
Simple and fast IP lookups using binomial spanning trees

Yeim-Kuan Chang*

Department of Computer Science and Information Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan 701, Taiwan, ROC

Received 18 January 2004; revised 5 October 2004; accepted 26 October 2004

Available online 25 November 2004

Abstract

High performance Internet routers require an efficient IP lookup algorithm to forward millions of packets per second. Various binary trie

data structures are normally used in software-based routers. Binary trie based lookup algorithms are simple not only for searching for the

longest prefix match but also for updating the routing table. In this paper, we propose a new IP lookup algorithm based on binomial spanning

trees. The proposed algorithm has the same advantages of simple search and update processes as the ones based on binary trie. However, the

performance of the proposed algorithm in terms of memory requirement and the lookup time is better than the schemes based on binary tries,

such as path-compression and level-compression.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Binary trie; Binomial spanning tree; IP lookup
1. Introduction

The increase of the Internet traffic continues in an

unprecedented rate mostly due to the advent of the World

Wide Web (WWW) [7]. Backbone routers with link speed

of gigabits per second (e.g. OC-192, 10 Gigabits and OC-

768, 40 Gigabits) are thus commonly deployed. Among all

the fundamental functions of the routers, IP address lookup

is the most critical one. Fast lookup algorithms make packet

forwarding rate of the routers keep up with the link speed

and router bandwidth. These backbone routers have to

forward millions of packets per second at each port.

The routing table in a router that is used to lookup an IP

address stores a large number of routing entries, each

consisting of a network address that is the prefix of a group

of IP addresses and the corresponding output port number to

the network. When a router receives a packet, it must

determine the next port number through which the packet

must be forwarded. The longest prefix in the routing table

that matches the destination IP address of the packet is the

best match prefix (BMP). Sequential search for the BMP has

a time complexity of O(N) which is not scalable.
0140-3664/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2004.10.014

* Tel.: C886 6 2757575x62539; fax: C886 6 2747076.

E-mail address: ykchang@mail.ncku.edu.tw.
A large variety of IP lookup algorithms were classified

and their worst-case complexities of lookup latencies,

update times, and storage consumption were compared

[15]. Among them, a category of algorithms is based on a

trie/tree structure [4]. The binary trie is the basic data

structure used in most of IP lookup algorithms. Binary tries

provide an easy way to store and update the prefixes of

different lengths and to search for BMP. The binary trie is

in fact a binary search tree using the bit value (0 or 1) to

guide the search moving toward the left or the right part of

the tree. The binary tree structure is usually implemented

using a linked list data structure. Each trie node has the left

and right pointers pointing to its left and right sub-tree,

respectively. The number of nodes and the trie depth may

be large in the binary trie for a typical routing table

containing over 10k routing entries. Thus, the basic binary

trie is not efficient in terms of memory usages and lookup

times. The path compression technique can be used to

improve the performance of the trie structure by removing

the internal nodes with only one child [12,16]. A multibit

trie, a simple extension to the binary trie, inspects

more than one bit at a time to speedup the search process.

A space efficient array implementation for the multibit trie

based algorithm is proposed [13,14]. Various multibit

trie algorithms were proposed in software and hardware

[2,5,8,14,15].
Computer Communications 28 (2005) 529–539
www.elsevier.com/locate/comcom

http://www.elsevier.com/locate/comcom

Fig. 1. A 4-cube and its corresponding binomial spanning tree.

Y.-K. Chang / Computer Communications 28 (2005) 529–539530
Based upon this primitive trie structure, a set of prefix

compression and transformation techniques can also be used

to either make the whole data structure small enough to fit in

a cache [3], or to transform the set of original prefixes to a

different one in order to speed up the tree traversal

procedure, e.g. prefix expansion or leaf-pushing [17,18].

The hardware based lookup algorithms using multi-bit trie

[5] is in fact a variation of the prefix transformation

techniques. The extreme case is a 32-bit extended trie which

trades a memory consumption of 32 Gbytes and inefficient

prefix updates for only one memory lookup latency. We can

classify the 32-bit extended trie as a perfect hashing

approach which is obviously not minimal. Since finding a

minimal perfect hashing table for the whole set of prefixes is

difficult, a binary search on prefix lengths was proposed

[18]. In this approach, a binary search scheme is conducted

on a set of hash tables, where the prefixes of the same length

are organized in one hash table. In [2], the authors use CPU

caching hardware to perform routing table caching and

lookup directly by using a special design of the cache data

structure.

Among all the IP lookup algorithms proposed in the

literature, only the binary range search proposed in [1,10]

can store the lookup data structure in a sequential array.

Instead of trying to store the complete prefixes, the binary

range search encodes the prefixes using the start and end

addresses of the ranges covered by them. Thus, each prefix

is encoded by two full length bit strings. All the start and end

addresses of the ranges are sorted and stored in a sequential

array. The binary search method can then be applied using

the array index. Obviously, a subtle design (e.g. ‘O’ and

‘Z’ ports) must be employed to make the binary search on

the sequential array correct. The primary idea of the binary

range search is to pre-compute the port number when the

target IP is equal to one of the start and end addresses of

ranges or fall between them.

