
A 2-Level TCAM Architecture for Ranges
Yeim-Kuan Chang

Abstract—As the demand for high-quality Internet increases, emerging network applications are spurring the need for faster, feature-

rich, and cost-effective routers. Multifield packet classification in routers has been a computation-intensive data path function for

software implementation. Therefore, solutions for packet classification based on hardware design, such as Ternary Content

Addressable Memory (TCAM), are necessary to sustain gigabit line processing rate. Traditionally, TCAMs have been designed for

storing prefixes. However, multifield packet classification usually involves two fields of arbitrary ranges that are TCP/IP layer 4 source

and destination ports. Storing ranges in TCAMs relies on decomposing each individual range into multiple prefixes, which leads to

range-to-prefix blowout. To reduce the total number of prefixes needed to represent all ranges, this paper proposes a 2-level TCAM

architecture and two range-to-prefix conversion schemes. In the first proposed scheme, designed for disjoint ranges, the maximum

number of entries needed in TCAM is 2m� 1 for m disjoint ranges. In the second proposed scheme, designed for contiguous ranges,

only m TCAM entries are needed. In a general case of n arbitrary ranges, all ranges can first be converted into disjoint ranges or

contiguous ranges and then the proposed algorithms can be applied. As a result, only 4n� 3 TCAM entries are needed for the disjoint

ranges and only 2nþ 1 TCAM entries are needed for contiguous ranges. This paper also proposes insertion and deletion algorithms to

accommodate incremental changes to the range sets. The experiments made show that the proposed range-to-prefix conversion

schemes perform better than the existing schemes in terms of the number of required TCAM entries and execution time for range

update operations.

Index Terms—TCAM, ranges, disjoint ranges, contiguous ranges.

Ç

1 INTRODUCTION

FIREWALLS, intrusion detectors, or routers with differen-
tiated Quality of Service use packet classification to

prevent unauthorized accesses to network resources or to
provide differentiated services. Packet classification is a
hardware or software mechanism that uses multiple fields
in the packet header to classify packets according to
specified filtering rules. Multidimensional packet classifica-
tion allowing range matches is difficult to implement at
high speed with a large filtering rule set.

Ternary Content Addressable Memories (TCAMs) [8],

[14], [19] are a well-known hardware solution for IP

lookups and packet classification. TCAMs are fully asso-

ciative memories in which each cell takes one of three logic

states: “0,” “1,” and “�” (don’t care). Each TCAM entry

consists of multiple cells. TCAM entries are suitable for

storing prefix fields in the rule tables for packet classifica-

tion. TCAM is designed in such a way that all of the entries

are compared in parallel against multiple fields of the

incoming packets. If multiple matched entries are found,

the highest priority entry in TCAM is typically returned as

the result. Thus, a matched entry, if it exists, can be found in

a single TCAM access cycle. In contrast, conventional

network processor-based software and ASIC-based hard-

ware designs [1], [2], [3], [4] that use various data structures

may require multiple memory accesses for a single lookup.

Also, the update process in TCAMs is generally simpler [8].

Despite these advantages, TCAMs have three disadvan-
tages: 1) high TCAM manufacturing cost due to low chip
density, 2) high power consumption due to the parallel
execution of TCAM entries, and 3) low TCAM utilization
due to the inefficient method of storing range fields. One
common example of ranges is the source and destination
port fields in rule tables for packet classification. These
disadvantages may slow down the process for Internet
vendors to adopt TCAMs in packet forwarding devices. The
cost-to-density-ratio of TCAM has been dramatically im-
proved in recent years. A lower power consumption for
TCAMs can be achieved by means of circuit designs that
reduce the matchline voltage swing, the switching activity,
or the active matchline capacitance [14]. The partitioning
techniques proposed in [10], [11] can also reduce the TCAM
power consumption, however, but only for prefix fields.

The last problem to be solved is how to store ranges in
TCAMs efficiently. One simple solution is to convert each
range into multiple prefixes and then store them in TCAMs as
usual. However, this simple solution may result in the range-
to-prefix blowout. For example, the range [1, 14] in the 4-bit
address space is converted into six prefixes that are 0001, 001�,
01��, 10��, 110�, and 1110. In the worst case, aW -bit range will
be expanded into 2ðW � 1Þprefixes. If more than one range is
specified in a rule, the number of the expanded prefixes is
multiplied. For example, the standard 5-tuple rule tables use
two range fields that are the 16-bit source and destination port
numbers. The direct range-to-prefix conversion could result
in 900 expansions for a single rule. This range-to-prefix
blowout translates into the TCAM, which is 900 times larger
than the original rule table. This huge size of TCAM is
prohibitive because of the excessive power consumption.
Therefore, researchers have proposed two approaches to
solving the problem of range-to-prefix blowout. The first

1614 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

. The author is with the Department of Computer Science and Information
Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road,
Tainan, Taiwan, ROC. E-mail: ykchang@mail.ncku.edu.tw.

Manuscript received 7 Apr. 2005; revised 10 Nov. 2005; accepted 3 May 2006;
published online 20 Oct. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0100-0405.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

approach is to design a new TCAM-like circuit that can
store a range with only one entry, while the second
approach (2) is to invent a new mechanism that converts a
range into one or two prefixes.

The authors of [6] designed a hardware that uses the first
approach. We refer to this hardware design as range CAM
(RCAM) since the circuit of each RCAM entry contains two
endpoint addresses and proper comparing logic. A similar
design that augments the traditional TCAM with the range
check circuits was proposed in [7]. The circuit of RCAMs is
much more complex than that of TCAMs. Currently, the
real implementations of RCAMs from hardware vendors
are not yet available. Therefore, it is desirable to have
efficient storagewise schemes to store ranges in TCAMs.

An efficient range-to-prefix conversion scheme based on
the elementary intervals is proposed in [1]. If there are
m elementary intervals from a set of n ranges, this scheme
needs 2m prefixes. The worst-case number of prefixes
needed is 4nþ 2 for a set of n ranges because m is at most
2nþ 1. Another range-to-prefix conversion scheme is
proposed in [13] for solving the point intersection problem.
This scheme uses the concept of the longest common prefix
(LCP) of two addresses to build prefixes. Each disjoint
range is converted into two prefixes. The two converted
prefixes with the range endpoints are stored in two separate
2-level TCAM-RAM architectures. Thus, this scheme
requires 2n TCAM entries (prefixes) for a set of n disjoint
ranges. Also, this scheme needs two TCAM lookups to
complete a search and two TCAM operations for a range
insertion or deletion.

In this paper, we propose two range-to-prefix conversion
schemes. Our algorithms explore the relationship between
disjoint ranges and obtain better results than the schemes
proposed in [1] and [13]. We use only one 2-level TCAM-
RAM architecture, instead of two as proposed in [13]. Our
TCAM-RAM architecture is augmented with a 5-tuple rule
structure consisting of two endpoint addresses and three rule
IDs. After TCAM returns the matched result, an extra
operation of checking the two endpoint addresses is
performed to obtain the final matched rule ID. The proposed
architecture is suitable for software implementation.

The first proposed range-to-prefix conversion scheme is
designed for disjoint ranges. Each disjoint range can be
represented by the longest prefix that completely covers it.

However, some ranges must be split into two ranges in
order to satisfy the proposed 5-tuple rule structure. As a
result, this scheme needs at most 2m� 1 prefixes for
m disjoint ranges. The second proposed range-to-prefix
conversion scheme is designed for contiguous ranges. No
range splitting is needed. At most m prefixes are needed for
m contiguous ranges. In general, the first scheme is suitable
when the degree of range overlapping is low (that is, only a
few ranges overlap the others). The second scheme is
suitable when the degree of range overlapping is high.

For a set of n arbitrary ranges, we use a two-step
approach. If Step 1 converts the ranges into disjoint ranges
(at most 2n� 1), then Step 2 applies the first proposed
scheme. As a result, this two-step method generates at most
4n� 3 prefixes needed in TCAM. If Step 1 converts the
original ranges into contiguous disjoint ranges (elementary
intervals, at most 2nþ 1), then Step 2 applies the second
proposed scheme. As a result, this two-step method
generates at most 2nþ 1 TCAM entries.

Incremental insertion and deletion algorithms are also
proposed in this paper. Specifically, an optimized insertion
algorithm is developed for the first proposed scheme to
reduce the number of TCAM insertion and deletion
operations. As a result, the execution time for inserting or
deleting a prefix in/from TCAM can be reduced.

The rest of the paper is organized as follows: Section 2
illustrates the notations and definitions needed in this paper.
Section 3 describes the proposed 2-level TCAM architecture.
The proposed algorithms are divided into three subsections,
i.e., disjoint ranges, contiguous ranges, and arbitrary ranges.
Section 4 presents the evaluation of the performance results
and Section 5 contains the conclusion.

2 NOTATIONS AND DEFINITIONS

To describe the proposed schemes clearly, we use the
binary trie to represent the prefixes and use the range set G
in Fig. 1 to explain the notations and definitions needed in
the paper.

