
 1 

Dynamic Multiway Segment Tree for IP Lookups and the Fast 
Pipelined Search Engine 

Yeim-Kuan Chang, Yung-Chieh Lin, and Cheng-Chien Su 

Abstract - A dynamic multiway segment tree (DMST) is proposed for IP lookups in this paper. 

DMST is designed for dynamic routing tables that can dynamically insert and delete prefixes. 

DMST is implemented as a B-tree that has all distinct endpoints of ranges as its keys. The 

complexities of search, insertion, deletion, and memory requirement are the same as the 

existing multiway range tree (MRT) and prefix in B-tree (PIBT) for prefixes. In addition, a 

pipelined DMST search engine is proposed to further speed up the search operations. The 

proposed pipelined DMST search engine uses off-chip SRAMs instead of on-chip SRAMs 

because the capacity of the latter is too small to hold large routing tables and the cost of the 

latter is too expensive. By utilizing current FPGA and off-chip SRAM technologies, our 

proposed 5-stage pipelined search engine can achieve the worst-case throughputs of 33.3 and 

41.7 million packets per second (Mpps) with 144-bit and 288-bit wide SRAM blocks, 

respectively. Furthermore, a straightforward extension of the pipelined search engine with 

multiple independent off-chip SRAMs can achieve the throughput of 200 Mpps which is 

equivalent to 102 Gbps for minimal Ethernet packets of size 64 bytes. 

Index Terms - segment tree, elementary interval, B-tree, Pipeline, FPGA 

1. INTRODUCTION 

The Internet applications such as World Wide Web (WWW) and P2P applications have 

generated tremendous network traffic on the Internet and hence consume a large percentage of 

the Internet bandwidth. If the Internet is able to continue supporting good quality of service, 

the next-generation IP routers have to provide faster packet forwarding rate and quicker 

adaptation to route changes. All tasks that have to be executed by the router after receiving a 

packet can be divided into time-critical (fast path) and non-time-critical (slow path) operations 

depending on the packet type and its frequency. Time critical operations that are operated on 

majority of the packets must be implemented in a highly efficient and optimized manner to 



 2 

keep up with the high link speed and router bandwidth. Among all the tasks performed by the 

router [2], IP table lookups are the most time consuming. In table lookups, the destination 

addresses are looked up against a forwarding table by a forwarding engine that determines the 

next-hops in the network, where the packets should be sent. 

Existing IP table lookup schemes can be broadly classified into two categories: static and 

dynamic. The static schemes are designed with the assumption that the forwarding table is not 

frequently updated. A forwarding table pre-computation is typically needed in static schemes 

for improving lookup speed and reducing memory requirement. The disadvantage of static 

schemes is that when a single prefix is added or deleted, the entire forwarding table may need 

to be rebuilt. Rebuilding a forwarding table has a negative impact on the lookup performance 

of routers. On the other hand, in dynamic schemes, frequent insertions and deletions [15] are 

performed in real time, and thus forwarding table rebuilding is not required. 

In this paper, we solve the IP table lookup problem by treating prefixes in the forwarding 

table as ranges. A range [e, f] matches the destination address d iff e ≤ d ≤ f. The proposed data 

structure called dynamic multiway segment tree (DMST) is suitable for dynamic range 

insertions and deletions. DMST is a B-tree in which each node is augmented with a range set 

called canonical set. The detailed data structures of canonical set can be found in [5]. Although 

both the multiway range tree (MRT) [29] and the range in B-tree (RIBT) [20] also use B-trees, 

their structures have the following disadvantages: 

1. The keys used to build the B-trees in MRT and RIBT are the traditional endpoints. For 

example, e and f are the keys for range [e, f]. However, we use e – 1 and f as the keys 

based on the minus-1 endpoint definition proposed in [5]. The minus-1 endpoint scheme 

uses fewer keys than the traditional endpoint scheme. Hence, the height of the B-tree in 

DMST is smaller than that in MRT and RIBT. 

2. In MRT and RIBT, each key requires an additional equal list or heap to record which 

ranges start or terminate at the key. Equal lists determine whether or not a key needs to 



 3 

be removed from the B-tree after a range is deleted. The proposed DMST uses the 

concept of elementary intervals to build the B-tree and the proposed key deletion rule 

can determine if a key has to be removed without the need of equal lists or heaps. As a 

result, the DMST node structure is smaller than that in MRT and RIBT. 

Consequently, even though the asymptotic complexities of performing dynamic search 

and update operations, and the asymptotic memory requirements are the same in all the B-tree 

based schemes, our performance experiments using real IPv4 routing tables show that DMST is 

faster in terms of searches and updates and also consumes less memory than MRT and RIBT.  

In addition to developing a data structure for efficient updates, we also propose a 

pipelined search engine to further speed up the search operations. We choose off-chip SRAMs 

instead of on-chip SRAMs because the former is a lot cheaper than the latter [1][10]. 

Furthermore, the storage capacity of off-chip SRAM can be as large as possible to meet our 

needs for storing a very large routing table. Two unique contributions of our paper are: 

1. In theory, our DMST extends on the binary version of segment trees proposed in [5]. 

Since the height of multiway segment trees is smaller than that of binary segment trees, 

DMST achieves faster search speeds while still maintaining fast updates of a 

logarithmic complexity. DMST is better than MRT and RIBT, the existing similar 

B-tree based data structures for IP lookups.  

2. In practice, our pipelined DMST search engine is designed for achieving a high 

throughput of up to 200 million packets per second by taking advantage of the fact that 

a search operation traverses less number of nodes in multiway segment trees than 

binary segment trees. The usage of off-chip SRAMs allows very large routing tables to 

be accommodated in the proposed pipelined search engine, which is not possible if 

on-chip memory is used. 

The rest of the paper is organized as follows. Related works are discussed in Section 2. 

The preliminaries and design model are given in Section 3, and the detailed algorithms for 



 4 

DMST are presented in section 4. The detailed architecture of the pipelined DMST search 

engine and its extension are proposed in Section 5. The results of the performance comparisons 

are given in Section 6, and finally, the concluding remarks are presented. 

2. RELATED WORKS 

Although research in IP lookup problem [6][23] is conducted intensively in recent years, 

algorithms that balance among lookup speeds, memory requirement, update performance, and 

scalability are scarce. The existing schemes [9], [12], [16], [22], [28], [25], [13], [14] are 

mostly static and thus cannot afford frequent prefix insertions and deletions. The trie-based 

schemes [6][23] like the binary trie, multi-bit trie, and Patricia trie do not use pre-computation, 

and thus are suitable for dynamic forwarding tables. However, their lookup speeds degrade 

linearly with the address length and their memory consumption is large. 

Kim and Sahni [24] developed a dynamic data structure called the collection of red-black 

trees (CRBT). The basic interval tree of CRBT is constructed from the traditional endpoints of 

all prefixes. CRBT supports search, insert, and delete operations in O(log N) time each for a 

routing table of N prefixes. Lu and Sahni proposed a dynamic scheme [18] based on an 

enhanced priority search tree [21] which arrives at O(log N) time complexity for search, 

insertion, and deletion. The experimental results in [18] showed that PST performs a little 

worse than CRBT in terms of search time. However, PST performs much better than CRBT in 

terms of insertion, deletion, and memory usage.  

Lu and Sahni also developed an enhanced interval tree [3] which is called the binary tree 

on binary tree (BOB) [19] for dynamic routing tables. With real routing tables, BOB and prefix 

BOB perform the operations of insertion, deletion, and search in O(log N) time. Also, the 

prefix BOB and the longest matching prefix BOB perform much better than PST in terms of 

search, insertion, deletion, and memory requirement. 

A dynamic multiway fat inverted segment tree (FIS) is proposed in [11] for dynamic 



 5 

insertions and deletions of ranges. The search time of O(logmN) can be achieved in a tree of 

degree m. In [29], a B-tree-based multiway range tree (MRT) is proposed to find the longest 

matching prefix in O(logmN) time, and insert or delete a prefix in O(mlogmN) time. MRT is 

suitable for both prefixes and ranges. However, there are many duplicate endpoints stored in 

internal nodes, and a prefix may be stored in at most m – 1 nodes in each level of B-tree. This 

drawback increases the update time and memory requirement. Another B-tree-based data 

structure called range in B-tree (RIBT) is proposed in [20] for solving this drawback by storing 

a range in only O(1) B-tree nodes in each level of B-tree. The asymptotic complexity of PIBT 

to find the longest matching prefix is the same as MRT, and the measured time for the search 

operations is almost the same for RIBT and MRT using real routing tables. However, RIBT is 

more memory efficient than MRT by a constant factor. In addition to the B-tree based 

algorithms mentioned above, authors in [26] proposed some compression techniques that try to 

put as many nodes as possible into the B-tree nodes in order to fit entire routing table in the 

on-chip memory of a single chip. However, no efficient update algorithms can be supported 

because their compression techniques need pre-computations. Also, the on-chip memory is 

expensive and the capacity of the on-chip memory is always limited by the chip area. The 

off-chip memory used in the proposed pipelined architecture is cheap and can be much larger 

than the on-chip memory for holding a very large routing table. Also, our proposed algorithm 

support dynamic updates. 