In this paper, we propose a new IP lookup algorithm that

uses a binomial spanning tree [9]. To understand how a

binomial spanning tree is constructed, we use the hypercube

structure for illustration. A four dimensional hypercube and

the corresponding binomial spanning tree are depicted in

Fig. 1. In the figure, some of nodes are also shown with their

corresponding 4-bit addresses. Each node of the binomial

spanning tree is associated with a binary address. To map

the prefixes of various lengths onto the nodes of the

binomial spanning tree, we convert the prefixes to binary

addresses by padding zeros. For example, a prefix 01* in a

4-bit address space is converted to address 0100. Thus, node

0100 of the binomial spanning tree is responsible for storing

the routing information of the prefix 01*.

The proposed IP lookup algorithm based on the binomial

spanning tree has the similar characteristics to that based on

the binary tries. In other words, both of the algorithms based

on binomial spanning trees and binary tries have the

advantages of simple and easy searching mechanism, tree

construction, and updates. The basic searching method for
the proposed lookup algorithm is also in a bit-by-bit fashion

starting from the most significant bit and following the

pointers in the nodes.

The average number of memory accesses and average

number of internal pointers for a lookup based on binomial

spanning tree are half of that based on the full binary trie. In

an n-bit address space, the worst-case number of memory

references based on the binomial spanning tree is less than n

since we can easily pick a root node which has the

maximum hamming distance of less than n from all the

prefix nodes. We will then develop some techniques to

further reduce the number of nodes and the tree depth in the

binomial spanning tree using level and path compression

and the special properties of the hypercube. Simulation

results that we conducted show that the proposed lookup

algorithm based on the binomial spanning trees performs

better than that based on the binary tries.

The rest of the paper consists of four sections. Section 2

is preliminaries; notations, terminology, and definitions are

introduced. Section 3 is proposed data structure. We

describe the data structure of the proposed IP lookup

algorithm using binomial spanning tree. Section 4 is

performance evaluation. We evaluate the performance of

the proposed algorithms in terms of memory requirements

and lookup times by analyses and simulation. The last

Section 5 is the conclusions.
2. Preliminaries

In this paper we define the notations and terminology as

follows.

In an n-cube, the set of node addresses is N Z
{0,1,.,2nK1}, and the set of dimensions is DZ
{0,1,.,nK1}. The binary address of node i is represented

as (inK1,inK1,.,i0). The bitwise Exclusive-OR operation is

denoted as ^ (as in C language).

Definition 1. A binary n-cube is a graph GZ(V, E) such that

VZN and EZ{(i,j)ji^jZ2m, for all i and j belong to N }.

An edge (i,j) connects nodes i and j through dimension m.

Y.-K. Chang / Computer Communications 28 (2005) 529–539 531
Definition 2. The Hamming distance between nodes i and j

is Hamming ði; jÞZ
PnK1

mZ0ði
j
mmÞ.

Definition 3. A binomial spanning tree (n-BST) with root

node rZ(rnK1rnK2.r0) is defined [9] as follows.

The root’s children include all the nodes in the set of

{(rnK1rnK2.rm.r0)jmZnK1,.,0}. The set of children

of another node i with the address (inK1inK2.im.i0) is

{(inK1inK2.im.i0)jmZpK1,.,0}, where cZi^r and

ckZik^rk for kZnK1,.,0, and cpK1Z.Zc0Z0 and

cpZ1. In other words, p is the position of the least

significant set bit. The sub-BST containing nodes in the

p-cube 0.01p* is connected to the root node along

dimension p.

d3.d2.d1.d0/l/p: the length format of prefixes. It rep-

resents a prefix of length l associated with a next port

number p, where d3.d2.d1.d0 is dotted notation of a 32-bit

IP address using four octal numbers. The notation

d3.d2.d1.d0/l will be used when no confusion is incurred.

bnK1.bi*.*/p: the ternary format of prefixes. It

represents a prefix of length nKi associated with a next

port number p and bjZ0 or 1 for nK1RjRi. When we use

tnK1,.,t1t0 as the ternary format of a prefix, where tiZ0, 1,

or * (don’t care), we must follow the rule that if tk is * then tj
must also be * for all j!k. For simplicity, a single don’t care

bit is used to denote a series of don’t care bits. Thus, the

prefix 1* denotes 1**** in a 5-bit address space.

Prefix enclosure. Consider two prefixes in their ternary

format: AZbnK1.bj.bi* and BZbnK1.bj* and jOi.

Prefix A is said to be enclosed by B since the IP address

space covered by A is a subset of that covered by B.

Disjoint prefixes. Two prefixes A and B are said to be

disjoint if none of them is enclosed by the other.
3. Proposed data structure

Using the binomial spanning tree as the basic structure to

store the routing table is not as simple as we first thought.

Each vertex of an n-cube is associated with an n-bit binary

address which can be directly mapped to a node in the

binomial spanning tree. Storing routing table in the binomial

spanning tree will be straightforward when all the prefixes

of the routing table are of length 32. Theoretically, the prefix

lengths of the routing table for IPv4 are in the range of 0–32.