Notations.

W : The maximum number of bits in the address space of
ranges. A W-bit address A must satisfy the condition of
0 � A � 2W � 1.

CHANG: A 2-LEVEL TCAM ARCHITECTURE FOR RANGES 1615

Fig. 1. The range set G ¼ fR1;R2;R3;R4;R5;R6g and EI ¼ fE0; . . . ;E11g.

Range: A series of consecutive addresses. A W-bit range
R ¼ ½L;U � satisfies 0 � L � 2W � 1 and 0 � U � 2W � 1,
where L � U . If L ¼ U , we call R the singleton range.

Rmin and Rmax: The lowest and highest addresses of the
range R. Specifically, Rmin ¼ L and Rmax ¼ U when
R ¼ ½L;U �.

bW�1 . . . bh � . . . � : Ternary format of prefixes. It represents a
prefix of length W � h and bj ¼ 0 or 1 for W � 1 � j � h
and bj ¼ � for j < h. For simplicity, a single don’t care bit is
used to denote a series of don’t care bits. Thus, prefix 1�

denotes 1���� in a 5-bit address space.

Rext: Extended prefix of range R. Rext is the longest prefix
that covers R. If prefixes are illustrated in the binary trie,
Rext is the lowest common ancestor of addresses Rmin

and Rmax. To be specific, assuming Rmin ¼ aW�1 . . . a1a0

and Rmax ¼ bW�1 . . . b1b0, Rext ¼ cW�1 . . . ck � , where ci ¼
ai ¼ bi for W � 1 � i � k and ak�1 6¼ bk�1. Consider
range R1 in Fig. 1. R1min ¼ a5 . . . a1a0 ¼ 0000102 and
R1max ¼ b5 . . . b1b0 ¼ 0001102. Since ai ¼ bi for i ¼ 5 to 3
and a2 6¼ b2, R1ext ¼ 000���.

Pmid� and Pmidþ: Middle addresses of a prefix of length
less than W . Pmid� ¼ d and Pmidþ ¼ dþ 1, where
d ¼ bðPmin þ PmaxÞ=2c. For example, in Fig. 1, P2mid� ¼
15 and P2midþ ¼ 16.

Gext: The longest prefix that covers all ranges in range set G.
In Fig. 1, Gext ¼������ .

Prefix (or prefix range): A prefix R is a range that satisfies
R ¼ Rext. In Fig. 1, R4 is a prefix. We use Pf0g and Pf1g
to represent the prefixes of the left and right children of a
prefix P in the binary trie, respectively. For example,
P2f1g represents P3 in Fig. 1.

Disjoint, nested, and intersecting: Let R1 ¼ ½L1; U1� and R2 ¼
½L2; U2� be two ranges.

1. R1 and R2 are disjoint if either U1 < L2 or U2 < L1.
R1 is said to be smaller than R2 (denoted by
R1 < R2) if U1 < L2.

2. R1 is nested by (covered by, or contained in) R2 if L2 �
L1 � U1 � U2 (denoted by R1 � R2). Also, R1 is
said to be more specific than R2 if R1 � R2.

3. R1 and R2 are intersecting (overlapping) if they are
neither disjoint nor nested. Specifically, R1 and R2
are intersecting if either L1 < L2 � U1 < U2 or
L2 < L1 � U2 < U1. In this case, we also say that
R1 intersects R2 or R2 intersects R1.

Successive and contiguous ranges: Two disjoint ranges are
successive if no other range exists between them. Two
successive ranges, ½L1; U1� and ½L2; U2�, are contiguous if
L2 ¼ U1þ 1. For example, in Fig. 1, R1 and R2 are
successive and R5 and R6 are contiguous.

Elementary intervals, valid and default intervals: The default
prefix, default range, or default rule denoted by Rdf

covers the entire address space. For example, in the
one-dimensional packet classification, the default
prefix is Rdf ¼ ½0; 2W � 1�, which is usually the final
result when no other prefix matches the destination
address. The set of elementary intervals, constructed

from the endpoints of a range set G, is
EI ¼ fE½i� j E½i� ¼ ½L½i�; U ½i�� for i ¼ 0 to k� 1g, where
k is the number of elementary intervals in EI. EI must
satisfy the following four conditions:

1. L½0� ¼ 0 and U ½k� 1� ¼ 2W � 1,
2. U½i� ¼ L½iþ 1� � 1 for i ¼ 0 to k� 2,
3. all the addresses in E½i� are covered by the same

subset of G, denoted by G½i�, and
4. G½i� 6¼ G½iþ 1�.

For example, EI computed from the six 6-bit ranges in
Fig. 1 is EI ¼ f½0; 1�; ½2; 6�; ½7; 12�; ½13; 17�; ½18; 18�; ½19; 27�;
½28; 35�; ½36; 39�; ½40; 50�; ½51; 54�; ½55; 59�; ½60; 63�g. The inter-
vals that are covered by at least one original range in G
are called valid intervals, e.g., [2, 6], [13, 17], etc. The other
intervals are default intervals covered only by the default
range [0, 63].

We only solve the one-dimensional packet classification
(PC) problem in this paper. The multidimensional PC
problem can be extended [1].

Definition 1. Given a packet with destination address p and a set
of n rules G ¼ fRule½i� ¼ ðR½i�; C½i�; A½i�ÞjR½i� ¼ ½L½i�; U ½i��
is a W-bit range, C½i� is the priority, and A½i� is the action of
Rule½i� for i ¼ 0 . . . n� 1g, the one-dimensional PC problem
is to find the rule Rule½i� 2 G such that the range associated
with rule R½i� contains address p and C½i� is the highest. As a
result, action A½i� can be taken for the packet.

There exists a default rule (Rdf , Cdf , Adf) where
Rdf ¼ ½0; 2W � 1�, Cdf is set to be lower than the priority
of any other rule, and Adf could be any action such as
“Accept” or “Reject.” For simplicity, C½i� and A½i� in Rule½i�
are ignored and, thus, Rule½i� and R½i� are used inter-
changeably when no confusion is incurred.

As stated earlier, storing ranges in TCAM can be solved
by decomposing each individual range into multiple
prefixes. Fig. 2 shows the direct range-to-prefix conversion
algorithm Direct_Convert written in C-like pseudocode [5].
The inner for loop determines if Rmin is a valid starting
address of a prefix of size 2i. For example, if Rmin ¼ 4, Rmin

is the staring address of the prefix 0001�� in the 6-bit
address space. Rmax is used to determine i since all the
addresses Rmin to Rmin þ 2i � 1 of the prefix must be
contained in range ½Rmin; Rmax�. After the prefix of size 2i is
determined, its lower and upper addresses are stored in
arrays L½� and U½�, respectively. The outer while loop
continues the process of finding the next prefix until Rmax

is reached. For example, when we run Direct_convert with

1616 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

Fig. 2. Range ½Rmin;Rmax� is cut into d prefixes at s ¼ d� 1 cutting

points. Arrays L½0 . . . d� 1� and U½0 . . . d� 1� store the lower and upper

addresses of the converted prefixes. We call U ½0� . . .U ½s� 1� the lower

cutting addresses of the conversion.

range R3 in Fig. 1, the inner for loop determines the first
prefix [19, 19] because Rmin ¼ 19 is not divisible by 21. The
next two prefixes, [20, 23] and [24, 27], can be obtained
because addresses 20 and 24 are divisible by 22. In the worst
case, the range ½1; 2W � 2� is split into 2W � 2 prefixes. For a
set of m ranges, the worst-case number of prefixes
generated by algorithm Direct_convert is OðmW Þ.
Example 1. Assume there are m ranges selected from the
W -bit range set

D ¼ fR½i�jR½i� ¼ ½L½i�; U ½i��;where L½i� ¼ t� 2V þ 1 and

U ½i� ¼ ðtþ 1Þ � 2V � 2 for t ¼ 0 . . . 2W�V � 1g:

Each range in D can be decomposed into 2� ðV � 1Þ
prefixes using the algorithm in Fig. 2. Since these
m ranges are disjoint, ð2V � 2Þ �m prefixes are needed.
Assume V ¼ OðWÞ. Thus, OðWmÞ prefix entries are
needed to store these m ranges in TCAM.

Before going into the details of the proposed algorithms,
we first demonstrate why the proposed algorithm can solve
the special case described in Example 1. By using the
concept of extended prefixes, range R[i] in Example 1 can be
stored as its extended prefix P ½i� ¼ R½i�ext. Since all the
extended prefixes P ½1� to P ½m� are disjoint, only m prefixes
are needed. As we shall explain later, we use an auxiliary
data structure, called rule structure, for each extended prefix
P ½i� to store the two endpoints L½i� and U ½i�. Thus, if the
input address matches P ½i� and the input address is
between L½i� and U ½i� (inclusively), then the matched range
is R½i�. Otherwise, the matched rule is the default range.
Notice that, in general, some of the extended prefixes may
be nested by other ranges. Thus, the one-dimensional
PC problem becomes complicated and will be solved
completely in the latter part of this paper.

