Update
number of node Stf-chip on-chip |pipeline| Nnuorgl;gr throughput ﬁ}ﬁ;g?i
SRAM |configurable cycle | . oo | (average/worst-casg) nodes
Routing Max. | (Mb) logic ime | ner search modified
Tables | 10 segment (slice) | (ns) |(qy
g/max) Mpps Gbps |per update
AS6447a45,400 788| 6.23 4.50/6 | 44.4/33.322.8/17.1 2.75
144-bit|AS6447h67,556 964| 9.28 4.66/6 | 42.9/33.322.0/17.1 2.66
node |AS6447¢85,018 1,036 | 11.68 463 5 4.68/6 | 42.7/33.321.9/17.1] 2.52
(5-way) | AS7660|81,662 874| 11.21 4.57/6 | 43.8/33.322.4/17.1] 2.51
AS2493/80,532 870| 11.06 4.59/6 | 43.6/33.322.3/17.1] 2.52
AS6447a22,201  346| 6.10 3.21/4 | 51.9/41.726.6/21.3 2.46
288-bit|AS6447p31,880 430| 8.76 3.29/4 | 50.7/41.725.9/21.3 2.44
node |AS6447¢39,449 464| 10.83 575 6 3.29/4 | 50.7/41.725.9/21.3 2.29
(10-way) AS7660/37,959 381| 10.43 3.22/4 | 51.8/41.726.5/21.3 2.30
AS2493/37,431 390| 10.28 3.20/4 | 52.1/41.726.7/21.3 2.29
Note: the 12-bit segmentation table consumes XHR#AM blocks

the cycle time of the proposed pipelined architects 6 ns.

With the cycle time bounded by 5 or 6 ns shownaluimn 7 of Table 3 and the number of
nodes accessed per search shown in column 8, weoogpute the throughput of the proposed
pipelined search engine in terms of million packes second (Mpps) as shown in column 9.
By assuming that all the packets have the minintiaéiaet packet size of 64 bytes, we can also
calculate the throughputs in terms of billion per second (Gbps) in column 10. As a result,
the search engines of 144-bit and 288-bit nodesachareve the throughputs of 17.1 and 21.3
Gbps in the worst case, respectively. Finally, #iverage number of nodes that need to be
modified per update is shown in the last column.

Subsequently, we shall describe that the impadhefupdate operations on the search
performance is minimal. Refer to the stage 2 oklmed search engine in Figure 8(a). The
read operation on off-chip SRAM is performed inmgveycle. We use the precedence model in
[8] such that when a write operation is neededaforupdate along with a read operation in
some cycle, it is given the precedence over thd operation. As a result, the read operation
obtains the data written by the update insteadh@fcbrrect data requested. Reading incorrect

data from the off-chip SRAM only results in obtaigi an incorrect next port for the

28



Table 4. performance of extended DMST search en¢gwhere we assume packets are
minimal Ethernet packets of size 64 bytes.

Number of nodes _min|  ON-Chip |on-chip
Routing OSffR(X]I\I/FI) configurable block Th?gl?g;rﬁgut
Tables Level # logic RAM

Totdl ——T—T 31 2 T 5T 51 | (slice) |(block)

AS6447a45,4004,0962,9975,227/12,40419,785 891] 6.23
144-bit|AS6447h67,5564,0963,431 7,883/17,32630,934 3,886 9.28

node |[AS6447¢85,0184,0963,94510,04222,08440,0994,752| 11.68 2,778 12 | 200 102
(5-way)| AS7660|81,6624,0964,17310,83322,77637,9101,874| 11.21
AS2493|80,5324,0964,17010,59022,03436,6892,955| 11.06

MppsGbps

AS64474922,2014,0963,084 9,452| 5,569 6.10
288-bit|AS6447h31,88C4,0964,15713,850 9,777 8.76
node |AS6447¢39,4494,0965,18318,16512,005 N/A 10.83 2,300 8 167 85
(10-way) AS7660|37,9594,0965,53(18,16210,171 10.43
AS2493|37,4314,0965,57118,328 9,436 10.28

corresponding packet which is eventually will beajyed or forwarded to a wrong destination.
Consider the rate of 1000 updates per second tdingptable AS6447a which needs 2.75 node
modifications per update as shown in the last colofiTable 3. These node modifications will
cause at most 2,750 packets being dropped or fdedamncorrectly. Compared to the 44.4
million packets being forwarded by the proposeddeangine containing 144-bit nodes for
table AS6447a, 2,750 (the number of packets beiogpd or forwarded incorrectly) is very
small and can be ignored. Thus, the throughpuhefrouter remains almost the same when
updates are taken into consideration.