However, in the actual routing tables obtained from typical

backbone routers, the prefix lengths range from 8 to 32. We

need to devise a method to store a prefix of any length in a

node of the binomial spanning tree so that performing an IP

lookup will lead to a correct result. What we do is to convert

the prefix bnK1.b0/l/p to bnK1.bnKl0.0/l/p and store it

in the node with address bnK1.bnKl0.0. Note that the

routing tables that are made available on the Internet in fact

use this converted strings to record the routing entries.

The above conversion leads to a problem that more

than one prefix may be mapped onto one single node of
the binomial spanning tree. For example, the node with

address bnK1.bnKkC1lnKk0.0 may store any prefix

in {bnK1.bnKkC1lnKk0.0*x.*0/ljlZnK1Kx and

xZK1,.,nKkK1}, where xZK1 indicates the prefix is

of length n. The prefixes stored in a single node of the

binomial spanning tree are called the conflicting prefixes.

This conflict situation can be solved by two approaches. The

first approach called prefix array approach uses an

additional prefix array in data structure of the node to

record the conflicting prefixes. The second approach called

prefix expansion approach expands the conflicting prefixes

of shorter lengths to ones of longer lengths in such a way

that no node stores more than one prefix. These two

approaches are described as follows.

In the prefix array approach, the node contains a pointer

to the prefix array. When a lookup traverses a node of the

binomial spanning tree containing a non-empty conflicting

prefix array, an additional process would be performed to

search the prefix array for the proper match. Since this kind

of enclosure situation is rare, the LC trie [14] also uses this

approach to solve the problem caused by the enclosure

property that internal nodes have no space to store the prefix

information. One advantage of this approach is its simple

updating process. To delete or insert a new prefix, we just

need to go through the pointers of the binomial spanning

tree, find the corresponding node, and insert/delete the

prefix in/from the prefix array. No other augmented data

structure is needed. The optimized node structure to store

the array of conflicting prefixes will be described later for

improving the lookup performance.

The prefix expansion approach divides the conflicting

prefixes into disjoint prefixes. Disjoint prefixes are mapped

onto different nodes of the binomial spanning tree. For

example, two conflicting prefixes 0*/p and 000*/q in the 4-

bit address space are initially mapped to the same node with

address 0000. These two prefixes are expanded into 01**/p,

001*/p, and 000*/q. These three disjoint prefixes are then

mapped to three distinct nodes with addresses, 0100, 0010,

and 0000. One might think that this approach is the same as

the approach that removes all the enclosure situations

completely, e.g. making the original structure a full tree.

The following example shows that it is not. Consider two

prefixes, 0*/p and 01*/q in a 4-bit address space. The former

prefix encloses the latter. It can be seen that these two

prefixes are not conflicting because they are mapped onto

two distinct nodes with addresses 0000 and 0100. The

advantage of this approach is that no additional array to

store the conflicting prefixes is required. However, since the

conflicting prefixes are split into many prefixes of longer

lengths, deleting an original prefix will not be an efficient

process. An additional data structure that records the split

prefixes and the associated original prefix would be

required.

Fig. 2 shows the binary trie and the corresponding

binomial spanning tree for a small routing table. We can see

that the depth of the binomial spanning tree is one less than

Fig. 2. A small routing table example for the proposed algorithm.

Y.-K. Chang / Computer Communications 28 (2005) 529–539532
the binary trie and the number of links is two less than that

of the binary trie. The number of links is proportional to the

required memory space because the links are usually

implemented as pointers.

The insertion procedure in the syntax of C programming

language for the proposed lookup algorithm is given in

Fig. 3. This insertion procedure is the building block of the

tree construction and update processes. Formally, the

insertion procedure is called every time when a prefix is

added in the routing table. The last three parameters of the

insertion procedure, ip, len, and port, represent the prefix

being added, in the length format. If the hamming distance

between the root and the BMP node is h, there are at least h

nodes in the binomial spanning tree that will be traversed or

created if necessary in the insertion process. As stated

earlier, if conflicting prefixes are split into disjoint prefixes

of longer lengths, more nodes will be traversed or created.

Lines 2–9 show the core codes that create the necessary

nodes along the path from the root to the final BMP node.

The destination IP is first Exclusive-ORed with the root’s

IP. The position of the most significant set bit is then

computed first. This operation can be implemented

efficiently by using the ‘BSR’ (bit scan reverse) instruction

of the Intel processor family starting from Intel 80386.

When coming to the BMP node that is responsible for

storing the input prefix, one would check if a conflicting
Fig. 3. The insertion procedure for the
prefix already exists and perform the appropriate conflict

resolution operations. Referred to the line 10 in Fig. 3, we

assume that if the final node has a port number greater than

0, it is an indication that a conflicting prefix was already

assigned to this BMP node. The function conflict_resolver()

implements either the prefix array approach or the prefix

expansion approach. If no conflicting prefix exists in this

final node, we update its len and port fields. Notice that the

node address is not explicitly stored since it can be deduced

from traversing the root to the final BMP node.