3 PROPOSED METHOD

In this section, we shall propose a 2-level TCAM architec-
ture, as shown in Fig. 3, to solve the one-dimensional PC
problem with range fields. The first level of the proposed
architecture is the traditional TCAM and the second level is

the rule structure memory, which can be implemented with
fast memory such as SRAM. As stated in Definition 1, each
rule is associated with a range. By using one of the two
proposed schemes, each range can be converted to one or
two prefixes which can then be stored in TCAM. In
addition, the rule structures in SRAM are used to store
other range related information. When a packet containing
the destination address p arrives, the following operations
are performed: Address p is compared with all TCAM
entries in parallel. The rule memory index of the matched
entry with the highest priority is returned. Then, the
information stored in the rule structure of the matched rule
memory is compared with p. The final matched rule is
selected from the three possible rules, namely, Rl, Rm, and
Rr, as shown in Fig. 3b. As we can see, the rule structure
stores two addresses, L and U, which can only distinguish
three segments in the associated prefix. Therefore, at most
three ranges can be associated with the three segments. The
local CPU is responsible for updating the TCAM and rule
structure memory.

The two proposed range-to-prefix conversion schemes
are based on the concepts of disjoint ranges and contiguous
ranges. Basically, for each range R, if the extended prefix
Rext of R can be associated with a correct rule structure, then
it is directly stored in TCAM. Otherwise, R is split into two
prefixes which are associated with their correct rule
structures. By “correct rule structure,” we mean that the
search process can find the correct classification result
based on the proposed 2-level TCAM architecture.

Example 2. Consider the ranges in Fig. 1. The extended
prefixes of all ranges except R3 can be associated with
the correct rule structures. For example, P2 ¼ R2ext can
be associated with the rule structure (13, 17, Rdf , R2,
Rdf). The addresses of P3 ¼ R3ext are covered by four
address segments, namely, [16, 17], [18, 18], [19, 27], and
[28, 31]. Thus, no correct rule structure can be assigned to
P3. Range R3 must be split into two ranges, R3e ¼
½19; 23� and R3f ¼ ½24; 27�. Their extended prefixes P3e ¼
010��� and P3f ¼ 0110�� can be associated with the
correct rule structures, (18, 18, R2, Rdf , R3) and (24, 27,
Rdf , R3, Rdf), respectively. If the input address is 17, the

CHANG: A 2-LEVEL TCAM ARCHITECTURE FOR RANGES 1617

Fig. 3. The proposed 2-level TCAM architecture for the 1D PC problem.

longest prefix match is R3e. Thus, the matched range is
R2 after checking the rule structure of R3e.

3.1 Disjoint Ranges

In this section, a systematic mechanism based on the range
split algorithm is developed to store the disjoint ranges in
the proposed 2-level TCAM architecture. For each disjoint
range, we use the following properties to construct one or
two prefixes (TCAM entries) and the associated rule
structures:

Properties of the prefixes extended from disjoint ranges: For
two disjoint ranges Ra and Rb, assuming Pa ¼ Raext,
Pb ¼ Rbext, G ¼ fRa;Rbg, P ¼ Gext, we have

1. Pa 6¼ Pb.
2. Pa and Pb are disjoint if Ramax � Pmid� and

Pmidþ � Rbmin.
3. Pb covers Pa if Pb covers Ra.

We omit the complete proofs and only illustrate these
properties for nonsingleton ranges by using the examples
shown in Fig. 4. By definition, if Paext ¼ Pbext, both Ra and
Rb must contain Pamid� and Pamidþ. This is a contradiction
because Ra and Rb are disjoint. Thus, we have the first
property, Pa 6¼ Pb. We know that P ¼ Gext covers both Ra
and Rb. If Ramax � Pmid� and Pmidþ � Rbmin, as shown in
Fig. 4a, Ra must be contained in Pf0g, which is the prefix of
the left child of P in the binary trie. Similarly, Rb is
contained in Pf1g. Since Pf0g and Pf1g are disjoint, we
have the second property that Pa and Pb are disjoint. The
condition that Pb covers Ra implies Gext ¼ Rbext. Thus, the
third property holds. Fig. 4b shows that Pb covers Ra. We
can see that Rb must contain addresses Pbmid� and Pbmidþ
that are contained in Pf0g and Pf1g, respectively. There-
fore, Pb must cover Pa.

Notice that the highest priority TCAM entry is the
longest prefix that matches the input address p. According
to the third property described above, if address p matches
Pa ¼ Raext, then the matched range can be found by
inspecting the rule structure associated with Pa because
Pa is longer than Pb. However, if the longest prefix
returned by TCAM is Pb, then the input address p must
not match Pa. Therefore, when we consider building the
rule structure for range Rb, all the ranges (such as Ra)
covered by Pb can be ignored. As a result, we are able to
associate Pb with a correct rule structure in a recursive
manner and ensure that the rule selection process returns
correct results based on the proposed 2-level TCAM
architecture.

Recall that we propose using the rule structure with two
endpoints, as shown in Fig. 3b, to select the correct ranges.
Two endpoints can only distinguish at most three segments
in a line. Four fundamental cases, as shown in Fig. 5, illustrate
four different situations that can be solved by the proposed
rule structure without a range split. Case 1 illustrates the
simplest case in which no other range intersects P ¼ Rext.
Obviously, the rule structure of P can be set to (Rmin, Rmax,
Rdf , R, Rdf), where Rdf denotes the default range. Cases 2
and 3 illustrate that only one range R0 intersects prefix
P ¼ Rext. In case 2, P is associated with rule structure
(R0max þ 1, Rmin � 1, R0, Rdf , R). However, in case 3, P is
associated with the rule structure (Rmin, Rmax, R0, R, Rdf).
Notice that the mirrored versions of cases 2 and 3 are
constructed similarly. In case 4, prefix P ¼ Rext is com-
pletely covered by three ranges, R0, R, and R1, and is
associated with the rule structure (Rmin, Rmax, R0, R, R1).

The proposed rule structure does not work for other
cases, such as cases 5 and 6 in Fig. 5, which require range
splits to fit to the fundamental cases. The following lemma
determines whether or not a range needs to be split and
how to split the range for the proposed 2-level TCAM
architecture.

Lemma 1. The range R will be split by a range Rc iff one of the
following conditions is true, assuming Rc and R are disjoint
and Pc ¼ Rcext covers P ¼ Rext:

1. Rcmin < Pmin � Rcmax and Rmin 6¼ Rcmax þ 1 and
Rmax 6¼ Pmax.

2. Rcmin � Pmax < Rcmax and Rmax 6¼ Rcmin � 1 and
Rmin 6¼ Pmin.

When range R is split, it is split into two ranges, Re ¼
½Rmin; Pmid�� and Rf ¼ ½Pmidþ; Rmax�.

We omit the proof and only illustrate the idea of this
lemma. The above two conditions are shown as cases 5 and
6 in Fig. 5. Take case 5 in Fig. 5e as an example. The
addresses covered by P ¼ Rext are divided into four
segments. Hence, the proposed rule structure with two
endpoints fails to represent the rule matching conditions for
prefix P . Therefore, we split R into two ranges, Re and Rf .
Since Remax ¼ ðReextÞmax and Rfmin ¼ ðRfextÞmin, no further
split is needed for Re and Rf based on the same lemma.
Reext and Rfext will be associated with case 2 rule structure
(Rcmax þ 1, Rmin � 1, Rc, Rdf , R) and case 1 rule structure
(Pmidþ, Rmax, Rdf , R, Rdf), respectively.

As shown in Example 2, R3 is split into two ranges,
R3e ¼ ½19; 23� and R3f ¼ ½24; 27�, because P3 satisfies case 5.
After the split, P3f ¼ R3fext is a prefix range that fits case 1.

1618 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

Fig. 4. Pictorial examples for the properties of prefixes extended from disjoint ranges.

Therefore, P3f is associated with (24, 27, Rdf , R3, Rdf).
P3e ¼ R3eext f i ts case 2 and is associated with
(18,18,R2,Rdf ,R3). The other ranges do not need to be split.
As a result, the proposed scheme generates seven prefixes
from the range set G. If the ranges in G are converted
individually, 14 prefixes will be generated.