The performance results of the extended DMST seangme are shown in Table 4. The
pipeline cycle time is bounded by the stage 2 wisch ns and 6 ns for the search engines of
144-bit and 288-bit nodes, respectively. Whenhadl packets are the minimal Ethernet packets
of size 64 bytes, the overall throughputs will 2 I5bps and 85 Gbps for the search engines
of 144-bit and 288-bit nodes, respectively. Not the throughputs are independent of routing
table sizes. In Table 4, we also show the total memof nodes needed in each level. For
example, there are 4096 and 2997 144-bit nodesvigld 1 and 2 of the 5-way search engine,
respectively for routing table AS6447a. The updgteed will remain the same as before.

In practice, the idea of using multiple off-chip ARs in the extended DMST search
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engine to speed up the search performance is tirbjye¢he number of I/O pins provided FPGA
devices. If a single FPGA device provides less nremalh I/O pins than needed, we have to use
multiple FPGA devices. In our case, Xilinx Virtex)85VLX330T FPGA has only 960 I/O
pins which is less than needed (about 1087 pinghtbextended architecture of 144-bit nodes
with four off-chip SRAMs. A simple solution is tose two Xilinx Virtex-5 XC5VLX330T
FPGA devices. Since there is one more stage ndmztaesen the two FPGA devices, the total

number of stages in the extended DMST search emgBik instead of 30.

7. SUMMARY and FUTURE WORK

We developed a dynamic multiway segment tree (DM&Bed data structure for IP lookups.
DMST is implemented with a B-tree for dynamic fordiag tables. DMST has the same
asymptotic complexities as MRT and PIBT. With theeriments using real IPv4 routing
tables, DMST is found to be better than MRT andTPilBterms of search speed, update speed,
and memory consumption because DMST uses smalldesnand fewer keys. We also
proposed a pipelined search engine using off-ctRAMs to further improve the search
performance. By utilizing the current FPGA and difip SRAM technologies, the proposed
5-stage pipelined search engine can achieve thstwase throughputs of 33.3 and 41.7 Gbps
for the search engines of 144-bit and 288-bit npdespectively. These throughputs are
equivalent to 17.1 and 21.3 Gbps for minimal Etkepackets of size 64 bytes. Furthermore,
the extended DMST search engine of 144-bit andii#BB8edes can achieve the throughputs of
200 and 167 Mpps, respectively. Similarly, theseughputs are equivalent to 102 and 85
Gbps for minimal Ethernet packets of size 64 bytes.

In summary, the proposed pipeline architecturesist® of two major advantages. First,
the stage 2 that performs off-chip memory accesaesbe incorporated with any advanced
memory technologies and thus a very high-throughiputer can be achieved. Second, the

proposed architecture is based on the data steutttat can be updated and thus it also has a
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very good update performance.

Although the current proposal provides a very Higtoughput router design along with
its updatable feature, some enhancements can be idothe future. Firstly, since IPv6
addresses are 128 bits, the order of the B-trestiearted for IPv6 addresses will become much
smaller than that for IPv4 addresses. This leads deeper B-tree structure and thus reduces
the search speed. Therefore, what remains to blerexrlpis to apply the insights from our
IPv4-based pipeline architecture to incorporate6iBpecification with the current design.
Secondly, we can construct two and four parallpklmes by using dual-port and quad-port
memories, respectively. This enhancement providasagghtforward mechanism to double or
quadruple the throughput of the current designtdiyyiother than stage 2 for off-chip memory
accesses, the bottle-neck stage of the proposetin@mrchitecture is stage 3 in which DMST
node search logic takes most of the time needed 4.94 ns and 5.11 ns obtained on Xilinx
Virtex-5 XC5VLX330T FPGA for 144-bit and 288-bit des, respectively). Therefore, an
optimization technique is needed to reduce theydelahis stage. Splitting stage 3 into two
sub-stages may be a possible solution. This opitioiz for stage 3 becomes even more
important as the memory access speed at stagel 2nariéase in the future. Fourthly, the
update performance can also be improved by usiagthbedded processors implemented on
FPGA which can reduces the communication overheat the I/O interface between the
FPGA and external processor in the current dedngnvs in Figure 2. For example, Xilinx
Virtex-5 FXT FPGAs contain 1 to 2 PowerPC 440 Mpnacessors. Thus, the functionalities
of the slow and fast paths can all be built inte @mngle Xilinx Virtex-5 FXT FPGA chip.
Fifthly, the power consumption is also an issud teeds to be explored, especially when
multiple off-chip SRAMs are used. Comparing the powonsumption of off-chip memory
over on-chip memory may be a possible direction.
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