Since DMST, MRT [29], and RIBT [20] all use multiway segment trees, the subtle 

differences among them are worth discussing. Their three major differences are (1) what are 

the keys, (2) how to store the keys, and (3) how to delete an endpoint in the B-tree which are 

specifically explained as follows:  

The keys (i.e., endpoints) in MRT and RIBT are based on the traditional endpoint scheme 

in which the keys of range R = [e, f] are defined as e and f. However, based on the 

minus-1-endpoint definition [5], e – 1 and f are used as the keys in DMST. Let Ee,f(R) and 



 6 

Ee–1,f(R) be the sets of keys for a set R of N ranges based on the traditional endpoint and 

minus-1-endpoint, respectively. Obviously, both |Ee,f(R)| and |Ee–1,f(R)| are less than or equal to 

2N. |Ee–1,f(R)| is smaller than |Ee,f(R)| if some ranges in R are contiguous (i.e., the finish 

endpoint of a range is equal to the start endpoint of another range minus one). As shown in [5], 

the number of endpoints generated by the minus-1-endpoint scheme is about 69~73% of that 

by the traditional endpoint scheme. As a result, the memory requirement for DMST is less than 

that for MRT and RIBT.  

With the difference in key definitions, MRT, RIBT, and DMST define the fundamentally 

different address coverage (called span in MRT or interval in RIBT and DMST) for a key or 

node to facilitate the search process. Basically, MRT follows the span definition of the binary 

range search proposed in [16]. In MRT, the address span of a key v is defined as a half-open 

interval (u, v], where u is the predecessor of v in the increasing order of keys. If addresses 0 

and 2W – 1 in the W-bit address space are always included, the entire address space is the union 

of all address spans. Thus, as done in the binary range search [16], if we can precompute the 

highest priority range for each address span, a simple binary search can be applied to find 

which address span the address d belongs to, and then obtain the matched range for d. However, 

one problem is that the highest priority ranges for address span (u, v – 1] and singleton address 

v may be different. Thus, extra information for each endpoint is needed to determine the 

highest priority matched range for address d when d is equal to v or is larger than the 

predecessor of v. This is where the “=” and “>” ports of the binary range search [16] come 

from. In RIBT, the definition of interval is similar to the address span in MRT. The key equal 

heap which is the same as key equal list in MRT is needed for each key in RIBT. We will show 

later that the proposed DMST needs no key equal list or heap.  

The key equal lists or heaps in MRT and RIBT can also be used to determine if a key can 

be removed from a node after a range is deleted. For example, if the i th equal heap of a node in 

RIBT is empty after a range is deleted, the i th key in that node can be deleted. In MRT, range R 



 7 

= [e, f] is stored in the key equal list corresponding to key e in some leaf nodes. Since R is not 

stored in the key equal list of key f, a special counter is used to record how many ranges 

terminate at the key. Thus, when the counter associated with a key is zero, that key can be 

deleted. On the contrary, each node in DMST only stores a canonical set without the equal lists. 

Hence, a DMST node is smaller than an MRT or RIBT node. DMST uses the key deletion rule 

(see Definition 4 as described later) to determine if a key can be deleted or not.  

After knowing which are the keys, it is necessary to decide how to store these keys in the 

B-tree. In MRT, all keys are stored in the leaf nodes at the bottom level of the B-tree. To build a 

multiway search tree, some of the keys in the leaf nodes are sent to upper levels. How many 

keys are sent up depends on the node order m. The process in which some of the keys in the 

leaf nodes are sent to upper levels will be performed repeatedly until the top level contains only 

one node. A key may be stored twice in MRT. Thus, the process of inserting or deleting an 

endpoint of the new range is complicated because at least two B-tree nodes are involved. In 

RIBT and the proposed DMST, each key is only stored in one node. Because of the different 

ways to store keys, the intervals in RIBT or address spans in MRT are defined differently.  

3. Prerequisites and MODEL DESIGN 

The core part of the proposed DMST is based on the concepts of elementary intervals and the 

new endpoint definition proposed in [5]. By using the novel minus-1 endpoint definition, the 

DMST data structure is simpler than MRT and PIBT. To make this paper self-contained, we 

show the following two definitions proposed in [5].  

Definition 1 (elementary interval). Let the set of elementary intervals constructed from a set R 

consisting of N W-bit arbitrary ranges in the address space of 0 to 2W – 1 be X = {Xi | Xi = 

[ei, fi] for i = 1 to S}. X must satisfy (1) e1 = 0 and fS = 2W – 1, (2) fi = ei+1 – 1 for i = 1 to 

S – 1, (3) all addresses in Xi are covered by the same subset of R which is called the range 

matching set of Xi denoted by EIi, and (4) EIi ≠ EIi+1 for i = 1 to S – 1.  



 8 

Definition 2 (minus-1-endpoint scheme). The two endpoints of a range [e, f] are defined to be 

e – 1 and f.   

Based on the minus-1 endpoint scheme, the set of endpoints built from the nine 6-bit 

ranges in Table 1 are {3, 7, 15, 21, 23, 31, 39, 47, 51, 54, 55}. By taking addresses 0 and 63 

into consideration, twelve elementary intervals X1 to X12 can be constructed as shown in 

Figure 1(a). Every two consecutive elementary intervals cannot be covered by the same subset 

of the original ranges. For example, EI1 = {P1}≠ EI2 = {P1, P3}. Figure 1(b) shows a possible 

multiway segment tree for the proposed DMST which will be explained later. The advantage of 

using multiway segment tree over the binary segment tree is that the number of multiway tree 

nodes traversed for a search is small. This advantage makes our pipelined search engine very 

z w 

s 

P7 
X10 

[52,54] 
X9 

[48,51] 

 
X5 

[22,23] 
X4 

[16,21] 

P5 

P1 

X3 
[8,15] 

 
X2 

[4,7] 
X1 

[0,3] 

P3 

P2 P4P6 

Figure 1. Elementary intervals and a possible DMST built according to Table 1. 

r q 

key1 key2 t 

child1 child2 child0 

Cset 

54 47 

23 

15 

v 

P4P9 
X8 

[40,47] 
X7 

[32,39] 

P2 
X6 

[24,31] 

P4 

39 31 7 3 21 51 u 

P8 
X12 

[56,63] 
X11 

[55,55] 

P4P6 
55 

(a) Elementary intervals. 

EI7 
{P4P9} 

X7 
[32, 39] 

EI8 
{P4} 
X8 

[40, 47] 

EI9 
{P4P6P7} 

X9 
[48, 51] 

EI10 
{P4P6} 

X10 
[52, 54] 

EI11 
{P4P6P8} 

X11 
[55, 55] 

EI12 
{P4P6} 

X12 
[56, 63] 

EI4 
{P2} 
X4 

[16, 21] 

EI5 
{P2P5} 

X5 
[22, 23] 

EI6 
{P2} 
X6 

[24, 31] 

EI2 
{P1P3} 

X2 
[4, 7] 

EI3 
{P1} 
X3 

[8, 15] 

EI1 
{P1} 
X1 

[0, 3] 

(b) DMST. 

# of keys 

endpoints ID Prefix Range start finish 
P1 000000/2 [0, 15] - 15 
P2 010000/2 [16, 31] 15 31 
P3 000100/4 [4, 7] 3 7 
P4 100000/1 [32, 63] 31 63 
P5 010111/5 [22, 23] 21 23 
P6 110000/2 [48, 63] 47 63 
P7 110000/4 [48, 51] 47 51 
P8 110111/6 [55, 55] 54 55 
P9 100000/3 [32, 39] 31 39 

 

Table 1. An example routing table of nine 6-bit prefixes. 



 9 

suitable for the proposed DMST and leads to a high-throughput design. 

Figure 2 illustrates the design model for the proposed IP lookup algorithm. The protocol 

stack is divided into data plane and control plane. The control plane generally consists of a 

large number of sophisticated codes that implement the slow-path protocols such as IP routing 

protocol or higher-layer protocols. The slow-path functions in control plane are managed by a 

standard RISC processor like the Xscale core in Intel IXP network processors. In this paper, we 

assume that the slow-path RISC processor mainly executes the route update operations based 

on the proposed dynamic multiway segment tree. The fast-path function is typically the IP, 

ATM, and similar protocols in layer two or three of the network protocol stack. We also 

assume that the fast-path function implements the IP lookups by using dedicated FPGA-based 

search engine designed for the proposed DMST. The proposed pipelined search engine uses the 

off-chip instead of on-chip SRAMs because the memory storage capacity in current FPGA 

devices is too small for any existing IP lookup algorithm that can concurrently support 

dynamic routing table update operations and a large routing table of more than 100k routing 

entries. For example, the size of the SRAM memory provided by the current technology such 

as Xilinx Virtex-5 XC5VLX330T FPGA [30] is 11,664 Kb which is too small for large routing 

tables.  

As shown in Figure 2, the packets are received at the receiving unit and transmitted to the 

outside after determining the next port. If the packets are for updating routing table, they are 

sent to the slow-path RISC processor which will execute the proposed update operations and 

modify the contents of some memory blocks of the off-chip SRAM accordingly. If the packets 

are the usual Internet packets, they are sent to the proposed DMST search engine for finding 

the next port numbers and finally are passed to the transmitting unit. 