3.1.1 Range Split (SPLIT Algorithm)

To demonstrate how to split the ranges, we store the
disjoint ranges in the binary trie. In Fig. 1, we have seen the
binary trie built from the extended prefixes of the six ranges
in G. Based on the results in Lemma 1, we propose the
algorithm SPLIT ðRoot;NL;NRÞ in Fig. 6 that splits the
disjoint ranges stored in the binary trie recursively. The first
parameter, Root, is set to the pointer to the root of the
binary trie initially. Parameters NL and NR are the pointers
pointing to the predecessor and successor of the subtrie
rooted at Root. For example, the predecessor and successor
of node P3 in Fig. 1 are node P2 and the root of the trie,
respectively. Initially, NL and NR are set to NULL. The
nodes in the binary trie are classified into two types, i.e.,
prefix nodes and nonprefix nodes. Prefix nodes store the range
associated with it. For example, nodes marked with bold
circles in Fig. 1 are prefix nodes. If the current Root is a
prefix node, we use Lemma 1 (lines 10-11) to check if it
should be split into two ranges. If the range R associated
with Root needs to be split, it is split into Re ¼ ½Rmin; Pmid��
and Rf ¼ ½Pmidþ; Rmax�. Two new prefix nodes generated
from Re and Rf are inserted in the binary trie for further
processing. The Root node is then reset as a nonprefix node.
If the range associated with Root need not be split, then Root
is associated with the correct rule structure. Since the range
associated with Root must satisfy one of the four funda-
mental cases, the correct rule structure can be assigned

accordingly, as shown in Fig. 5. Finally, two recursive calls

(lines 19-20) are made into the two children of Root. Since

each range is only split at most once and there is at least one

range that is not split, we have the following result:

Lemma 2. For a set of m disjoint ranges, the total number of

ranges generated by the SPLIT algorithm is at most 2m� 1.

3.1.2 Range Update

Now, we consider how to insert and delete a range. We first

propose the insertion and deletion algorithms that incre-

mentally update the related prefixes and their rule

structures without restarting the SPLIT algorithm again.

The number of prefixes after inserting or deleting a range is

CHANG: A 2-LEVEL TCAM ARCHITECTURE FOR RANGES 1619

Fig. 5. Four fundamental cases for selecting correct rule structures and two cases that do not fit these fundamental cases. (a) Case 1. (b) Case 2.

(c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6.

Fig. 6. Range split procedure for a set of disjoint ranges.

kept below 2m, where m is the number of the original
ranges. In the second part of this section, we consider how
to reduce the number of TCAM memory update operations
and propose the optimized insertion algorithm. Although
the constraint that one original range is only split once is
relaxed, the number of prefixes is still kept below 2m. With
the optimized insertion algorithm, the TCAM update
performance is much improved.

Insertion. When range Rs is to be inserted, the following
steps are required for the proposed 2-level TCAM archi-
tecture: 1) Determine if Rs needs to be split into two ranges,
Re and Rf , 2) search the ranges that need to be split by Rs
or Re and Rf , and 3) change the rule structures of other
ranges that depend on Rs or Re and Rf .

In the first step, we look for the ranges RL and RR that
intersect Rsext. Recall that the ranges are stored in the
binary trie. Thus, we first insert the prefix Rsext in the
binary trie. Then, RL and RR can be obtained by traversing
the trie from the root to the node Rsext. If one of the two
conditions in Lemma 1 is satisfied, Rs is split into Re and
Rf . Since Re and Rf will not be split again, they can be
associated with the correct rule structures according to the
four fundamental cases.

In the second step, we determined what other existing
ranges need to be split because of the insertion of Rs, or Re
and Rf if Rs is split. Subsequently, we only show the
necessary actions when inserting Rs since the necessary
actions are the same when inserting Re and Rf . We look for
the candidate range R for splitting such that R is covered by
Rsext and Rs intersects Rext. The process of finding the
candidate ranges R will be presented later in this section.
Briefly, we traverse the binary trie from Rsext to Rsmax and
from Rsext to Rsmin. If any traversed node is a prefix node
and its associated range R satisfies one of the two
conditions in Lemma 1, R must be split into two ranges.

Notice that the ranges split by Rs may be the ones
causing the other ranges to be split earlier. Therefore, when
these kinds of ranges are split, those ranges split by them
can be merged back together without affecting the correct-
ness of the proposed algorithms. However, there may be
other ranges that will be affected by these merged ranges.
This chain effect may have a negative impact on TCAM
performance. Therefore, in this paper, we do not perform
this kind of merge operations.

The last step of the insertion algorithm looks for the
ranges, the associated rule structures of which depend on
Rs. The process of determining which existing ranges
depend on Rs is the same as Step 2. After we know which
existing ranges depend on Rs, we can modify their rule
structures according to the four fundamental cases in Fig. 5.

To facilitate the insertion process, we shall develop a
mechanism to calculate the possible candidate ranges that
may be split by Rs. Before we show the results, we explain
our idea using the following example:

Example 3. Fig. 7 shows a range set G ¼
fR1; R2; R3; R4; R5; R6g and the range Rc to be inserted
in a 32-bit address space. The extended prefix Pc ¼ Rcext
is of length 26. Based on Lemma 1, every range in G
should be split by Rc. However, if we apply the SPLIT
algorithm to the range set G before Rc is inserted, ranges
R2 and R5 are already split by R1 and R6, respectively.

To generalize the above example, we have the following
result: Let prefix Pc of length hð0 � h < W � 3Þ be
bW�1 . . . bW�h � and range Rc be ½Pcmid�; Pcmidþ�. The
possible candidate ranges that may be split by Rc are the ones
whose extended prefixes are bW�1 . . . bW�h1f0gk � and
bW�1 . . . bW�h0f1gk � for k ¼ 0 to W � h� 4.

Let R be a candidate range and consider
bW�1 . . . bW�h1f0gk � only. It is worth showing why P ¼
Rext cannot be bW�1 . . . bW�h1f0gk � for k ¼W � h� 3 to
W � h� 1. C o n s i d e r P ¼ bW�1 . . . bW�h1f0gW�h�1 o r
bW�1 . . . bW�h1f0gW�h�2 � . P must cover the address
Pcmidþ and make P not disjoint from Rc. Therefore,
range R, whose extended prefix is bW�1 . . . bW�h1f0gW�h�1

or bW�1 . . . bW�h1f0gW�h�2 � , does not exist. Now, consider
P ¼ bW�1 . . . bW�h1f0gW�h�3 � �. The only condition that
makes P disjoint from Rc is Rmin ¼ Pcmidþ þ 1. This
condition does not satisfy the second term of the first
condition in Lemma 1. Therefore, R will not be split by Rc.
Prefix Rcext must be shorter than W � 3 to have existing
ranges split by Rc.

To calculate the maximum number NðRcÞ of ranges that
may be split by Rc ¼ ½Pcmid�; Pcmidþ�, we have to consider
the existing ranges that may already be split by other
exiting range before Rc is inserted, as shown in Example 3.
Assuming prefix Rcext is of length h, NðRcÞ is
2� dðW � h� 3Þ=2e. NðRcÞ is at most W � 2 if we assume
h ¼ 0 and W is an even number.

1620 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

Fig. 7. The ranges that may be split by a 2-address range Rc.

Now, we considerRc to be an arbitrary range, instead of a
2-address range. Assume Rcext is of length h. We have to
consider many 2-address ranges, like ½Pcmid�; Pcmidþ�, con-
tained in Rc which intersect the extended prefixes of other
ranges. These 2-address ranges are just ½U ½i�; U ½i� þ 1� for i ¼ 0
to s� 1, where U ½i� are lower cutting addresses of range Rc
from the direct range-to-prefix conversion as shown in Fig. 2.
The numberNðRcÞof ranges that may be split by the arbitrary
range Rc is at most 2� dðW � h� 3Þ=2e. NðRcÞ is at most
W � 2 when h ¼ 0 and W is an even number. Based on the
above results, the following conclusion is made:

The candidate ranges that may be split by Rc are the ones
whose extended prefixes are associated with the prefix nodes on the
two paths from node Pc to node Rcmin and from Pc to node
Rcmax in the binary trie. Also, these extended prefixes are shorter
than W � 3.

Example 4. Fig. 8 shows a range set G ¼ fR1; R2; R3g and
the range Rc to be inserted in a 6-bit address space.
The binary trie built from G is shown in bold lines.
The prefix nodes in the binary trie are marked as bold
circles. Based on Lemma 1, every range in G should be
split by Rc. The extended prefixes of the ranges in G
are just the prefixes associated with the prefix nodes
on the two paths from node Rcext to node Rcmin and
from node Rcext to node Rcmax.

Deletion. When a range Rdel is to be deleted, we have to
1) delete the range Rdel or the two contiguous ranges split
from Rdel and 2) modify the rule structures of the extended
prefixes that depend on Rdel.

In the first step, if an existing Rdel is found, it is deleted
directly. Otherwise, we look for two contiguous ranges,Re ¼
½Rdelmin; Pdelmid�� and Rf ¼ ½Pdelmidþ; Rdelmax�, where
Pdel ¼ Rdelext. If both Re and Rf exist, they are deleted
directly.

Notice that we can find the pairs of contiguous ranges that
were split byRdelor byRe andRf split fromRdel. All of these
pairs of contiguous ranges may be merged back to their
original ranges afterRdel is deleted. However, merging these
ranges may cause the other ranges to be split in order to
maintain the correct rule structures for the proposed 2-level
TCAM architecture. Merging and splitting ranges incur very
costly TCAM update operations. Therefore, we do not

propose to merge these contiguous ranges split by Rdel
back to their original ranges since the constraint that a range
is split at most once is not violated.