Finally, we show the lookup procedure in Fig. 4. The

lookup process as shown in the figure is similar to the

insertion process. However, the matching process

implemented in function matching() must be performed

in every node traversed by the lookup procedure. The exact

implementation of function matching() depends on which

of the prefix array approach and prefix expansion approach

is adopted.
3.1. Node representation

As you may have noticed that the data structure of the

node in Figs. 3 and 4 contains predetermined number of

pointers depending on where the node locates. The root

node has n pointers since it may have at most n children in

an n-BST. In general, assuming the address of root node is 0,

node i (inK1.ip0.0) has p pointers if the least significant

set bit is the pth bit. There are 2k nodes containing nKkK1

pointers, for kZ0 to nK1. A lot of pointer space will be

wasted because some of the prefixes may not exist and thus

most of pointers are NULLs. We propose to use a bitmap to

record which pointers are not NULLs. Take a node with 8

pointers in a 5-bit address space as an example. If only

pointers at bits 3 and 5 are not NULL, we use 00101000 as

the bitmap and an array of two pointers. When we check

whether the pointer at bit i is NULL or not, we check if the

ith bit in the bitmap is set or not. If the ith bit of the bitmap is
proposed binomial spanning tree.

Fig. 4. The lookup procedure for the proposed binomial spanning tree.

Fig. 5. Level compression example for the proposed algorithm.

Y.-K. Chang / Computer Communications 28 (2005) 529–539 533
zero, the corresponding pointer is NULL. Otherwise, we

compute how many set bits that precedes the ith bit

(inclusive) to locate the corresponding pointer in the pointer

array and follow it to the next level.

For the prefix array approach to dealing with conflicting

prefixes, we now present an efficient data structure to store

the conflicting prefixes for improving the lookup perform-

ance. Assume the address of a node storing many conflicting

prefixes is AZbnK1.bnKkC1lnKk0.0, where the bit nKk is

the least significant set bit of A. The set of conflicting prefixes

that may be stored in node A is {bnK1.bnKkC1lnKk0.
0*x.*0/ljlZnK1Kx and xZK1. nKkK1}, where

xZK1 means no don’t-care bit exists and thus the prefix

length is n. Note that l cannot be less than k because of the

following reason. Consider the case when lZkK1. We can

see that the prefix bnK1.bnKkC1lnKk0.0/kK1 should be

converted to bnK1.bnKkC10nKk0.0/kK1 and stored

in node bnK1.bnKkC10nKk0.0 instead of bnK1.bnKkC1

1nKk0.0.

A bitmap is used to record which prefixes are stored in

the node with address bnK1.bnKkC11nKk0.0. This

bitmap can be represented as 0.0nKkpnKkK1.p0, where

pxZ1 for xZK1 to nKkK1 indicates that prefix bnK1.
bnKkC1lnKk0.0*x.*/nK1Kx exists in the node. xZK1

means the bitmap is 0 and there is no prefix stored in the

node. In addition, a port array is needed to store the

corresponding next port numbers to the prefixes stored in the

node.
3.2. Optimizations

There are a number of optimization techniques proposed

in the literature for the binary trie. Path compression, level

compression, and k-level segmentation (called bucketing in

[14]) are examples of the optimization techniques. We shall

show that these techniques can also be applied to the

proposed IP lookup algorithms using the binomial spanning

tree approach.

Applying the path compression to the binomial spanning

tree is straightforward. The non-prefix node with only one
child can be removed by the path compression technique.

For example, Fig. 2(c) shows node 100 can be squeezed

out and the root directly points to node 110 which stores

prefix b.

Incorporating level compression technique in the bino-

mial spanning tree is similar to finding a subcube. For

example, assume there are 14 prefixes that are stored in the

nodes marked as circles of a binomial spanning tree shown

in Fig. 5. There exists a 3-cube that contains the root node 0

(prefix 0). The data structure of the root node as shown in

Fig. 5 contains a modified bitmap, 11***, to indicate that

there are nine pointers stored in the node. There are seven

pointers pointing the 7 nodes in a 3-cube, 00***, (nodes 1–

7) and another two pointers pointing to nodes 8 and 16 along

dimensions 3 and 4, respectively. If the incoming IP is

01001, the second pointer (with prefix 8) is first selected

because the most significant set bit of IP is in dimension 3.

After it reaches node 8, the same process repeats. If the

incoming IP is 00101, the 6th pointer will be followed. We

can see that the most significant set bit is 2 and it belongs to

these three don’t care bits. Thus, the position of the selected

pointer will be 2C5 (00101)K1 which is 6.

The k-level segmentation is mostly used in the hardware-

based IP lookup algorithms [5,6]. For our binomial spanning

tree, we also use the k-level segmentation array of 2k

pointers, each pointing to the corresponding sub-binomial

spanning tree of dimension nKk. Therefore, when an

incoming IP arrives, the most significant k bits are used to

locate the corresponding sub spanning tree. Then the usual

lookup process can be performed in the sub-spanning tree to

find the best matching prefix.

Besides path compression, level compression, and k-

level segmentation, an intelligent selection of root node can

be used to further reduce the depth of the binomial spanning

tree. Consider the example shown in Fig. 2(c), if the node c

(010) is selected as root, then the constructed binomial tree

rooted at node c has only the depth of one. Nodes a, b, and d

Y.-K. Chang / Computer Communications 28 (2005) 529–539534
are all one hop from node c. Therefore, the tree depth can be

reduced by carefully selecting a root for a sub-tree.