4. PROPOSED DYNAMIC MULTIWAY SEGMENT TREE (DMST) 

In this paper, the elementary intervals are organized hierarchically as a segment tree called 



 10

dynamic multiway segment tree (DMST) which is efficient for dynamic insertions and deletions. 

DMST is implemented as a B-tree of order m. Figure 1(b) shows a possible order-3 DMST for 

the prefixes in Table 1. Every node x is associated with an interval denoted by intvl(x) which is 

the union of elementary intervals in the subtree rooted at node x. Thus, the interval associated 

with the root node in DMST covers the entire address space [0, 2W – 1]. Each node is also 

associated with a range set called canonical set (Cset). Each endpoint is stored in exactly one 

node as its key. 

Definition 3 (Range allocation rule): Range R is stored in the canonical set of a node x if and 

only if intvl(x) is contained in R, but intvl(parent(x)) is not contained in R.  

Based on the range allocation rule, the range matching set of an elementary interval is 

equal to the union of the canonical sets traversed on the path from the root to the elementary 

interval. When range R1 is more specific than range R2, R1 must be stored in the lower level 

than R2. For example, P5 is more specific than P2 in Figure 1(b). Thus, node q storing P5 is in 

the lower level than node u which stores P2. 

The data structure of an internal node consisting of t keys is formatted in a linear list as [t, 

Cset, child0, key1, child1, …, keyt, childt], where childi is a pointer to the ith subtree for i = 1 to t 

and Cset is the canonical set. Also, the t keys stored in an internal node satisfy the condition of 

key1 < key2 < … < keyt. A leaf node only stores Cset. By saying “insert a key ep and a pointer 

ptr as keyi and childi in a node”, we mean [keyi, childi, …, keyt, childt] are shifted to the right 

Figure 2. Design Model. 

Ingress 

Control plane, RISC processor 

Off-Chip 
SRAM 

DMST 
Search Engine 

Egress 

Fast-path 
R

ec
ei

ve
 

T
ra

ns
m

it 

Slow-path 



 11 

by one key, ep and ptr are inserted as keyi and childi, and t is incremented by one. In case of 

ambiguity, the filed fld of node x is denoted by x.fld. If all keys are sorted in an increasing order, 

the successor and predecessor of a key k are denoted by successor(k) and predecessor(k), 

respectively. If successor(k) does not exist, it is set to 2W – 1, and if predecessor(k) does not 

exist, it is set to – 1.  

4.1 Search in DMST 

Given a destination address d, the searching process finds the matching ranges that 

contain d. If each range is associated with a priority, the searching process finds the 

highest-priority range among all matching ranges. In this paper, we use the traditional priority 

assignment rule to set the priority of a range as follows. Range R1 is assigned with a higher 

priority than range R2 if R1 is more specific than R2. The routing table from an IP router is a 

practical example. For IP routing tables, the longer the prefix, the higher is its priority. 

Therefore, the routing table lookups find the longest prefix among all matching prefixes of d.  

Figure 3 shows the proposed DMST search algorithm. A simple tree traversal in the while 

loop is first performed from the root to the leaf node that corresponds to the elementary interval 

containing d. While traversing the tree, all non-empty canonical sets encountered are stored in 

the array Cset[1..k]. If the range set is conflict free, the highest-priority (the most specific) 

range must exist in the non-empty canonical set which was last visited. For example, when the 

DMST search algorithm is applied to Figure 1(b) with d = 48, the nodes w, z, s, and r are 

traversed. The non-empty canonical sets are {P4, P6} and {P7}. As a result, the matching 

ranges of d are P4, P6, and P7, and the most specific matching range is P7.  

Complexity. The complexity of the search algorithm in Figure 3 for an order-m DMST of 

N arbitrary ranges depends on the data structure of the canonical set which is assumed to be a 

bitmap [5] in this paper. Currently, we make the following assumptions which are also used in 

insertion and deletion: Each address is covered by at most maxR ranges, inserting/deleting a 

range into/from a canonical set of size Csize takes O(f(Csize)) time, and accessing the highest 



 12

priority range takes O(g(Csize)) time.  

The binary search is used to determine where the given address d is located in a B-tree 

node. Thus, each iteration of the while loop takes O(logm) time to determine i such that keyi–1 < 

d ≤ keyi. If m is small and the whole node can fit into a cache block (e.g., L1 cache in a modern 

CPU), only a constant time is needed for the binary search in a node. The number of iterations 

is O(logmN) (the height of the B-tree). After the tree traversal, the main task of the search 

algorithm is to find the highest-priority range in a canonical set as shown in lines 9-10. If the 

range set is conflict free, only the last canonical set is searched, and thus the search complexity 

is O(logmN×logm + g(maxR)). Otherwise, the search complexity is O(logmN×logm + 

logmN×g(maxR)). The number of nodes accessed is O(logmN). 

4.2 DMST Insertion Algorithm 

We first propose an insertion algorithm that separately puts the two endpoints of the range and 

then the range itself into DMST. This approach was used in MRT [29] and RIBT [20]. Next, we 

will briefly describe the optimized insertion algorithm that combines these three steps into one. 

The optimized insertion algorithm avoids some redundant operations and thus performs better 

than the un-optimized insertion algorithm. 

4.2.1 Insert an endpoint 

The proposed algorithm that inserts an endpoint ep into DMST is DMST_Insert_EndPoint 

shown in Figure 4. DMST_Insert_EndPoint is an adaptation of the standard B-tree insertion 

Algorithm DMST_Search(root, d) 
{ 

01 x = root; k = 0; 
02 while (x ≠ null) { 
03  if (x.Cset ≠ φ) Cset[++k] = x.Cset; 
04  if (x is a leaf node) break; 
05  x.key0 = predecessor(x.key1); x.keyx.t+1 = successor(x.keyx.t); 
06  Binary search on keys x.key0 to x.keyx.t+1; 

07  if 
(x.keyi–1 < d ≤ x.keyi) x = x.childi–1; 
08 } 
09 if (range set is conflict-free) return the highest priority range in Cset[k]; 
10 else return the highest priority range in Cset[3] to Cset[k]; 

}  
Figure 3. The DMST search algorithm. 

 



 13

algorithm [7] and is described as follows.  

� Step 1: A tree traversal is performed to find the key ep in DMST. If ep is already in 

DMST, the search terminates at the node that contains the key ep. If ep is not in DMST, 

the algorithm terminates at a leaf node whose parent node will hold the key ep.  

� Step 2: k is first decremented by one and x is set to p[k]. Let p[k].key0 and p[k].keyx.t+1 

be the predecessor(p[k].key1) = s[k] – 1 and the successor(p[k].keyx.t) = f[k], 

respectively. Based on index b[k], the new key ep will be inserted between x.keyb[k]–1 

and x. keyb[k]. Since the original elementary interval [x.keyb[k]–1 +1, x.keyb[k]] is 

partitioned into two intervals by ep, a new leaf node pointed to by y has to be created. 

Node y is a duplication of the leaf node pointed to by x.childi–1. Keys ep and y are 

inserted as keyi and child, of node x, respectively and x.t is incremented by one.  

� Step 3: After inserting ep, if x.t ≤ m – 1, the insertion process is finished. Otherwise, 

node x has one key more than its capacity. Thus, in lines 7-11, node x needs to be split 

into two nodes denoted by x’ and y, and the middle key keyg of x is sent up to x’s 

parent, where g = m/2. Specifically, the keys of x to the left of keyg along with the 

associated child pointers remain in x, those to the right of keyg are placed into a new 

node y, and keyg and y are inserted into the parent of x. After node x is split, the 

canonical sets in x’ and y need to be adjusted to account for the fact that intvl(x’) and 

intvl(y) are not the same as intvl(x). As stated in step 1, node x is pointed to by 

p[k–1].childj–1 after the tree traversal, where p[k–1] is the parent of x and j = b[k–1].  

Consider the example in Figure 5. Range R1 that contains the interval intvl(x’) = 

[p.keyj–1+1, x.keyg] was stored in all canonical sets of the children of node x’ before splitting. 

Thus, R1 needs to be removed from all these canonical sets of the children of x’ and be inserted 

into x’.Cset. Similarly, range R2 that contains the interval intvl(y) = [x.keyg + 1, p.keyj] need to 

be removed from all canonical sets of the children of y and be inserted into y.Cset. The above 

canonical set adjustments are shown in lines 12-17 of Figure 4. Finally, key keyg and pointer y 



 14

are inserted as keyj and childj in p[k–1], respectively. Since node p[k–1] gets one more key, the 

same split process may need to repeat at p[k–1] if p[k–1] were overflowed. Ultimately, the split 

process may reach the root of the tree. As in the regular B-tree, a new root node may need to be 

created and thus the height of the tree is increased by one, as shown in line 18 of Figure 4.  

4.2.2 Insert a range 

After inserting the two endpoints e – 1 and f which are induced by the new range R = [e, f], 

algorithm DMST_Insert_Range shown in Figure 6 is then presented to insert range R based on 

the range allocation rule and described as follows.  