The second step is to find the ranges, the extended
prefixes of which depend on Rdel. Then, the rule structures
of these ranges are modified to remove the dependency on
Rdel. Let R be a range that depends on Rdel. R may or may
not be split from Rdel. Rdel must intersect Rext. Therefore,
Rext must be associated with the rule structure of case 2, 3,
or 4 before Rdel is deleted. When Rdel is deleted, Rext

should be changed to case 3 if Rext was associated with
case 4 rule structure or Rext should be changed to case 1 if
Rext was associated with case 2 or 3 rule structure. We
formulate the above result for deletion as follows: When a
range is deleted from a set of disjoint range G, at most two
prefixes are deleted from TCAM.

Optimization. Reducing the number of TCAM memory
updates is important [8] because TCAM updates slow down
the TCAM search performance. Also, updating TCAM is
much slower than updating the rule structures stored in the
rule memory of the proposed 2-level TCAM architecture.
Therefore, we propose the optimized insertion algorithm to
reduce the number of TCAM updates while keeping the
number of prefixes below 2m for m disjoint ranges.

When one range is inserted, one or two (if the range is
split) prefixes have to be inserted in TCAM. In addition, we
have to determine what other existing ranges have to be
split by the range to be inserted. A split operation on an
existing range R results in one prefix, ðRextÞ, being deleted
and two prefixes, Reext and Rfext, being inserted, where Re
and Rf are the ranges split from R. Based on the properties
of extended prefixes in Section 3.1, prefixes Rext, Reext, and
Rfext must be different. Therefore, when an existing range is
split, it incurs three TCAM update operations. We know
that the maximum number of ranges that may be split by
the newly inserted range is on the order of OðWÞ. As a
result, splitting existing ranges by the newly inserted range
has a very negative impact on TCAM performance. One
way to avoid splitting existing ranges is to split the range
the newly inserted range itself between addresses U ½i� and
U½i� þ 1, where U½i� for i ¼ 0 to s� 1 are the lower cutting
addresses of the direct range-to-prefix conversion scheme in
Fig. 2. Therefore, we propose the following optimized
insertion algorithm:

CHANG: A 2-LEVEL TCAM ARCHITECTURE FOR RANGES 1621

Fig. 8. The ranges that may be split by an arbitrary range Rc.

Optimized Insertion. When inserting range Rs, three steps are
needed. First, we determine if Rs needs to be split into two ranges,
Re and Rf , as in the nonoptimized insertion. Second, we search
the existing ranges that should be split by the 2-address range
½U½i�; U ½i� þ 1� for i ¼ 0 to s� 1 contained in Rs (or in Re and
Rf if Rs is split). If there is any existing range that will be split
by ½U½i�; U ½i� þ 1�, we split Rs (Re and Rf) between U ½i� and
U ½i� þ 1. Third, we set the ranges split from Rs with the correct
rule structures.

Example 5. As shown in Fig. 8, the optimized insertion does
not split all ranges in G when range Rc is inserted.
Instead, range Rc itself is split into three ranges [27, 31],
[32, 39], and [40, 40]. Splitting Rc between addresses 31
and 32 prevents ranges R1 and R3 from being split.
Similarly, splitting Rc between addresses 39 and 40
prevents range R2 from being split. As a result, only
three prefixes extended from [27, 31], [32, 39], and
[40, 40] need to be inserted in TCAM instead of deleting
three prefixes and inserting six prefixes for unoptimized
insertion.

It is easy to see that the optimized insertion algorithm
generates at most OðWÞ prefixes when a disjoint range is
inserted. Based on the optimized insertion, we have to
modify the deletion algorithm. If an original range is to be
deleted, all ranges split from it must be deleted. Therefore,
at most OðWÞ ranges split from the original range need to
be deleted in order to complete the process of the deletion.
Thus, we have the following result:

Lemma 3. At most 2m� 1 prefixes are needed in the proposed
2-level TCAM after some insertions and deletions, where m is
the number of original disjoint ranges.

Proof. We have shown that the SPLIT algorithm generates
at most 2m� 1 ranges in a set of m disjoint ranges
because each disjoint range can be split into two ranges
only once. Although the optimized insertion algorithm
allows a range to be split more than once, it will not
generate more ranges because each cut on the newly
inserted range is traded for not splitting one or more
other ranges. Thus, the lemma follows. tu

3.2 Contiguous Ranges (Elementary Intervals)

In this section, we propose a different approach that
converts the set of ranges into contiguous disjoint ranges
(also called elementary intervals). This approach is suitable

for both disjoint and overlapping ranges. All the default
and valid elementary intervals are used when constructing
the extended prefixes. Thus, the whole address space is
covered by all extended prefixes. We shall show that no
range split is needed when associating all extended prefixes
with the correct rule structures. Since each elementary
interval is also a disjoint range, we use the elementary
interval and disjoint range interchangeably in this section.

As defined, all elementary intervals are contiguous. The
addresses contained in Rext must be completely covered by
R, by the elementary intervals contained in Rext, and by the
two elementary intervals (say, RL and RR) that intersect
Rext if they exist. Thus, when we consider how to assign a
correct rule structure to Rext, we only need to consider R,
RL, and RR. The addresses in Rext that should match Rext

will match the longest prefixes extended from one of the
elementary intervals contained in Rext. Fig. 9 shows three
fundamental cases that can be used to assign the correct
rule structure to Rext. The extended prefixes of all
elementary intervals must satisfy one of these three
fundamental cases without any range split.

In Fig. 10, we show the algorithmBuild EIðRoot;NL;NRÞ
that associates the extended prefixes of all elementary
intervals with the correct rule structures. As in algorithm
SPLIT, all elementary intervals are first stored in the binary
trie by using their extended prefixes. Only the nodes
corresponding to these extended prefixes are marked as
prefix nodes in the binary trie. The rule structures
associated with the extended prefixes are obtained based
on the three fundamental cases in Fig. 9. For example, when
calling Build EIðRoot;NL;NRÞ to assign the rule structure
to prefix P5 extended from E9 ¼ ½51; 54� in Fig. 1, Root, NL,
and NR are set to nodes 110��� ðP5Þ, 1�����, and 11���� ðP6Þ,
respectively. As a result, P5 satisfies the fundamental case 2
and can thus be associated with (51, 54, Rdf , R5, R6). Based
on the above result, we conclude the following: Given
m contiguous ranges, algorithm Build EI generates at most m
prefixes for the proposed 2-level TCAM architecture.

Now, we consider the range update operations. We
assume that the newly inserted range Rs is disjoint from all
valid intervals. Thus, Rs must be nested by a default
interval denoted by Rd. Also, the range Rdel to be deleted is
one of the existing valid elementary intervals.

Insertion. In general, Rs and Rd can be converted into
three elementary intervals, i.e., Rl, Rs, and Rr. If
Rsmin ¼ Rdmin, Rl is empty. Similarly, if Rsmax ¼ Rdmax,

1622 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

Fig. 9. Three fundamental cases for contiguous ranges.

Rr is empty. Rdext may be the same as Rlext, Rsext, or Rrext.
Let G ¼ fRl;Rs;Rrg. If there exists a range R in G such that
Rext ¼ Rdext, R must contain both of the addresses, Pdmid�
and Pdmidþ, where Pd ¼ Rdext. Therefore, at most two
TCAM entries with the correct rules structures for Rlext and
Rrext are created and inserted in TCAM. Also, the rule
structure of Rdext needs to be changed to that of Rext. On the
contrary, when either Rmax ¼ Pdmid� or Rmin ¼ Pdmidþ, it is
not possible that Rext ¼ Rdext, where R 2 G. Thus, inserting
Rs involves at most four TCAM update operations (one
deletion and three insertions).

After determining which elementary interval needs to be
deleted or inserted, the process of changing the rule
structure associated with the prefix extended from the
elementary interval becomes easy. Assume we have to
delete the extended prefix Rdext and insert three extended
prefixes, Rlext, Rsext, and Rrext. Since Rd is a default
interval, we only need to reset the node Rdext in the binary
trie as the nonprefix node. No rule structure of any prefix
needs to be modified. To insert, Rlext, Rsext, and Rrext, we
perform the following actions: We only show the process of
inserting Rsext because it is similar for Rlext and Rrext. We
first traverse the binary trie from root to node Rsext in order
to obtain the predecessor NL and successor NR of the
subtrie rooted at Rsext. Then, we set node Rsext to be the
prefix node and use NL and NR to set the rule structure of
Rsext according to one of the three fundamental cases. Next,
we traverse the two paths of the binary trie from Rsext to
Rsmax and from Rsext to Rsmin to find any prefix node P and
change the rule structure associated with P according to the
three fundamental cases as well.

Deletion. The process of deleting an existing range is
similar to the insertion process described above. The only
difference is that two or three adjacent elementary intervals
may be associated with the default range simultaneously
after deletion and thus need to be merged into one.
Obviously, if two elementary intervals are merged, at most
three TCAM update operations (one insertion and two
deletions) are needed. If three elementary intervals are
merged, at most four TCAM update operations (three
deletions and one insertion) are needed.