In addition, we use the technique of dual roots, i.e. a pair

of diagonally opposite nodes in the n-cube to reduce the

depth of the binomial spanning tree. The hamming distance

between the pair of diagonally opposite nodes A and B is n,

the maximum, in an n-cube system. Node A is the only node

that has the hamming distance of n from node B. For

example, nodes A and B could be the nodes with addresses 0

and 2nK1. We will use these two addresses for the dual

roots as the default ones when we describe our idea as

follows.

The maximum distance between either A or B and any

other node in the n-cube is n/2. Therefore, we can use this

property to build two binomial spanning trees, one rooted at

A and the other rooted at B. The previously proposed

insertion procedure can be employed directly in the

following manner. When the binary address of a prefix

using the address conversion scheme described above is

closer to root A than B, we insert this prefix in the binomial

spanning tree rooted at A. Otherwise, this prefix is inserted

into the spanning tree rooted at B. After a prefix has been

determined to be inserted in the tree rooted at B, the address

conversion scheme is different from the original scheme and

will be described later. If there exists an address covered by

a prefix that is closer to A than B, then this prefix is inserted

into the tree rooted at A. At the same time, it is possible that

there is also an address that is covered by a prefix is closer to

B than A. If this is the case, then a marker prefix must also be

inserted into the binomial tree rooted at B. For example, the

prefix, 3.0.0.0/8, has a portion of its addresses closer to A

than B, and another portion of addresses closer to B than A.

Therefore prefix 3.0.0.0/8 must be inserted into both the

trees rooted at A and B. To insert into the tree rooted at node

A, we use the original address conversion scheme, while

insert into the tree rooted at node B, we use a different

conversion scheme in order to reduce the distance between

node B and the converted address. What we do is to convert

the prefix 3.0.0.0/8 to address 3.255.255.255 by padding

ones to the don’t-care bits. Thus, when we perform a lookup

operation on a destination address 3.255.255.0, we search

the tree rooted at B and the BMP will be found at the node

with address 3.255.255.255. If the prefix to be inserted is

4.0.0.0/24, then no marker prefix is created, because there is

no address covered by the prefix that is closer to B than A.

The lookup process is similar to the insertion. When the

incoming IP is closer to root A than B, the lookup process is

preformed on the spanning tree rooted at A. Otherwise the

lookup process is performed on the tree rooted at B.
4. Performance evaluation

In this section, we shall demonstrate the performance

improvements of the binomial spanning trees over the

binary trie and Level-Compressed Trie (LC trie) by analyses
and computer simulations. Firstly, the number of nodes

(memory accesses) traversed for an IP lookup based on the

binomial spanning tree will be compared with that based the

full binary trie. We shall show by analyses that the average

number of memory accesses for an IP lookup based on a full

binary trie is double of that based on the corresponding

binomial spanning tree. It is known that the links of a graph

are normally implemented as pointers and thus taking

memory space. The total required memory space for the

routing tables based on a binary trie or a binomial spanning

tree is proportional to the number of links used. By carefully

inspecting how the node space in the binary trie is utilized,

we know that the reason for high memory usage in the

binary trie is the memory space required for the pointers.

Therefore, secondly, we shall show that the number of links

used in a full binary trie is double of that in the

corresponding binomial spanning tree. The computer

simulation results for the memory usages using real routing

tables will also be compiled. Finally, we shall conduct

experiments based on a common platform to compare the IP

lookup times in terms of binomial spanning trees, the binary

trie, and the LC trie.

The routing tables of two real routers available on the

Internet will be used in the performance evaluation. One

table, funet, is obtained from the publicly available site [14]

which contains 41,709 routing entries. The other table, oix,

containing 120,635 routing entries is obtained from the

University of Oregon Route Views Archive project [11].

Since it is almost impossible to obtain the actual IP traffic

being routed through the router at the time when the routing

table is logged, we use a simulated IP traffic described as

follows. Assume the routing entries in the routing table

follow the length format. The simulated traffic is con-

structed first by removing the length and port of the routing

entries and then by performing a random permutation. If the

final addresses generated above are not in the converted

format as stated in Section 3, the address conversion

operations must be performed. The simulated traffic

assumes that every prefix in the routing table has the same

probability of being accessed. The same method was used in

[14,15].

Assume the best matching prefix (BMP) of an incoming

IP is of length l, say bnK1.b0/l. Consider the binary trie

first. The lookup process has to traverse lC1 nodes to reach

the BMP node. It is possible that this BMP also encloses

other prefixes of length longer than l. If it is the case, then

the lookup process must continue traversing more nodes

downward to make sure that there is no other matching

prefix of longer length. Therefore, the number of trie nodes

traversed for finding the BMP is at least lC1 for the binary

trie structure.

Assume the probability that a prefix is of length l is P(l)

for 0%l%W, where W is 32 for IPv4 or 128 for IPv6.

P(l) can be easily computed from a routing table. We denote

P(l) as Pbt(l) when the routing table is built from the binary

trie structure. In other words, the summation of Pbt(l) for all

Fig. 7. Probability distribution of the number of memory accesses for the

binomial spanning tree with 0-level, 8-level, 16-level segmentation all with

one root or dual roots.

Fig. 6. Probability distribution of the number of memory accesses for binary

trie and binomial spanning tree.