� Step 1 (line 1): The LCA node y of R is found first. It is the lowest common ancestor node 

of keys e – 1 and f in DMST.  

� Step 2 (lines 2): If R contains the interval covered by the LCA node y of R, then R is 

added in y.Cset.  

 

 

Algorithm DMST_Insert_EndPoint(root, ep) // Assume tree is not empty 
{  

/////// ///////////////////////// Step 1: Traverse the tree for finding key ep ///////////////////////// 
01 Perform tree_traversal to find arrays p[], s[], f[], b[], and k, where  
 p[i] for i = 1 to k are the nodes traversed, [s[i], f[i]] is the interval covered by p[i], 
 b[i] is the index for node p[i] such that p[i] .keyb[i]–1 < ep < p[i] .keyb[i] ; 

02 if (p[k] ≠ leaf) return;  
/////////////////////////////// Step 2: insert key ep which is not in the tree /////////////////////////// 
03 k = k – 1; x = p[k]; i = b[k]; 
04 y = duplicate_a_leaf_node(x.childi–1.Cset); 
05 insert ep and y as x.keyi and x.childi in node x, and x.t++;  
///////////////////////// Step 3: node overflow, split x into two nodes, x and y ///////////////////// 
06 while (x.t = m){ 
07  g = m/2; keyg = x.keyg;  
08  y = create_new_node();  
09  move childg, [keyg+1, childg+1], …, [keym, childm] in node x to node y; 
10  y.Cset = x.Cset; 
11  y.t = m – g; x.t = g – 1; 
12  xSet = {R|R ∈ x.childg–1.Cset and R covers [s[k], keyg]}; 
13  for (h= 0 ; h ≤ x.t ; h++) x.childh.Cset = x.childh.Cset – xSet;  
14  x.Cset = x.Cset + xSet;  
15  ySet = {R|R ∈ y.child0.Cset and R covers [keyg + 1, f[k]]}; 
16  for (h = 0 ; h ≤ y.t ; h++) y.childh.Cset = y.childh.Cset – ySet;  
17  y.Cset = y.Cset + ySet;  
18  if (k = 1) {root = create_node(t = 1, child0 = x, key1 = ep, child1 = y); break;} 
19  k = k – 1; x = p[k]; j = b[k]; x.t++; 
20  insert keyg and y as x.keyj and x.childj in node x; }  

}  
 Figure 4. The algorithm that inserts a new endpoint into the DMST. 

 

3.1: 
Create a new 
node y 

3.2: 
Adjust 
x.Cset 

3.3: 
Adjust 
y.Cset 

3.4 



 15

� Step 3 (lines 3-5): If R contains the interval associated with any of the children of LCA 

node y, R is added in that child’s canonical set.  

� Step 4 (lines 6-16): If e – 1 is equal to any key in LCA node y, no further process is 

needed. If y.keyi–1< e – 1 < y.keyi, the tree is traversed from node y to the node that 

contains the key e – 1. At each node x traversed, R is added in the canonical sets of some 

of x’s children as shown in line 10 or 13.  

� Step 5: this step is similar to step 4.  

For example, if range P4 = [32, 63] in Table 1 is to be inserted, the endpoint 31 is first 

inserted in DMST as shown in Figure 1(b). Step 1 finds that the LCA node is z. Step 2 does 

nothing, and step 3 inserts P4 into s.Cset and u.Cset because P4 contains intvl(s) and intvl(u) 

but not intvl(z). In step 4, the leaf node v containing key 31 is reached and range P4 is inserted 

in v.child1.Cset and v.child2.Cset as shown in line 10 of Figure 6. 

4.2.3 Complexity 

In the complexity analysis, the same assumptions as in DMST search algorithm are used.  

(1) Algorithm DMST_Insert_EndPoint in Figure 4: Step 1 (lines 1-2) traverses O(logmN) 

nodes. In each node traversed, the binary search on the keys takes O(logm) time. Thus, the time 

complexity of step 1 is O(logmN×logm). Step 2 (lines 3-5) takes O(m) time because inserting a 

key and a pointer in a node is needed. Each iteration of the while loop in step 3 is divided into 

four parts. Part 3.1 (lines 7-11) takes O(m) time because a new node y consisting of O(m) keys 

is created. In part 3.2 (lines 12-14), the canonical set in node x’ is adjusted. With the 

assumption that the size of a canonical set is O(maxR), O(f(maxR)) time is needed to remove a 

p = x.parent 

keyg 

keyj-1 keyj 

x 

R2 R1 

x' 

Figure 5. Node splitting around x.keyg. 
 

Split 
 

(a) Before split 
 

(b) After split 
 

keyg 
p = x.parent 

keyg–1 

keyj-1 keyj 

y 

R2 R1 

keyg+1 



 16

range from x.childg–1.Cset, and the number of ranges removed from x.childg–1.Cset is O(maxR). 

As a result, the complexity of part 3.2 is O(maxR×m×f(maxR)). Parts 3.3 and 3.4 are similar to 

parts 3.2 and 3.1, respectively. The number of iterations is O(logmN) which is the height of the 

tree. Therefore, the total complexity is O(logmN×maxR×m×f(maxR)).  

(2) Algorithm DMST_Insert_Range in Figure 6: The complexity of step 1 is 

O(logmn×logm) by using a binary search on O(m) keys in a node. Adding R in y.Cset takes 

O(f(maxR)) time with the same assumption described in subsection 4.1. Thus, the complexities 

of Step 2, 3, and 4 are O(f(maxR)), O(m×f(maxR)), and O(logmN×m×f(maxR)), respectively. 

Step 5 is similar to step 4. Overall, the time complexity of inserting a range and the associated 

two endpoints is O(logmN×maxR×m×f(maxR)).  

4.2.4 Optimized DMST insertion 

In the optimized DMST insertion algorithm, range R = [e, f] and the two associated keys 

Algorithm DMST_Insert_Range(root, R) // assume R=[e, f] 
{  

//////////////////////////////////////////// Step 1 //////////////////////////////////////////////// 
01 Find LCA node y and the interval [lb, ub] covered by y; 

//////////////////////////////////////////// Step 2 //////////////////////////////////////////////// 
02 if ( [lb, ub] is contained in R ) { Add R in y.Cset; return;}   

//////////////////////////////////////////// Step 3 //////////////////////////////////////////////// 
03 Set y.key0 = lb – 1, y.keyy.t+1 = ub 
04 for (k = 1 to y.t+1)  
05  if (R covers [y.keyk–1, y.keyk]) { Add R in y.childk–1.Cset;} 

//////////////////////////////////////////// Step 4 //////////////////////////////////////////////// 
06  if (y.keyi–1< e – 1 < y.keyi) { // i ∈ {1, …, y.t+1} and e – 1 ≠ any key in node y 
07  x = y.childi–1;  
08  while (x ≠ leaf node){ 
09   if (x.keyi = e – 1) { // i ∈ {1, …, x.t} 
10    for (k = i to x.t) Add R in x.childk.Cset;  
11    break; } 
12   if (x.keyi–1 < e – 1 < x.keyi) { 
13    for (k = i to x.t) Add R in x.childk.Cset; 
14    x = x.childi–1; } 
15  }  
16 } 
//////////////////////////////////////////// Step 5 //////////////////////////////////////////////// 
 
 
 
 

}  

if clause which is the same as lines 6-16 except 
1. ‘e – 1’ is replaced with ‘f ‘,  
2. line 10 is replaced with for (k=0 to i – 1) Add R in x.childk.Cset; 
3. line 13 is replaced with for (k = 0 to i – 2) Add R in x.childk.Cset 

Figure 6. The algorithm of the DMST range allocation rule. 
 



 17

e – 1 and f are inserted in DMST at the same time. Since keys e – 1 and f may not exist in 

DMST before R is inserted, a different definition for the lowest common ancestor (LCA) node 

of R is presented as follows. Let G be the set of existing keys contained in range [e – 1, f]. If G 

is empty, the LCA node is defined to be the node into which keys e – 1 and f will be inserted. If 

G is not empty, the LCA node is defined to be the lowest common ancestor of all nodes that 

contain any key in G. In practice, the LCA node is the first DMST node encountered when the 

B-tree is traversed from the root by using [e – 1, f]. For example, to insert a range R = [34, 53] 

into the DMST in Figure 1(b), the LCA(R) is node z because z contains key 47 as covered by 

[33, 53]. However, if R = [34, 35], the LCA node of R is v.  

The optimized DMST insertion algorithm to insert range R is briefly described as follows. 

The first step finds node y which is the LCA node of R. If R contains intvl(y), R is immediately 

added in y.Cset and insertion process stops. Now, consider the case in which endpoints e – 1 

and f of R are inserted between two consecutive keys in node y. If y.keyi–1 < e – 1 < f < y.keyi, 

keys e – 1 and f, along with two newly created leaf nodes u and x, will be inserted in y. The 

canonical sets of nodes u and x are assigned with y.childi–1.Cset+{R} and y.childi–1.Cset, 

respectively. The canonical set y.childi–1.Cset is duplicated in nodes u and x because the 

original elementary interval [y.keyi–1+1, y.keyi] is divided into three smaller intervals by keys 

e – 1 and f. The node splitting process is needed only if y is overflowed.  