Optimized deletion. As stated earlier, deleting an
existing disjoint range involves many other insertions and
deletions which are costly TCAM operations. Here, we
propose an optimized deletion algorithm to reduce the
overhead of updating TCAM. When deleting an existing
disjoint range Rdel, we only update the rule structure of the
TCAM entry corresponding to Rdel instead of really
deleting Rdelext from TCAM and updating the rule

structures of other TCAM entries, depending on Rdel.

Assume that the rule structure of Rdel is (L, U , Ra, Rdel, Rb)

before deletion. Since the value of Rdel in (L, U , Ra, Rdel,

Rb) is in fact the ID of the range Rdel, we only need to

change the related routing information of Rdel to that of the

default range. Thus, no TCAM memory movement is

needed. The only overhead is to maintain an unnecessary

TCAM entry for Rdelext along with the associated rule

structure.
This approach may violate the constraint that the

number of elementary intervals must not exceed 2m for a

set of m disjoint ranges. What we do to remedy this

problem is to perform the merging operations if the

constraint is violated, or periodically, or when the TCAM

load is light.

3.3 Arbitrary Ranges

In this section, we consider the arbitrary ranges. We use a

2-step approach. The first step is to convert the arbitrary

ranges into disjoint ranges or contiguous ranges. The

second step is to apply the proposed SPLIT algorithm for

disjoint ranges or the Build_EI algorithm for contiguous

ranges. For disjoint ranges, we only consider valid intervals.

For n arbitrary ranges, the number of valid intervals is at

most 2n� 1. The proposed SPLIT algorithm, along with its

insertion and deletion algorithms, can then be applied to

store these disjoint ranges in the proposed 2-level TCAM

architecture. Thus, we have the following result:

Theorem 1. For a set of n original arbitrary ranges, at most

4� n� 3 prefixes are needed in the proposed 2-level TCAM

based on disjoint ranges.

Proof. A set of n original ranges can be converted into at

most m ¼ 2n� 1 valid intervals. Each of these intervals

is covered by at least one original range. Based on the

proposed insertion and deletion algorithms in Section 3.1,

the total number of prefixes after some insertions and

deletions will be at most 2m� 1. Thus, the theorem

follows. tu

In Section 3.2, we consider the elementary intervals that are

valid intervals or default intervals. The proposed Build_EI

algorithm, along with its insertion and deletion algorithms,

can be applied. Thus, we have the following result:

Theorem 2. For a set of n original arbitrary ranges, at most

2nþ 1 prefixes are needed in the proposed 2-level TCAM

based on the elementary intervals.

CHANG: A 2-LEVEL TCAM ARCHITECTURE FOR RANGES 1623

Fig. 10. Construction algorithm for a set of contiguous disjoint ranges.

Proof. Based on the proposed insertion and deletion
algorithms for contiguous ranges in Section 3.2, the
theorem is true because there are at most 2nþ 1
elementary intervals for a set of n arbitrary ranges. tu

Now, we consider how to perform the update opera-
tions. The update operations for the elementary intervals
have been solved fairly well by the data structures, such as
the segment tree [9]. The update complexity of the segment
tree is Oðlog kÞ for a tree of k intervals. The lookup
operations can also have the complexity of Oðlog kÞ. If we
choose the segment tree to organize the elementary
intervals in the proposed 2-level TCAM architecture, the
Oðlog kÞ lookup complexity can be easily achieved. Whether
disjoint ranges or contiguous ranges are considered, the
same segment tree data structure can be used.

In general, the operations for a lookup in the proposed
2-level TCAM architecture work as follows: One TCAM
memory read is needed to locate the matched prefix and its
associated rule structure. A simple rule selection process is
then performed to find the targeted interval. After finding
the targeted interval, Oðlog kÞ memory reads from the
segment tree are needed to get the original range with the
highest priority that covers the targeted interval. Therefore,
the total complexity of the lookups is Oðlog kÞ in the
proposed 2-level TCAM architecture. However, the com-
plexity of lookup operations in the TCAM-based architec-
ture must be Oð1Þ, a constant time. In other words, using the
segment tree to solve the problem of the elementary
intervals may compromise the constant time performance
of TCAM memories. Therefore, to achieve constant time for
the lookup operations, we decide to use a linear array
instead of a segment tree to maintain what the original
ranges covering an elementary interval are. The worst-case
complexity of the update process will become OðkÞ for a set
of k intervals. However, the lookup complexity of Oð1Þ can
be achieved. How to balance the times taken for the lookup
and update processes will be left as future research.

Since the update operations on SRAM are much faster
than those in TCAM, we focus on the update operations in
TCAM when an original range Rs is inserted or an original
range Rdel is deleted. For simplicity, we only describe the
update algorithms for elementary intervals because similar
algorithms can be developed for disjoint ranges.

Insertion.

1. The first step locates any existing elementary
interval ðEIÞ that is completely covered by Rs. We
assume there is a range list associated with each
interval that records the original ranges covering the
interval. Let Rh be the highest priority range
associated with EI. If EI is the valid interval and
the priority of Rs is higher than Rh or EI is the
default interval, we set Rh to Rs. If EI is the valid
interval and the priority of Rs is not higher than Rh,
Rs is put in the range list of EI. Since the extended
prefix EIext already exists in TCAM, no TCAM
insertion is needed.

2. The second step locates any existing elementary
interval EI that intersects Rs. There are at most
two such intervals. We first divide EI into two

intervals, Ea and Eb. Assume that Ea is contained
in Rs, but Eb is not. We find the correct rule
structures for Eaext and Ebext. If EIext ¼ Eaext, we
replace the rule structure of EIext with that of
Eaext. Also, we add the prefix Ebext in TCAM
using the proposed insertion algorithm in Sec-
tion 3.2. The operations are similar if EIext ¼ Ebext.
However, if EIext 6¼ Eaext 6¼ Ebext, we delete EIext
from TCAM and insert the prefixes Eaext and Ebext
in TCAM. In summary, at most six TCAM update
operations are needed for inserting a range.

3. The third step locates any existing interval EI that
completely covers Rs if the above two steps are not
satisfied. We have described how to process this case
in Section 3.2. Since Rs may be divided into at most
three intervals, at most four TCAM operations are
needed (one deletion and three insertions).

Deletion. As with insertion, we assume that each
elementary interval EI is associated with the highest
priority range Rh and a range list. Assume there are
k contiguous intervals (E½1� to E½k�) that are covered by
Rdel. E½i� (i ¼ 1 to k) must not be the default interval
because E½i� is at least covered by Rdel. For each E½i�, the
following actions are performed: If Rdel ¼ Rh, the highest
priority range is removed from the range list of E½i� and
replaces Rh. If Rh is the only range covering E½i� (i.e., the
range list is empty), E½i� becomes the default interval. By
the definition of elementary intervals, the sets of original
ranges that cover E½i� and E½iþ 1� must be different before
and after Rdel is deleted. Thus, E½i� and E½iþ 1� for i ¼ 1 to
k� 1 cannot be merged into one interval. However, it is
possible that, after deletion, the set of ranges covering E½1�
(or E½k�) is the same as that of its neighboring interval.
Therefore, E½1� (or E½k�) needs to be merged with its
neighboring interval. As a result, at most six TCAM
operations are needed. Notice that the optimized deletion
proposed in Section 3.2 can be used here directly.

4 PERFORMANCE EVALUATION

In this section, we first summarize the worst-case perfor-
mance for all the schemes we studied. They are the two
proposed algorithms (denoted by DISJ and CONT), the
direct range-to-prefix conversion in Fig. 2 (denoted by
DIRECT), the trie node conversion method proposed in [1]
(denoted by TrieNode), and the range conversion scheme
proposed for solving the point intersection problem
(denoted by LCP) [13] in Table 1. All schemes except
DIRECT have an extra delay for accessing the information
in SRAM. This delay is not included in the experiments. In
columns 4, 5, 8, and 9, we define the number of TCAM
operations to be the number of prefixes inserted in or
deleted from TCAM. We assume that the times taken for
inserting and deleting a prefix into/from TCAM are the
same without differentiating the lower-level TCAM opera-
tions such as TCAM write and disable operations. The
number of TCAM write and disable operations will be
calculated based on the CAO_OPT TCAM update algorithm
proposed in [8] when we evaluate the performance of
inserting/deleting a prefix into/from TCAM.

1624 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

As shown in Table 1, CONT performs better than other
schemes in all cases, except that its worst-case performance of
inserting a disjoint range is worse than LCP. In LCP, a disjoint
range is represented by two prefixes. Thus, two prefixes are
always inserted/deleted into/from TCAM when inserting/
deleting a disjoint range. Since the two prefixes converted
from a disjoint range are stored in two separate TCAMs, two
TCAM lookups are needed per search. As a result, LCP is the
worst in terms of search speed among all schemes. All
schemes perform better than DIRECT in terms of the number
of TCAM entries required. Given that the power consump-
tion of a TCAM is linearly proportional to the number of
searched entries, we can use this number as a measure of the
TCAM power consumption.