Y.-K. Chang / Computer Communications 28 (2005) 529–539 535
the prefix lengths must be 1. Therefore, we have the

following equation

XlZW

lZ0

PbtðlÞ Z 1 (1)

Since the converted addresses from the routing tables

will be used as the destination IP’s, the average number of

memory accesses to search for the best matching prefix is at

least M1C1, where

M1 Z
XlZW

lZ0

lPbtðlÞ (2)

Now, consider the same lookup process for the binomial

spanning tree. The number of nodes traversed does not

depend on l but on the number of 1’s in the converted

address of the BMP node. For example, if the BMP prefix is

00110000/6 in an 8-bit address space, then the address of the

BMP node is 00110000. The distance between root node

(00000000) and the BMP node is 2. Therefore, the number

of nodes traversed for the IP lookup of address 00110000 is

3, for accessing the root, the node 00100000, and the node

00110000. The enclosure situation is also applied and thus

force the lookup process traverse more nodes downward to

make sure that no BMP of longer length exists. Therefore, in

general, the number of nodes traversed to reach for the BMP

prefix in the binomial spanning tree is at least M2C1, where

M2 is the number of 1’s in the BMP’s address.

Consider a prefix of length l, bnK1.b0/l, and the root

node with address 0.0. The address of the BMP node is

bnK1.bnKl0.0. Assume the probability of bit bi being 0 or

1 is even for nK1%i%nKl. We can easily conclude that

the average distance between the root and the node storing

the prefix is half of l. For a destination IP address converted

from the prefix of length l, the average number of memory

accesses for the lookup will be at least 1Cl/2. Since the

converted addresses from all the prefixes in the routing table

are used as the destination IP’s, the average number of

memory accesses to search for the best matching prefix is at

least M2C1, where

M2 Z
XlZW

lZ0

XkZl

kZ0

Cl
k

2l
k

 !
PbtðlÞ (3)

Cl
k, which is equal to stands for the number of

combinations of k elements selected from a set of l

elements. We assume that a prefix of length l can be stored

in any node of a hypercube of dimension l containing the

root node with address 0. Thus, the probability that the node

storing this prefix is k hops from the root node is Cl
k=2

l. By a

simple calculation, we have

M2 Z
XkZW

kZ0

kPbstðkÞ; where PbstðkÞ Z
XlZW

lZ0

Cl
k

2l
PbtðlÞ (4)

Based on the above analysis, we illustrate the perform-

ance advantage of the binomial spanning tree over binary
trie by showing the probability distribution of prefix length

in the routing table. We plot the probability Pbt(l) of the oix

table, the analyzed Pbst(l), and the computed Pbst(l) in Fig. 6.

It can be seen that analyzed Pbst(l) is normally distributed

because we assume that the probability of a bit being 0 or 1

is even. The simulated Pbst(l) matches the computed Pbst(l)

closely. We can see that the binomial spanning tree

performs much better than the binary trie. We also plot

the probability distributions of the numbers of memory

accesses for the binomial spanning trees using one root and

dual roots with 0-level, 8-level, and 16-level segmentations

in Fig. 7. The average number of memory accesses for the

16-level segmentation with dual roots is reduced to less than

4 which is comparable with the LC trie. However, we shall

show by simulations that the binomial spanning tree in fact

performs better than LC trie and binary trie in terms of

economized memory usage and shortened average

lookup time.

Now, we show that the number of links used in a full

binary trie is also double of that in the corresponding

Fig. 8. The full binary tries and the corresponding binomial spanning trees.

Table 2

Total memory requirement in Kbytes for the binomial spanning tree, the

binary trie, and the LC trie with fill factorZ0.5

0-level 8-level 16-level

Binomial

One root 1703 1533 1670

Dual roots 1831 1631 1896

Binary trie 3062 3020 3212

LC trie – 2022 2210

Y.-K. Chang / Computer Communications 28 (2005) 529–539536
binomial spanning tree. Let BT(k) be the number of links in

a full binary trie of depth k. Assume BST(k) is the number of

links in a binomial spanning tree that corresponds to a full

binary trie BT(k). For example, Fig. 8(a) shows a BT(0) and

the corresponding BST(0). Both BT(0) and BST(0) have

one node and no link. Fig. 8(b) shows BT(1) and BST(1),

where BT(1) has three nodes and two links and BST(1) has

two nodes and one link.

Theorem 1. The number of links in a full binary trie is

double of that in the corresponding binomial spanning tree.

Proof. We prove it by induction. Assume the theorem is true

and thus BT(k)Z2BST(k). We will prove that the theorem is

also true for BTðkC1ÞZ2BSTðkC1Þ. Assume a full

binary trie of depth kC1 is constructed from two full

binary tries of depth k and j as shown in Fig. 8(c). Without

loss of generality, we assume j%k. By a trivial conversion,

the original full binary trie of depth kC1 can be converted to

the corresponding binomial spanning tree as shown in Fig.