Finally, the case that interval [e – 1, f] covers at least one existing key in the tree has to be 

considered. First, R is directly inserted in y.childk–1.Cset if R contains [y.keyk–1+1, y.keyk], 

where y is the LCA node. Next, the insertion process is divided into two independent steps to 

insert e – 1 and f, respectively. Since they are similar, only the process of inserting e – 1 is 

described. The DMST tree is first traversed from the LCA node to a node that contains key e – 

1 or to a node that will hold the new key e – 1. Let the interval covered by a traversed node x 

be [lb, ub]. Range R must contain [e, ub]. Therefore, R must be inserted in x.childk.Cset if e – 1 

≤ x.keyk for k = i to x.t. When key e – 1 is not equal to any key in node x, the process will be 



 18

repeated at the next level. After the last regular node is reached, if key e – 1 does not still exist, 

a new leaf node is created and inserted. The time complexity of the optimized insertion 

algorithm is O(logmN×maxR×m×f(maxR)), which is the same as that of the un-optimized 

version. 

4.3 DMST Deletion Algorithm 

We only present the un-optimized deletion algorithm that divides the deletion process into 

three separate steps. The optimized deletion algorithm that combines these three steps into one 

single step can be developed easily by using the concept of the LCA node and is thus omitted. 

To delete a range R = [e, f], R is first deleted from all canonical sets that contain R by using the 

reverse process of algorithm DMST_Insert_range() in Figure 6. Then we determine if key e – 1 

and f need to be removed from the tree based on the DMST key deletion rule described below. 

Assume key e – 1 or f of R = [e, f] is keyi in node x that delimits the elementary intervals 

Xk and Xk+1. After R is removed from DMST, if EIk and EIk+1 become the same, keyi must be 

removed from node x to satisfy Definition 2. As stated, EIk is equal to the union of the 

canonical sets in the path from the root to the leaf corresponding to elementary interval Xk. 

Since the ranges in the canonical sets of node x’s ancestors cover both Xk and Xk+1 and thus 

belong to both EIk and EIk+1, they can be ignored when determining if EIk = EIk+1. As a result, 

EIi and EIi+1 can be computed as follows (refer to Figure 7): 

 EIk  = x.childi–1.Cset ∪ u1.childu1.t.Cset ∪ ... ∪ un.childun.t.Cset,       (1) 

 EIk+1 = x.childi.Cset  ∪ v1.child0.Cset  ∪ ... ∪ vn.child0.Cset,       (2) 

where uj and vj for j = 1 to n are the descendent nodes of x in the paths from x to un and 

from x to vn, and un and vn are the nodes that contain keys predecessor(x.keyi) and 

successor(x.keyi), respectively. 

Definition 4 (DMST key deletion rule). The keyi must be removed from node x if and only if 

EIk = EIk+1, where EIk and EIk+1are computed based on Equations (1) and (2). 

For example, in Figure 1(b), the elementary interval X6 is contained in intervals intvl(w), 



 19

intvl(z), intvl(v), and intvl(v.child0). Thus, the range matching set EI6 of X6 is {P2} which is the 

union of w.Cset, z.Cset, v.Cset, and v.child0.Cset. Similarly, EI5 is {P2, P5} which is the union 

of w.Cset, y.Cset, u.Cset, and u.child1.Cset. If P5 = [22, 23] is deleted, key 23 in node w has to 

be deleted. Similarly, key 21 can also be deleted. 

Like the B-tree deletion algorithm [7], deleting a key from DMST can be divided into two 

cases: deleting a key in a leaf node or in an interior (i.e., non-leaf) node. The detailed key 

deletion algorithms are omitted in this paper because of the space limit. 

5. The DMST Search Engine 

In this section, we present the pipelined architecture of the search engine designed for the 

proposed DMST search algorithm. The pipelined architecture simulates all the operations 

needed for searching a B-tree node in DMST. If the DMST to be searched is an n-level B-tree, 

all the stages of the pipelined architecture will be circulated through n times to complete a 

search operation for an incoming IP address. Figure 8(a) shows an example of a 5-stage 

pipelined architecture that uses 144-bit nodes implemented by four 36-bit memory modules 

accessed in parallel. With the 5-stage pipelined architecture, five different IP addresses can be 

searched in the search engine concurrently at each cycle and thus the lookup throughput is 

improved.  

To efficiently utilize all the 144 bits in the 144-bit nodes, a 12-bit segmentation table [17] 

is used. As a result, up to 212 independent multiway segment trees are built and 20 bits are 

needed to represent the endpoints. The number of 144-bit nodes in the maximal multiway 

Figure 7. The key borrowing operation from the left sibling. 

x y 

keyi-1 keyi+1 keyi p 

R1 R2 

R3 

keyt 

R4 R5 

Deficient node 

key0 

v u 



 20

segment tree is less than 2048, as shown in column 4 of Table 3. Hence, eleven bits are needed 

for representing the offset address of a node in a multiway segment tree. The offset address is 

relative to the absolute address of the root node in the multiway segment tree. These two 

addresses (absolute address of root node and offset address of a node) are added together to get 

the absolute address of the node. Note that the offset addresses correspond to the child pointers 

of the B-tree nodes in the software implementation of the DMST described in Section 4. In 

Figure 8. The DMST search engine architecture. 

new 
 IP 

Start 

+ 

Finish 
load 

12-bit 
Segment 

Table 
O/N  
Field 

Selector 
clear 

IP 

Root 
Node 

Address 

IP[31:20] 
IP[19:0] 

[63:0] 

144 

5 

32 

17 

17 

Offset 

32 32 

Address 
Data_in 

R/W 

Address 

Off-Chip 
SRAM 
Block 

36-bit×4 

Data_in 

Stage 1 Stage 2 Stage 3 Stage 4 

R/W 

Stage 5 

M 
U 
X 

0 

1 

[63:8] 

[7:0] 
Output 
Port 

O/N 

DP 

32 

[8:8] 

(c) The DMST node search logic of stage 3, where the output of a 20-bit 
comparator is enabled if its inputs satisfy the condition of A ≤ B. 

(b) The 144-bit DMST node layout. 

(a) The 5-stage pipelined search engine, where DP and O/N stand for default port 
and offset/next-port, respectively. 

[143:64] 

DMST 
Node 
Search 
Logic 

 

8 
8 

8 

8 

11 

8 

endpt1 DP 

four keys (80 bits) five Offset/Next-port (55 bits) 

O/N0 
1-bit Finish flag 

endpt2 endpt3 endpt4 O/N1 O/N2 O/N3 O/N4  

20 20 20 20 11 11 11 11 11 8 

1 

bit0 
IP[19:0] 

endpt1 
[143:124]

20-bit Comparator 2 A 
B 

20-bit Comparator 3 A 
B 

20-bit Comparator 4 A 
B 

bit1 

bit2 

bit3 

bit4 

endpt2 
[123:104]

endpt3 
[103:84]

endpt4 
[83:64]

20-bit Comparator 1 A 
B 

11 
8 

M 
U 
X 

0 

M 
U 
X 

0 

1 

1 

8 

[63:0] [143:63] 

8 8 8 

DP 
8 



 21

addition to the 20-bit endpoints and 11-bit offset addresses, each node also need one bit to 

indicate if it is leaf node (denoted by 1-bit finish flag) and an 8-bit default port number. The 

default port (denoted by DP) field is the next-port number of the prefix that entirely covers the 

address space of the node. Therefore, as shown in Figure 8(b), all the 144 bits can be 

completely utilized to build a 5-way DMST. The O/N field of a node in Figure 8(b) indicates 

that the search outcome obtained from the node is either the offset address of the next-level 

node or the final next port number of the current search operation. The field t to record the 

number of keys in the node data structure previously described in section 4 is not needed in the 

search engine. Therefore, if there are less than four keys in the node, the values of the unused 

key slots are set to the largest key value. An extreme case is as follows. Since a 12-bit 

segmentation table is used in DMST, there will be some segments containing no prefixes of 

length longer than 12. For this kind of segments, we store the largest address of the segment in 

all the four key slots. Also, the 1-bit finish flag is set to 1 and the next port number which must 

be O/N0 field is set to the port number of the longest prefix that completely covers the 

segment’s address space. As a result, no additional logic is needed to process this exceptional 

case. The worst-case search performance will be determined by the size of the maximal 

multiway segment tree. The12-bit segmentation table is very small compared with the memory 

used for all the multiway segment trees. Similarly, the search engine of 288-bit nodes can be 

designed to build a 10-way DMST. 

The functionalities of all five stages in the pipelined search engine consisting of 144-bit 

DMST nodes are described as follows. 

� Stage 1: The most significant 12 bits of the IP address are used to index the 12-bit 

segmentation table to obtain the absolute address of the root node of the corresponding 

multiway segment tree. Since the number of 144-bit nodes is less than 217 for all the 

routing tables we experimented as shown in column 3 of Table 3, seventeen bits are 

needed for representing the absolute address. The absolute address of the root node 



 22

and the offset address of the DMST node to be accessed are summed up by an adder 

and output to the pipeline register of next stage. The address and data_in lines are used 

by the slow path processor for update operations.  