DIRECT is better than DISJ only in the process of inserting
or deleting arbitrary ranges. No TCAM operation is needed
for the optimized deletion algorithm in CONTopt because the
operations of merging contiguous intervals are performed
periodically or when the TCAM load is light. DISJopt is
different from DISJ in that the range to be inserted may be split
many times to avoid splitting other existing ranges. Since a
disjoint range R may be split into at mostW � 2 subranges in
DISJopt, at mostW � 2 extended prefixes need to be removed
for deleting R. We assume that, in the worst case, k default
intervals are covered by the arbitrary range R that is to be
inserted. Therefore, for DISJ, inserting R is equivalent to
inserting k disjoint ranges plus a constant overhead for the
operations dealing with the intervals partially covered by R.
As a result,OðkWÞTCAM operations are needed, which is the
major disadvantage of DISJ. In the last part of our experi-
ments, we shall show that DISJ has a better average
performance than other schemes when most of the ranges
in an arbitrary range set are disjoint.

To demonstrate the performance difference between DISJ
and CONT, we generate range sets such that the ratios of

the number of default intervals to that of elementary
intervals vary. The number of elementary intervals is kept
in the range of 200 to 1,000. Table 2 shows the normalized
number of prefixes required in various schemes to that in
CONT. The breakpoint between DISJ and CONT is at about
38 percent. When the ratio is larger than 38 percent, the
number of required prefixes for DISJ is less than that for
CONT. Otherwise, CONT needs a smaller number of
prefixes. The number of prefixes required for DIRECT is
the largest among all schemes.

Now, we show the experimental results based on
ClassBench [12]. The range sets we experimented with are
the destination ports extracted from the rule tables
generated by ClassBench. Notice that, when the range sets
generated from ClassBench become large, they will lose the
characteristics of the real rule tables. In other words, a large
number of ranges intersect with one another. We only show
the results for the destination ports of Firewall tables from
ClassBench since similar results for IP Chain and Access
Control List are obtained.

To inspect the advantages of DISJ, we perform the same
experiments with the range sets in which most of the ranges
are disjoint. The following assumptions are made: First,
95 percent of the ranges are mutually disjoint. Second, we
randomly generate the remaining 5 percent of the ranges
that intersect those mutually disjoint ranges. Third, if a
range’s start address is less than 1,024, we make it a
singleton range by forcing the finish address of the range to
be equal to the start address. This setting follows the
tradition that the number 1,023 or less is usually a well-
known port number for a specific application.

Table 3 shows the numbers of required TCAM entries
that can be used as a measure of power consumption.
CONT performs best with Firewall rule tables, as shown in
Table 3a, because all the elementary intervals are valid

CHANG: A 2-LEVEL TCAM ARCHITECTURE FOR RANGES 1625

TABLE 1
The Worst-Case Performance for All Range-to-Prefix Conversion Schemes

Since the TrieNode scheme [1] does not provide performance results for insertion and deletion, we mark them as “-”. When inserting or deleting an
arbitrary range R, we assume k default intervals are covered by R.

TABLE 2
Performance versus the Ratios of the Number of Default Intervals to that of Elementary Intervals ðjEj=jdefaultjÞ

intervals and completely cover the entire address space. The
number of prefixes needed for TrieNode and LCP is almost
double that of CONT. As expected, DIRECT performs much
worse than other schemes. Table 3b shows the results for
the range sets generated by us. When the number of original
ranges is less than or equal to 1,000, a lot of elementary
intervals are default intervals which are not used in DISJ.
Thus, DISJ outperforms CONT.

Subsequently, we conduct experiments to evaluate the
execution time for range update operations. The update
operations are based the CAO_OPT TCAM update algo-
rithm [8]. The numbers of TCAM write and disable
operations are calculated and used as the update perfor-
mance metrics. The TCAM disable operation actually
disables the TCAM entry that does not need to be active
when performing searches in TCAM. We know that a
disjoint range R is split into two smaller ranges Re and Rf .
In the worst case, we need one TCAM deletion to delete the
extended prefix Rext from TCAM and two TCAM insertions
to insert the two extended prefixes Reext and Rfext into
TCAM. In the implementation of the CAO_OPT algorithm,
we use a simple batch-like optimization to improve the
update performance of the two proposed schemes. We do
not treat these three operations independently. We will

check whether or not the deleted TCAM entry for Rext can
be used to hold one of the newly generated prefixes, say
Reext if Rext ¼ Reext. If yes, only one TCAM write is
required to delete Rext and insert Reext. No TCAM disable
operation that is used to disable a TCAM entry correspond-
ing to Rext is needed. Afterward, we use the normal
CAO_OPT insertion algorithm to insert Rfext. When
inserting Rfext, many other TCAM movements (writes)
may be needed to satisfy the constraint of chain ancestor
ordering required for CAO_OPT. This optimization techni-
que can be used in both DISJ and CONT. The schemes
TrieNode and LCP are not included for comparison because
no detailed update algorithms were given for arbitrary
ranges in [1] and [13].

Table 4 shows the average number of TCAM writes
needed for inserting a range. The experiment environment
is set up as follows: We first use 90 percent of the original
ranges to construct the prefixes according to the specified
scheme. Then, we insert the remaining 10 percent of the
original ranges one at a time by using the insertion
algorithm of the specified scheme. For example, the
performance of DISJopt is obtained by inserting ranges
using the proposed optimized insertion algorithm. For the
proposed schemes, if an old TCAM entry is deleted, it will

1626 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

TABLE 3
Numbers of Required TCAM Entries: (a) Destination Port Ranges of Firewall Rule Tables and (b) Randomly Generated Range Sets

TABLE 4
Numbers of TCAM Writes per Range Insertion:

(a) Destination Port Ranges of Firewall Rule Tables and (b) Randomly Generated Range Sets

hold the newly inserted prefix. Thus, no TCAM disable
operation is needed. CONT performs worse than DISJ and
DISJopt for both Firewall rule tables and randomly
generated range sets for the following reasons: The number
of the extended prefixes constructed in DISJ is different
from that in CONT. Thus, the chain ancestor ordering
structures (implemented as the binary tries) of DISJ and
CONT are different. When we delete a range in CONT, we
may have to do at most twice of the following operations:
Delete one interval EI and insert two intervals Ea and Eb
split from EI. For the ranges from Firewall rule tables, it is
likely that the intervals EI, Ea, and Eb are the same as that
in DISJ. As shown in Table 4a, DISJ still performs better
than CONT. We conjecture that chain ancestor ordering
structure favors DISJ because the length of the ancestor
chain in DISJ is shorter than that in CONT. Since intervals in
CONT are split, the extended prefixes of these split sub-
intervals have less chance to enclose other prefixes. Thus,
the length of a chain ancestor becomes shorter for DISJ. As a
result, based on the CAO_OPT algorithm, DISJ needs a
smaller number of TCAM writes (TCAM entry movements)
than CONT. For randomly generated ranges, in addition to
the reason explained above, the range to be inserted for DISJ
has a large chance of being disjoint from other existing

ranges. Thus, DISJ takes a smaller number of TCAM writes
than CONT.

For the results from the Firewall rule tables, both DISJ
and DISJopt have the same performance for the following
reasons: Refer to the second step of the Insertion algorithm
in Section 3.3. Let EI be an interval that intersects Rs, the
original range to be inserted. EI is divided into two ranges,
namely, Ea and Eb, by Rs. For DISJ, we need to delete EIext
from TCAM and insert Eaext and Ebext into TCAM. Since
Ea and Eb are contiguous subintervals split from EI, it is
not possible that there exists an interval that is not split by
EI but by Ea or Eb. In other words, when inserting Ea and
Eb, no existing interval will be split. Also, the extended
prefixes of all intervals completely covered by Rs are
already in TCAM. Therefore, both DISJ and DISJopt have
the same performance. Table 4b shows the results for the
randomly generated ranges. Since most of the randomly
generated ranges are disjoint, DISJopt performs a little better
than DISJ. Also notice that DIRECT performs better than
CONT when the number of ranges is 2,000 or more. This is
because, when the number of ranges increases, the
addresses contained in each disjoint range decrease. As a
result, the average number of prefixes converted from
DIRECT decreases.

CHANG: A 2-LEVEL TCAM ARCHITECTURE FOR RANGES 1627

TABLE 5
Numbers of TCAM Write Operations per Range Deletion:

(a) Destination Port Ranges of Firewall Rule Tables and (b) Randomly Generated Range Sets

TABLE 6
Numbers of TCAM Disable Operations per Range Deletion:

(a) Destination Port Ranges of Firewall Rule Tables and (b) Randomly Generated Range Sets

Tables 5 and 6 show the average numbers of TCAM
write operations and TCAM disable operations needed for
deleting a range, respectively. Deleting ranges not only
deletes prefixes from TCAM but also inserts prefixes in
TCAM sometimes. For DISJ, we construct all the prefixes
and randomly delete 10 percent of the ranges. If an insertion
is needed when deleting a range, we use the unoptimized
insertion algorithm. For DISJopt, we first construct the
needed prefixes by using 90 percent of the ranges and then
use optimized insertion algorithm to insert the remaining
10 percent of the ranges. Then, we randomly delete
10 percent of the ranges. If an insertion is needed when
deleting a range, we use the optimized insertion algorithm.