8(d). Therefore, BT(kC1)Z2CBT(k)CBT(j) and

BST(kC1)Z1CBST(k)CBST(j). Then we have

BTðkC1ÞZ2BSTðkC1Þ. Thus, the theorem follows. ,

Now we compute the memory usages and average lookup

times for the schemes based on the binomial spanning tree,
Table 1

Assumptions for node sizes (in bytes) for the binomial spanning tree, the

binary trie, and the LC trie

Length Port Pointer Bitmap

Binomial

0 level 1 1 4 4

8 level 1 1 4 4

16 level 1 1 4 4

Binary trie 1 1 4

Length Port String Prefix index

LC

Base 1 1 1 4

Prefix 1 1 – 4

Trie node – – 4
the binary trie, and the LC, using the real routing tables. The

prefix expansion approach mentioned earlier is used here for

solving the prefix conflicts. We have implemented the

schemes based on the binomial spanning tree and the binary

trie. We obtain the C codes for the LC trie from the web site

published by the authors in [14]. In fact, we also

implemented a variant of path compressed scheme. Since

the performance of the path compressed scheme does not

perform better than LC [15], its results are not given in this

paper for clarity.

To have a fair comparison for the memory usages, we

make similar assumptions for the data structures used in

these three lookup schemes, while the data structures of base

and prefix arrays in the LC trie [14] actually take more

memory storage. These assumptions are shown in Table 1.

The port and length are one byte for all the schemes. The

pointer field in the binary trie and the binomial spanning tree

takes 4 bytes. For LC trie, we do not consider the space for

‘nexthop’ array [14] since we assume the next hop port

number is one byte and is stored in the base vector. Table 2

shows the computed memory usages for the oix routing

table. The binomial spanning tree with an 8-level segmenta-

tion uses the least memory compared with other schemes.

The binomial spanning tree with a 16-level segmentation

uses more memory than that with an 8-level segmentation,

because the 16-level segmentation table is large. Table 2

does not show the memory usage for the LC trie with no

segmentation because the branch at the root will be at least
Fig. 9. The binomial spanning tree using one root, the binary trie, and the

LC trie with a 16-level segmentation for oix routing table on Pentium IV.

Fig. 10. The binomial spanning trees using one root and dual roots with a

16-level segmentation for oix routing table on Pentium IV.

Fig. 12. The binomial spanning trees using one root and dual roots with a

16-level segmentation for funet routing table on Pentium IV.

Fig. 13. The binomial spanning trees using one root and dual roots and the

LC trie with an 8-level segmentation for oix routing table on Pentium III.

Y.-K. Chang / Computer Communications 28 (2005) 529–539 537
7 bits when the fill factor is 0.5. The binary tries indeed need

a lot more memory than the other schemes.

The experiments for measuring lookup times are

conducted with 0-level, 8-level, and 16-level segmentations

on the Intel Pentium III and IV processors. As stated earlier

that the IP traffic is taken from the routing table and is

randomized before feeding into our simulator. The clock

cycles are measured by using the special instruction, rdtsc

(read time stamp counter), provided by Intel Pentium

processor. The clock counts obtained from different CPUs

may have different scales. For example, the clock counts on

Pentium IV are more than that on Pentium III for the same

experiments. It does not necessarily mean that the

conducted algorithms perform better on Pentium III than

on Pentium IV. We need to convert the clocks to seconds,

which is an easy task. However, we do not perform this

conversion for maintaining the clarity of the figures shown.

Figs. 9 and 10 show the results of the experiments with a

16-level segmentation in clock cycles on a 2.4 G Pentium

IV processor with 8 KB L1 and 256 KB L2 caches. In Fig. 9,

we can see that there are similar number of peaks for the

binomial spanning tree and the LC trie. However, the peaks

of the binomial spanning tree locate toward to the left end.

This means the time taken for the binomial spanning tree is
Fig. 11. The binomial spanning tree using one root, the binary trie, and the

LC trie with a 16-level segmentation for funet routing table on Pentium IV.
smaller than the binary trie and LC trie. Note that there are

five peaks in LC because the maximum number of tree

levels in LC is five. In Fig. 10, we compare the binomial

spanning trees with one root and dual roots. The shapes of
Fig. 14. The binomial spanning trees using one root and dual roots and the

LC trie with a 16-level segmentation for oix routing table on Pentium III.

Table 3

Average cycle counts of the binomial spanning trees, the binary tries, and

the LC tries with 0-level, 8-level, and 16-level segmentations for oix and

funet routing tables on the Pentium IV processor

Scheme Clock cycles

oix funet

Binomial-x-0 1467 1165

Binomial-x-0-d 1362 1064

Binomial-x-8 1287 875

Binomial-x-8-d 1140 845

Binomial-x-16 827 528

Binomial-x-16-d 682 483

LC-trie-x-0 1208 587

LC-trie-x-8 905 578

LC-trie-x-16 879 557

Binary-trie-x-0 1802 1357

Binary-trie-x-8 1989 1553

Binary-trie-x-16 1395 1094

Fig. 15. The binomial spanning trees using dual roots with 16-level, 8-level,

and 0-level segmentations for oix routing table on Pentium III.

Y.-K. Chang / Computer Communications 28 (2005) 529–539538
the curves for these two binomial spanning trees are similar

except curves on the right side. There are more hits on

longer cycles in the binomial spanning tree with only one

root than that with dual roots. This improvement is because

lookups with longer cycles in the binomial spanning tree

with one root is transferred to tree rooted at the diagonally

opposite root. The lookups with shorter cycles are not

affected.