� Stage 2: The address of the DMST node to be accessed is used to read the off-chip 

SRAM memory to get the 144-bit data which will be stored in the stage 3 pipeline 

register and processed in the following stages.  

� Stage 3: The real search process is performed in this stage which consists of a DMST 

node search logic shown in Figure 8(c). Four endpoints divide the node’s address 

space into five intervals. Thus, the node search logic finds which interval matches the 

least significant 20 bits of the IP address. The node search logic returns a 5-bit search 

result in which only one bit corresponding to the matched interval is set.  

� Stage 4: The O/N field selector uses the 5-bit search result computed in stage 3 to 

select the O/N field value of the matched interval. The lower part of the logic in this 

stage determines that if the default port (DP) processed in stage 3 is valid, it will 

replace the old default port found in the parent of the node currently processed. We 

assume the invalid default port is 0xFF. So, the implementation of this functionality is 

simply a combination of an 8-bit input AND gate and a 2×1 multiplexer.  

� Stage 5: The finish flag is examined to determine whether the leaf node is reached in 

the search process. If the finish flag is off, the O/N field extracted from stage 4 is the 

child offset address of the current node which will be fed to the first stage pipeline 

register to start another run of the search process. Otherwise, when the finish flag is on, 

the search process of the current lookup operation is done. The final task is to extract 

the final next port number. If the next port number (i.e., the least significant 8 bits of 

the selected O/N field value) is not 0xFF, it will be the final port number implemented 

by the two concatenated NAND gates and a 2×1 multiplexer. Otherwise, the final next 

port will be the current default port computed in stage 4. 



 23

Finally, the design of the search engine for 10-way DMST is briefly described. Each node 

of the 10-way DMST is represented by a 288-bit format. A 12-bit segmentation table is also 

used to deal with the most significant 12 bits of all route prefixes. Further, as shown in the 

fourth column of Table 3, the number of 288-bit nodes of the largest DMST is less than 29. 

Thus, each O/N field only occupies 9 bits. In conclusion, the 288-bit format consists of nine 

20-bit endpoints, ten 9-bit O/N fields, one 1-bit finish flag, one 8-bit default port field, and nine 

bits are unused. The DMST node search logic shown in Figure 8(c) in stage 3 is extended to 

compare ten keys in parallel that can output a 10-bit search result 

5.1 Extending the DMST search engine 

As stated above, each lookup operation of a packet will circulate through all the stages of 

the search engine n times if the destination IP address of the packet belongs to the address 

space of a multiway segment tree of n levels. Notice that n is at most six for the routing tables 

we experimented in this paper. Because the off-chip memory is cheap and the on-chip cost of 

the search engine is small, a straightforward extension is to avoid circulating through the same 

search engine many times by using n separate search engines connected serially. The resulting 

architecture will be a 5n-stage pipelined search engine called extended DMST search engine 

that contains n separate off-chip SRAMs that can be accessed concurrently. Since 5n packets 

can be searched concurrently in the extended DMST search engine in one cycle, the throughput 

will be 1/r, where r is the memory access delay of the off-chip SRAM.  

6. PERFORMANCE EVALUATION 

In this section, we present the experimental results for the proposed DMST IP lookup schemes. 

The simulation results in terms of memory requirement, search, and update times conducted on 

the general-purpose CPU, i.e., Intel Core 2 Quad Q9300 PC, are first given to show the 

performance of the proposed DMST implemented in pure software. Next, the performance of 

the proposed pipelined search engine for DMST based on Xilinx Virtex-5 XC5VLX330T 



 24

FPGA is shown.  

There are two parts of the operations that impact the update and search performance of the 

proposed scheme. The first part is the update operations of the dynamic multiway segment tree 

executed in the slow-path CPU presented in section 4. The slow-path CPU runs in a 

full-fledged operating system that has its own memory (DRAM or SDRAM) different from the 

off-chip SRAMs accessed in stage 2 of the search engine. The multiway segment trees stored 

in the off-chip SRAM are duplicated in the slow path memory. Each DMST node in the 

slow-path memory corresponds to a DMST node in the SRAM of the search engine. When a 

slow-path node is modified, it does not necessarily mean that the corresponding SRAM node 

also needs to be modified. For example, if a prefix is inserted in the CSet of a slow-path node 

and it is not the longest prefix in the CSet, the corresponding SRAM node remains intact. The 

second part of update operations is that the slow-path CPU computes which SRAM nodes need 

to be modified and perform the write operations on the off-chip SRAMs. We will explain the 

impact of updates on search performance is minimal later.  

To measure the search time, the simulation IP traffic is obtained by first collecting the start 

addresses of all prefixes in the original routing table. Then, the IP addresses are randomized 

and fed them into our simulator that implements the proposed DMST scheme to obtain the 

average search times. In order to obtain the update performance results, the data structure for 

the proposed DMST scheme is first constructed according to the original routing table. Next, 

we randomly delete 10% prefixes from the structure we built and then insert these deleted 10% 

prefixes back into the structure. The average update times in the slow path and number of 

SRAM nodes to be modified are reported. The performance of the proposed DMST scheme is 

also compared with two existing B-tree-based schemes, namely MRT [29] and PIBT [20]. The 

experimental results are based on five real-life IPv4 routing tables obtained from [4] and [27]. 

The simulation programs are written in C and gcc-3.2.2 compiler of Redhat 9.0 with an 

optimization level –O4 is used. The simulations are run on a 2.5-GHz Intel Core 2 Quad Q9300 



 25

PC that has 4×32 KB 8-way set associative L1 cache of 64-byte blocks, 2×3072 KB 12-way set 

associative L2 cache of 64-byte blocks, and 4-GB main memory. The instruction called 

RDTSC (ReaD Time Stamp Counter) is also used to keep an accurate count of every clock 

cycle that occurs in the processor. 

Table 2 and Figure 9 present the performance results of order 32 for DMST, MRT [29], 

and PIBT [20]. The results for MRT and PIBT reported in [29] and [20] also use the order of 32. 

DMST consumes much less memory than MRT and PIBT because of the following reasons. 

First, DMST uses fewer keys and smaller nodes (without equal lists or heaps) than MRT and 

PIBT. Second, DMST and PIBT store each prefix at O(1) nodes per level (at most O(log N) 

levels) and MRT stores each prefix at O(m) nodes per level, where m is the order of the B-trees. 

In terms of search, DMST is only 4-5% and 11-18% faster than MRT and PIBT, respectively. 

However, the update performance of DMST is 35-37% and 47-50% faster than MRT and PIBT, 

respectively. The average search performance is also shown in terms of million packets per 

second (Mpps). By using the minimal Ethernet packet size which is 64 bytes, the proposed 

DMST search algorithm with software implementation using Intel Core 2 Quad Q9300 PC can 

achieve the throughput of about 2.56 to 3.42 Gbps which is better than OC-48 (2.45 Gbps).  

Table 3 shows the performance results of the proposed DMST search engine using 144-bit 

and 288-bit nodes based on Xilinx Virtex-5 XC5VLX330T FPGA containing 51,840 slices 

(each slice contains four LUTs and four flip-flops) and 324 block RAM blocks of 36 Kb each. 

The third and fourth columns show the total number of nodes and the number of nodes in the 

maximal segment for all the five routing tables. Column 5 summarizes the off-chip SRAM 

usage in Mb which is equivalent to the total number of nodes multiplied by the node size. For 

example, the search engine of 144-bit nodes for rule table AS6447a needs 6.23 Mb (i.e., 

45,400×144 bits) of off-chip SRAM. We can see that the number of 144-bit nodes in the 

maximal segment tree of table AS6447c is 1,036 which is the largest among all the maximal 

segment trees of the routing tables we experimented. Thus, eleven bits are enough for O/N 



 26

fields. Similarly, nine bits in O/N field are enough for the search engine of 288-bit nodes. 

For the on-chip costs, column 6 shows that the search engines containing 144-bit and 288-bit 

nodes need 463 and 575 slices, respectively. As a result, the needed on-chip cost only 

accounts for one percentage of the on-chip configurable logic available in Xilinx Virtex-5 

Table 2. The performance of all B-tree based schemes of order 32. 
Routing Table AS6447aAS6447b AS6447c AS7660 AS2493 

Year-month 2000-4 2002-4 2005-4 2005-4 2005-4 
# of prefixes 79,560 124,824 163,574 159,816 157,118 

MRT 2,640 4,117 5,368 5,232 5,150 
PIBT 2,568 4,006 5,223 5,091 5,012 

DRAM 
(KByte) 

DMST 1,434 2,187 2,780 2,671 2,628 
MRT 0.17 0.22 0.24 0.24 0.24 
PIBT 0.16 0.19 0.22 0.21 0.21 

Search 
(µsec) 

DMST 0.15 0.18 0.20 0.20 0.20 
MRT 5.88 4.55 4.17 4.17 4.17 
PIBT 6.25 5.26 4.55 4.76 4.76 Search 

(Mpps) 
DMST 6.67 5.56 5.00 5.00 5.00 
MRT 1.03 1.12 1.18 1.17 1.17 
PIBT 0.83 0.91 0.96 0.96 0.96 

Update 
(µsec) 

DMST 0.52 0.59 0.62 0.61 0.61 
 

Figure 9. Performance comparisons. 