Based on the results in Table 5a, DISJopt performs the
best for the following reason: As described earlier, it is
possible that, when a range is deleted, two contiguous
intervals (say R1 and R2) may need to be deleted and one
interval (say R) that is the union of these two contiguous
intervals may need to be inserted. If we treat the deletions
of the extended prefixes R1ext and R2ext and the insertion of
the extended prefix Rext independently, many existing
intervals may be split by R. As a result, a lot of TCAM write
operations are required. Based on the optimized insertion
algorithm for DISJopt, we can avoid these costly TCAM
operations by splitting R itself. Obviously, the best way is to
split R into R1 and R2 because no other existing range will
be split by R1 and R2. Thus, by combining the deletions of
R1ext and R2ext and the insertion of Rext, it is likely that no
TCAM write is needed. This is why DISJopt performs the
best. There is no much difference between CONT and DISJ
when the number of ranges is less than 1,000. For the results
in Table 5b, DISJ performs better than DISJopt because it is

most likely that the range R to be deleted is disjoint from

the other existing ranges and DISJopt may delete more than

two prefixes when deleting R. Also notice that DIRECT

performs better than CONT when the number of ranges is

1,000 or more because the ranges are small in the randomly
generated range set, as explained above.

Table 6 shows the average number of TCAM disable

operations needed for deleting a range. Generally, CONT

needs a smaller number of TCAM disable operations than

DISJ and DISJopt. The number of TCAM disable operations

required for CONT is roughly two for the following reason:

As explained in the Deletion algorithm for CONT in
Section 3.3, if E½i� to E½k� are the consecutive intervals

covered by the range to be deleted, it is likely that E½1� or

E½k� needs to be merged with its neighboring interval. In

total, four prefixes are deleted and two prefixes are inserted.

Since deletion and insertion can be combined, deleting a

range only needs two disable operations. DISJ and DISJopt

perform almost the same.
To quantify the performance impact caused by the

update operations, we calculate the execution times taken

for TCAM to insert or delete a range. We make the

following TCAM hardware assumptions, which are similar

to the assumptions in [17] and [18]:

1. The TCAM search process is locked during the
update process,

2. the TCAM memory width is 64 bits,
3. the TCAM has a sustained search rate of 1 million

lookups per second,
4. the local CPU has a clock rate of 100 MHz (10 nsec

per clock cycle) with a 64-bit bus, and

1628 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

Fig. 11. Throughput degradation comparisons. (a) Destination port ranges of Firewall rule tables. (b) Randomly generated range sets. (c) Destination

port ranges of Firewall rule tables. (d) Randomly generated range sets.

5. each TCAM write takes three clock cycles and each
TCAM disable takes one clock cycle.

Based on these assumptions, if inserting a range takes

n TCAM writes, then Ti ¼ 3n clock cycles are needed to

complete the range insertion. If deleting a range takes

n TCAM writes and m TCAM disables, then Td ¼ 3nþm
clock cycles are needed to complete the range deletion. We

assume that the range update frequency is Ni range

insertions and Nd range deletions per second. Thus, the

time taken for TCAM to process these updates is

T ¼ Ni � Ti þNd � Td. Ti and Td can be obtained from

Tables 4, 5, and 6. We calculate the throughput degradation

that is defined to the number of dropped packets due to the

TCAM lock during the TCAM update process. Fig. 11

shows the results. In general, DIRECT performs the worst,

and DISJ and DISJopt perform the best. The difference

between DISJ and DISJopt is not significant. One exception

is that, when the size of the randomly generated range set is

2,000 or larger, DIRECT performs better than CONT.

5 CONCLUSION

In this paper, we proposed a novel two-level architecture

for storing ranges in TCAM. Only a small overhead of rule

structure memory is needed for each TCAM entry.

Depending on whether or not the default rule is included,

two range-to-prefix conversion algorithms are implemen-

ted. The analysis and extensive experiments show that the

performances using the proposed schemes are better than

those using other existing schemes.

ACKNOWLEDGMENTS

This work was supported in part by the National

Science Council, Republic of China, under Grant NSC-

93-2213-E-006-085.

REFERENCES

[1] A. Feldmann and S. Muthukrishnan, “Tradeoffs for Packet
Classification,” Proc. IEEE INFOCOM, Mar. 2000.

[2] P. Gupta and N. McKeown, “Algorithms for Packet Classifica-
tion,” IEEE Network, vol. 15, no. 2, pp. 324-334, 2001.

[3] T. Woo, “A Modular Approach to Packet Classification: Algo-
rithms and Results,” Proc. IEEE INFOCOM, 2000.

[4] F. Baboescu and G. Varghese, “Scalable Packet Classification,”
Proc. ACM SIGCOMM, Aug. 2001.

[5] A.L. Buchsbaum, G.S. Fowler, B. Krishnamurthy, K.-P. Vo, and J.
Wang, “Fast Prefix Matching of Bounded Strings,” ACM J.
Experimental Algorithmics, vol. 8, Jan. 2003.

[6] S.H. Huang, L.E. Lee, and M.L. Huang, “A Special Purpose
Content Addressable Memory for Network Packet Classifier,”
Proc. 2004 Symp. Digital Life and Internet Technologies, 2004.

[7] E. Spitznagel, D. Taylor, and J. Turner, “Packet Classification
Using Extended TCAMs,” Proc. IEEE Int’l Conf. Network Protocols
(ICNP), 2003.

[8] D. Shah and P. Gupta, “Fast Updates on Ternary-CAMs for Packet
Lookups and Classification,” Proc. Hot-Interconnects VIII, Aug.
2000, also in IEEE Micro, vol. 21, no. 1, pp. 36-47, Jan./Feb. 2002.

[9] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,
Computational Geometry: Algorithms and Applications, second ed.
Springer-Verlag, 2000.

[10] F. Zane, G. Narlikar, and A. Basu, “CoolCAMs: Power-Efficient
TCAMs for Forwarding Engines,” Proc. IEEE INFOCOM, Mar.
2003.

[11] Y.-K. Chang, “Power-Efficient TCAM Partitioning for IP Lookups
with Incremental Updates,” Lecture Notes in Computer Science,
vol. 3391, pp. 531-540, Jan. 2005.

[12] D.E. Taylor and J.S. Turner, “ClassBench: A Packet Classification
Benchmark,” Proc. IEEE INFOCOM, 2005.

[13] R. Panigrahy and S. Sharma, “Sorting and Searching Using
Ternary CAMs,” IEEE Micro, vol. 23, no. 1, pp. 44-53, Jan./Feb.
2003.

[14] N. Mohan and M. Sachdev, “Low Power Dual Matchline Ternary
Content Addressable Memory,” Proc. IEEE Symp. Circuits and
Systems, pp. 633-636, May 2004.

[15] T. Lakshman and D. Stiliadis, “High-Speed Policy-Based Packet
Forwarding Using Efficient Multi-Dimensional Range Matching,”
Proc. ACM SIGCOMM, 1998.

[16] N. Yazdani and P.S. Min, “Fast and Scalable Schemes for the IP
Address Lookup Problem,” Proc. IEEE High Performance Switching
and Routing, 2000.

[17] Z. Wang, H. Che, M. Kumar, and S.K. Das, “CoPTUA: Consistent
Policy Table Update Algorithm for TCAM without Locking,” IEEE
Trans. Computers, vol. 53, no. 12, pp. 1602-1614, Dec. 2004.

[18] M. Adiletta, M.R. Bluth, D. Bernstein, G. Wolrich, and H.
Wilkinson, “The Next Generation of Intel IXP Network Proces-
sors,” Intel Technology J., vol. 6, no. 3, pp 6-18, 2002.

[19] V.C. Ravikumar, R.N. Mahapatra, and L.N. Bhuyan, “EaseCAM:
An Energy and Storage Efficient TCAM-Based Router Architec-
ture for IP Lookup,” IEEE Trans. Computers, pp. 521-533, May
2005.

Yeim-Kuan Chang received the MSc degree in
computer science from the University of Houston
at Clear Lake in 1990 and the PhD degree in
computer science from Texas A&M University,
College Station, Texas, in 1995. He is currently
an assistant professor in the Department of
Computer Science and Information Engineering
at National Cheng Kung University, Tainan,
Taiwan, Republic of China. His research inter-
ests include computer architecture, multiproces-

sor systems, Internet router design, and computer networks.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHANG: A 2-LEVEL TCAM ARCHITECTURE FOR RANGES 1629

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