The results of the same experiments for funet routing

table are depicted in Figs. 11 and 12. The difference

between these two routing tables is not significant. The

binomial spanning tree still performs better than other

schemes.

We also conducted experiments on the 1 G Pentium III

CPU with 16 KB L1 and 256 KB L2 caches. We only show

the results for the oix table here. As shown in Fig. 13 with an

8-level segmentation, the binomial spanning trees using one

root and dual roots have more hits on shorter cycles than the

LC trie. The LC trie has the same peaks as previous

experiments on Pentium IV. The peaks in the curve of the

binomial spanning trees are not as prominent as the LC trie.
Fig. 14 shows the similar results as Fig. 13 using a 16-level

segmentation. The proposed binomial spanning trees per-

form consistently better than the LC counterpart. Fig. 15

compares the performance for the binomial schemes using

dual roots with 0-level, 8-level, and 16-level segmentations.

Obviously, the binomial scheme using dual roots with a 16-

level segmentation performs the best as demonstrated by

more hits at the shorter clock cycles. In order to summarize

the performance for all the schemes run on Pentium IV

processor, we calculate the average clock cycles and show

the results in Table 3. Again, the binomial spanning tree

with dual roots performs better than any other scheme.
5. Conclusions

In this paper, we introduced a new method for the IP

lookups based on the binomial spanning tree. By mapping

the prefixes of different lengths on the vertices of an n-cube,

we can construct the binomial spanning tree using simple

tree construction and update procedures. The fundamental

binomial spanning tree can be optimized by using the path

compression, level compression, k-level segmentation, and

the property of diagonally opposite nodes. By analyses and

computer simulations, we show that the proposed scheme

based on the binomial spanning tree performs the best in

terms of memory consumption and lookup time.
References

[1] M. Akhbarizadeh, M. Nourani, IP routing based on partitioned lookup

table, in: Proceedings of the IEEE International Conference on

Communications (ICC), April 2002, pp. 2263–2267.

[2] T. Chiueh, P. Pradhan, High performance IP routing table lookup

using CPU caching, in: Proceedings of INFOCOM 99, March 1999,

pp. 1421–1428.

[3] M. Degermark, A. Brodnik, S. Carlsson, S. Pink, Small forwarding

tables for fast routing lookups, in: Proceedings of ACM SIGCOMM,

October 1997, pp. 3–14.

[4] E. Fredkin, Trie, memory, Communications of the ACM 1960; 490–

500.

[5] P. Gupta, S. Lin, N. McKeown, Routing lookups in hardware at

memory access speeds, in: Proceedings of INFOCOM 99, March

1999, pp. 1240–1247.

[6] N.F. Huang, S.M. Zhao, J.Y. Pan, C.A. Su, A fast IP routing lookup

scheme for gigabit switching routers, in: Proceedings, INFOCOM 99,

March 1999.

[7] G. Huston, Analysis of the Internet’s BGP routing table, Internet

Protocol Journal 4 (1) (2001).

[8] Intel IXA SDK Documentation Library, L3 Forwarder microACE,

2001 in http://www.capsl.udel.edu/~fchen/projects/np/docs/manual/

[9] S.L. Johnsson, C.-T. Ho, Optimum broadcasting and personalized

communication in hypercubes, IEEE Transactions on Computers 38

(9) (1989) 1249–1268.

[10] B. Lampson, V. Srinivasan, G. Varghese, IP lookups using multiway

and multicolumn search, IEEE/ACM Transactions on Networking 3

(3) (1999) 324–334.

http://www.capsl.udel.edu/~fchen/projects/np/docs/manual/

Y.-K. Chang / Computer Communications 28 (2005) 529–539 539
[11] D. Meyer, University of Oregon Route Views Archive Project: oix-

damp-snapshot-2002- 12-01-0000.dat.gz, at http://archive.routeviews.

org/

[12] D. Morrison, PATRICIA—practical algorithm to retreive

information coded in alfanumeric, Journal of the ACM 15 (4)

(1968) 514–534.

[13] S. Nilsson, Level-Compressed Trie Structures, Licentiate Thesis,

Lund University, Sweden, 1995.

[14] S. Nilsson, G. Karlsson, IP-address lookup using LC-tries, IEEE

Journal on selected Areas in Communications 17 (6) (1999) 1083–

1092.
[15] M.A. Ruiz-Sanchez, E.W. Biersack, W. Dabbous, Survey and

taxonomy of IP address lookup algorithms, IEEE Network Magazine

15 (2) (2001) 8–23.

[16] K. Sklower, A tree-based packet routing table for Berkeley Unix,

Proceedings of Winter Usenix Conference, 1991, pp. 93–99.

[17] V. Srinivasan, G. Varghese, Fast address lookups using controlled

prefix expansion, ACM Transactions on Computer Systems 17 (1)

(1999) 1–40.

[18] M. Waldvogel, G. Varghese, J. Turner, B. Plattner, Scalable high-

speed IP routing lookups, in: Proceedings of ACM SIGCOMM,

October 1997, pp. 25–36.

http://archive.routeviews.org/
http://archive.routeviews.org/

	Simple and fast IP lookups using binomial spanning trees
	Introduction
	Preliminaries
	Proposed data structure
	Node representation
	Optimizations

	Performance evaluation
	Conclusions
	References