(a) Memory usage in MByte. (b) Search time in µsec. 

0

0.05

0.1

0.15

0.2

0.25

AS6447a AS6447b AS6447c AS7660 AS2493

Routing Table

S
e

ar
ch

 T
im

e
 (µ

se
c)

MRT

PIBT

DMST

0

1

2

3

4

5

6

7

AS6447a AS6447b AS6447c AS7660 AS2493

Routing Table

S
ea

rc
h 

P
a

ck
et

 (
M

p
p

s)

MRT

PIBT

DMST

0

0.2

0.4

0.6

0.8

1

1.2

AS6447a AS6447b AS6447c AS7660 AS2493

Routing Table

U
pd

a
te

 T
im

e
 (µ

se
c)

MRT

PIBT

DMST

0

1,000

2,000

3,000

4,000

5,000

6,000

AS6447a AS6447b AS6447c AS7660 AS2493

Routing Table

M
e

m
or

y 
U

sa
ge

 (
K

B
)

MRT

PIBT

DMST

(c) Search time in Mpps. (d) Update time in µsec. 



 27

XC5VLX330T FPGA. Notice that the 12-bit segmentation table is implemented by block 

RAM which is faster than the implementation by the distributed RAM of the on-chip 

configurable logic. Based on our experiments, the 12-bit segmentation table consumes only 

two block RAM blocks.  

For the search performance, we report the average numbers of nodes accessed per search 

and the worst-case number of nodes accessed per search in the maximal segment tree in 

column 8 of Table 3. The latter represents the worst-case number of off-chip memory accesses. 

Other than stage 2 that performs the read operations on off-chip SRAMs, stage 3 of the 

proposed pipelined architecture is the slowest stage which takes a processing delay of 4.94 ns 

and 5.11 ns for 144-bit and 288-bit nodes, respectively. Since the off-chip SRAMs only have a 

few operating frequencies available (e.g., 250, 200, 166, and 133 Mhz), we have to select the 

one that meets the processing delay requirement of no smaller than 4.94 ns or 5.11 ns. Thus, 

the best operating frequencies of the off-chip SRAMs are 200 Mhz and 166 Mhz for the 

pipelined architectures of 144-bit and 288-bit nodes, respectively. The processing time taken by 

stage 2 depends on I/O delays of both FPGA device and off-chip SRAM. In our case, Xilinx 

Virtex-5 XC5VLX330T FPGA has an output delay of 2.83 ns and an input delay of 2.03 ns. 

Cypress Pipelined Sync SRAM CY7C1347G-200Mhz [8] is a possible solution because of the 

following reasons. First, Cypress CY7C1347G has an input delay of 1.2 ns. By including the 

output delay of Xilinx Virtex-5 XC5VLX330T FPGA which is 2.83 ns, the total delay from 

FPGA to SRAM becomes 4.03 ns. Second, Cypress CY7C1347G has an output delay of 2.8 ns. 

By including the input delay of Xilinx Virtex-5 XC5VLX330T FPGA which is 2.03 ns, the 

total delay from SRAM to FPGA becomes 4.83 ns. Both the delays from FPGA to SRAM and 

from SRAM to FPGA are less than 5 ns. As a result, by using Cypress Pipelined Sync SRAM 

CY7C1347G-200Mhz as the choice of off-chip SRAM, the proposed pipelined architecture of 

144-bit nodes can be set at the cycle time of 5 ns. However, for the pipelined architecture of 

288-bit nodes, we have to use Cypress Pipelined Sync SRAM CY7C1347G-166Mhz and thus 



 28

the cycle time of the proposed pipelined architecture is 6 ns.  

With the cycle time bounded by 5 or 6 ns shown in column 7 of Table 3 and the number of 

nodes accessed per search shown in column 8, we can compute the throughput of the proposed 

pipelined search engine in terms of million packets per second (Mpps) as shown in column 9. 

By assuming that all the packets have the minimal Ethernet packet size of 64 bytes, we can also 

calculate the throughputs in terms of billion bits per second (Gbps) in column 10. As a result, 

the search engines of 144-bit and 288-bit nodes can achieve the throughputs of 17.1 and 21.3 

Gbps in the worst case, respectively. Finally, the average number of nodes that need to be 

modified per update is shown in the last column.  

Subsequently, we shall describe that the impact of the update operations on the search 

performance is minimal. Refer to the stage 2 of pipelined search engine in Figure 8(a). The 

read operation on off-chip SRAM is performed in every cycle. We use the precedence model in 

[8] such that when a write operation is needed for an update along with a read operation in 

some cycle, it is given the precedence over the read operation. As a result, the read operation 

obtains the data written by the update instead of the correct data requested. Reading incorrect 

data from the off-chip SRAM only results in obtaining an incorrect next port for the 

Table 3. The performance of DMST search engine, where we assume packets are the minimal 
Ethernet packet of size 64 bytes. 

Memory usage and on-chip cost  Search Update 
 

number of nodes throughput 
(average/worst-case)  

Routing 
Tables Total Max.  

segment 

off-chip 
SRAM 
(Mb) 

on-chip 
configurable 

logic 
(slice) 

pipeline 
cycle 
time 
(ns) 

Number 
nodes 

accessed 
per search 
(avg/max) Mpps Gbps 

average 
number of 

nodes 
modified 

per update 

AS6447a 45,400   788  6.23 4.50/6 44.4/33.3 22.8/17.1 2.75 
AS6447b 67,556   964  9.28 4.66/6 42.9/33.3 22.0/17.1 2.66 
AS6447c 85,018 1,036 11.68 4.68/6 42.7/33.3 21.9/17.1 2.52 
AS7660 81,662   874 11.21 4.57/6 43.8/33.3 22.4/17.1 2.51 

144-bit 
node 

(5-way) 
AS2493 80,532   870 11.06 

463 5 

4.59/6 43.6/33.3 22.3/17.1 2.52 
AS6447a 22,201   346  6.10 3.21/4 51.9/41.7 26.6/21.3 2.46 
AS6447b 31,880   430  8.76 3.29/4 50.7/41.7 25.9/21.3 2.44 
AS6447c 39,449   464 10.83 3.29/4 50.7/41.7 25.9/21.3 2.29 
AS7660 37,959   381 10.43 3.22/4 51.8/41.7 26.5/21.3 2.30 

288-bit 
node 

(10-way) 
AS2493 37,431   390 10.28 

575 6 

3.20/4 52.1/41.7 26.7/21.3 2.29 
Note: the 12-bit segmentation table consumes 2 block RAM blocks 

 



 29

corresponding packet which is eventually will be dropped or forwarded to a wrong destination. 

Consider the rate of 1000 updates per second for routing table AS6447a which needs 2.75 node 

modifications per update as shown in the last column of Table 3. These node modifications will 

cause at most 2,750 packets being dropped or forwarded incorrectly. Compared to the 44.4 

million packets being forwarded by the proposed search engine containing 144-bit nodes for 

table AS6447a, 2,750 (the number of packets being dropped or forwarded incorrectly) is very 

small and can be ignored. Thus, the throughput of the router remains almost the same when 

updates are taken into consideration.  

The performance results of the extended DMST search engine are shown in Table 4. The 

pipeline cycle time is bounded by the stage 2 which is 5 ns and 6 ns for the search engines of 

144-bit and 288-bit nodes, respectively. When all the packets are the minimal Ethernet packets 

of size 64 bytes, the overall throughputs will be 102 Gbps and 85 Gbps for the search engines 

of 144-bit and 288-bit nodes, respectively. Note that the throughputs are independent of routing 

table sizes. In Table 4, we also show the total number of nodes needed in each level. For 

example, there are 4096 and 2997 144-bit nodes in levels 1 and 2 of the 5-way search engine, 

respectively for routing table AS6447a. The update speed will remain the same as before.  

In practice, the idea of using multiple off-chip SRAMs in the extended DMST search 

Table 4. performance of extended DMST search engine, where we assume packets are the 
minimal Ethernet packets of size 64 bytes. 

Number of nodes 

Level # 

Search 
Throughput  Routing 

Tables 
Total 

1 2 3 4 5 6 

off-chip 
SRAM 
(Mb) 

on-chip 
configurable 

logic 
(slice) 

on-chip 
block 
RAM 

(block) Mpps Gbps 
AS6447a 45,400 4,096 2,997 5,227 12,404 19,785   891  6.23 
AS6447b 67,556 4,096 3,431 7,883 17,326 30,934 3,886  9.28 
AS6447c 85,018 4,096 3,945 10,042 22,084 40,099 4,752 11.68 
AS7660 81,662 4,096 4,173 10,833 22,776 37,910 1,874 11.21 

144-bit 
node 

(5-way) 
AS2493 80,532 4,096 4,170 10,590 22,032 36,689 2,955 11.06 

2,778 12 200 102 

AS6447a 22,201 4,096 3,084 9,452 5,569  6.10 
AS6447b 31,880 4,096 4,157 13,850 9,777  8.76 
AS6447c 39,449 4,096 5,183 18,165 12,005 10.83 
AS7660 37,959 4,096 5,530 18,162 10,171 10.43 

288-bit 
node 

(10-way) 
AS2493 37,431 4,096 5,571 18,328 9,436 

N/A 

10.28 

2,300 8 167 85 

 



 30

engine to speed up the search performance is limited by the number of I/O pins provided FPGA 

devices. If a single FPGA device provides less number of I/O pins than needed, we have to use 

multiple FPGA devices. In our case, Xilinx Virtex-5 XC5VLX330T FPGA has only 960 I/O 

pins which is less than needed (about 1087 pins) for the extended architecture of 144-bit nodes 

with four off-chip SRAMs. A simple solution is to use two Xilinx Virtex-5 XC5VLX330T 

FPGA devices. Since there is one more stage needed between the two FPGA devices, the total 

number of stages in the extended DMST search engine is 31 instead of 30.  

7. SUMMARY and FUTURE WORK 

We developed a dynamic multiway segment tree (DMST) based data structure for IP lookups. 

DMST is implemented with a B-tree for dynamic forwarding tables. DMST has the same 

asymptotic complexities as MRT and PIBT. With the experiments using real IPv4 routing 

tables, DMST is found to be better than MRT and PIBT in terms of search speed, update speed, 

and memory consumption because DMST uses smaller nodes and fewer keys. We also 

proposed a pipelined search engine using off-chip SRAMs to further improve the search 

performance. By utilizing the current FPGA and off-chip SRAM technologies, the proposed 

5-stage pipelined search engine can achieve the worst-case throughputs of 33.3 and 41.7 Gbps 

for the search engines of 144-bit and 288-bit nodes, respectively. These throughputs are 

equivalent to 17.1 and 21.3 Gbps for minimal Ethernet packets of size 64 bytes. Furthermore, 

the extended DMST search engine of 144-bit and 288-bit nodes can achieve the throughputs of 

200 and 167 Mpps, respectively. Similarly, these throughputs are equivalent to 102 and 85 

Gbps for minimal Ethernet packets of size 64 bytes.  

 In summary, the proposed pipeline architecture consists of two major advantages. First, 

the stage 2 that performs off-chip memory accesses can be incorporated with any advanced 

memory technologies and thus a very high-throughput router can be achieved. Second, the 

proposed architecture is based on the data structure that can be updated and thus it also has a 



 31

very good update performance. 

 Although the current proposal provides a very high-throughput router design along with 

its updatable feature, some enhancements can be done in the future. Firstly, since IPv6 

addresses are 128 bits, the order of the B-tree constructed for IPv6 addresses will become much 

smaller than that for IPv4 addresses. This leads to a deeper B-tree structure and thus reduces 

the search speed. Therefore, what remains to be explored is to apply the insights from our 

IPv4-based pipeline architecture to incorporate IPv6 specification with the current design. 

Secondly, we can construct two and four parallel pipelines by using dual-port and quad-port 

memories, respectively. This enhancement provides a straightforward mechanism to double or 

quadruple the throughput of the current design. Thirdly, other than stage 2 for off-chip memory 

accesses, the bottle-neck stage of the proposed pipeline architecture is stage 3 in which DMST 

node search logic takes most of the time needed (i.e., 4.94 ns and 5.11 ns obtained on Xilinx 

Virtex-5 XC5VLX330T FPGA for 144-bit and 288-bit nodes, respectively). Therefore, an 

optimization technique is needed to reduce the delay of this stage. Splitting stage 3 into two 

sub-stages may be a possible solution. This optimization for stage 3 becomes even more 

important as the memory access speed at stage 2 will increase in the future. Fourthly, the 

update performance can also be improved by using the embedded processors implemented on 

FPGA which can reduces the communication overhead over the I/O interface between the 

FPGA and external processor in the current design shown in Figure 2. For example, Xilinx 

Virtex-5 FXT FPGAs contain 1 to 2 PowerPC 440 Microprocessors. Thus, the functionalities 

of the slow and fast paths can all be built into one single Xilinx Virtex-5 FXT FPGA chip. 

Fifthly, the power consumption is also an issue that needs to be explored, especially when 

multiple off-chip SRAMs are used. Comparing the power consumption of off-chip memory 

over on-chip memory may be a possible direction.  

References 

[1] Avnet Electronics Marketing – Electronic Components Distributor services, 



 32

http://avnetexpress.avnet.com/ 

[2] F. Baker, "Requirements for IP Version 4 Routers", RFC 1812, June 1995. 

[3] M.D. Berg, M.V. Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry: 

Algorithms and Applications, second edition, Springer Verlag, 2000. 

[4] BGP Routing Table Analysis Reports, http://bgp.potaroo.net/. 

[5] Y.-K. Chang and Y.-C. Lin, “Dynamic Segment Trees for Ranges and Prefixes,” IEEE 

Transactions on Computers, vol. 56, no. 6, pages 769-784, June 2007. 

[6] H. Chao, “Next Generation Routers,” Proceedings of the IEEE, vol. 90, no. 9, pages 

1518-1558, September 2002. 

[7] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, second 

edition, The MIT Press, September 2001. 

[8] Cypress Semiconductor Corp., “CY7C1347G, 4-Mbit (128K x 36) Pipelined Sync 

SRAM”, Document #: 38-05516 Rev. *F, Revised January 15, 2009. 

[9] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding tables for fast 

routing lookups,” Proceeding of ACM SIGCOMM, pages 3-14, October 1997. 

[10] DigiKey Corp. - Electronic Components Distributor, http://www.digikey.com/. 

[11] A. Feldman and S. Muthukrishnan, “Tradeoffs for packet classification,” Proceeding of 

IEEE INFOCOM, vol. 3, pages 1193-1202, March 2000. 

[12] P. Gupta, S Lin, and N. McKeown, “Routing lookups in hardware at memory access 

speeds,” Proceeding of IEEE INFOCOM, vol. 3, pages 1240-1247, April 1998. 

[13] P. Gupta, B. Prabhakar, and S. Boyd, "Near-Optimal Routing Lookups with Bounded 

Worst Case Performance," Proceeding of IEEE INFOCOM, vol. 3, pages 1184–1192, 

March 2000. 

[14] I. Ioannidis, A. Grama, and M. Atallah, "Adaptive Data Structures for IP Lookups," 

Proceeding of IEEE INFOCOM, vol. 1, pages 75- 84, 2003. 

[15] C. Labovitz, G. Malan and F. Jahabnian, “Internet routing instability,” Proceeding of ACM 

SIGCOMM, vol. 6, no. 5, pages 515-528, October 1998. 

[16] B. Lampson, V. Srinivasan, and G. Varghese, “IP lookups using multiway and 

multicolumn search,” IEEE/ACM Transactions on Networking, vol. 7, no. 3, pages 

324-334, June 1999. 

[17] H. Lu, K. Kim, and S. Sahni, “Prefix and interval-partitioned dynamic IP router-tables,” 

IEEE Transactions on Computers, vol. 54, no. 5, pages 545-557, May 2005. 

[18] H. Lu and S. Sahni, “O(logn) dynamic router-tables for prefixes and ranges,” IEEE 

Transactions on Computers, vol. 53, no. 10, pages 1217-1230, October 2004. 

[19] H. Lu and S. Sahni, “Enhanced interval trees for dynamic IP router-tables,” IEEE 

Transactions on Computers, vol. 53, no. 12, pages 1615-1628, December 2004. 

[20] H. Lu and S. Sahni, “A B-tree dynamic router-table design,” IEEE Transactions on 

Computers, vol. 54, no. 7, pages 813-824, July 2005. 



 33

[21] E. McCreight, “Priority Search Trees,” SIAM Journal on Computing, vol. 14, no. 2, pages 

257-276, 1985. 

[22] S. Nilsson and G. Karlsson, “IP-Address lookup using LC-tries,” IEEE Journal on 

Selected Areas in Communications, vol. 17, no. 6, pages 1083-1092, June 1999.  

[23] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous, “Survey and taxonomy of IP address 

lookup algorithms,” IEEE Network, vol. 15, no. 2, pages 8-23, March-April 2001.  

[24] S. Sahni and K. Kim, “An O(logn) dynamic router-table design,” IEEE Transactions on 

Computers, vol. 53, no. 3, pages 351-363, March 2004.  

[25] R. Sangireddy, N. Futamura, S. Aluru, and A. K. Somani, "Scalable, Memory Efficient, 

High-Speed IP Lookup Algorithms," IEEE/ACM TRANSACTIONS ON NETWORKING, 

vol. 13, no. 4, pages 802-812, August 2005. 

[26] X. Sun and Y. Q. Zhao, “An On-Chip IP Address Lookup Algorithm,” IEEE Transactions 

on Computers, vol. 54, no. 7, pages 873-885, July 2005. 

[27] University of Oregon Route Views Archive Project, http://archive.routeviews.org/.  

[28] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high speed IP routing 

lookups,” Proceeding of ACM SIGCOMM, pages 25-36, October 1997.  

[29] P. Warkhede, S. Suri, and G. Varghese, “Multiway range trees: scalable IP lookup with fast 

updates,” Computer Networks, vol. 44, no. 3, pages 289-303, February 2004. 

[30] Xilinx, "Virtex-5 Family Overview", Product Specification, DS100 (v5.0), February 6, 

2009. 


