
The Cost Effective Pre-Processing based NFA
Pattern Matching Architecture for NIDS

Yeim-Kuan Chang, Chen-Rong Chang, and Cheng-Chien Su
Department of Computer Science and Information Engineering

National Cheng Kung University
Tainan, 701, Taiwan

{ykchang, p7697446, p7894104}@mail.ncku.edu.tw

Abstract—Network Intrusion Detection System (NIDS) is a
system which can detect network attacks resulted from worms
and viruses on the Internet. An efficient pattern matching
algorithm plays an important role in NIDS. There have been
many proposed methods for pattern matching algorithms.
Traditionally, the multi-character NFA that is capable of
matching multiple characters per cycle can be built by
duplicating entire circuit of 1-character architecture. In this
paper, we propose a pre-processing based architecture to
improve the original multi-character architecture. The design of
the proposed architecture and its implementation in FPGA are
described in details. Our simulation results show that the
proposed architecture performs better than all the existing
Brute-Force based approaches in terms of the throughput and
the slice utilization. Specifically, the proposed architectures of 2-
character and 4-character designs can achieve the throughputs of
4.68 and 7.27 Gbps and the slice utilization of 2.86 and 2.10 in
terms of char/slice, respectively.

Keywords-Intrusion detection; Finite state machine; Multi-
character; Pattern matching

I. INTRODUCTION

A large number of malicious attacks and worms spread on
the Internet every day. As a result, many networks are
vulnerable to the attacks. Network Intrusion Detection System
(NIDS) is a detection system which can detect malicious
attacks and protect the network systems. The pattern matching
algorithm plays an important role in NIDS. Traditionally,
pattern matching has software-based and hardware-based
solutions. Software-based solutions have their limits in system
processing speed. So, there have been several proposed FPGA-
based hardware solutions. The deterministic finite automata
(DFA) and non-deterministic finite automata (NFA) are typical
methods for the pattern matching architectures.

The deterministic finite automata (DFA) approach uses a
state machine to track partial pattern matches across clock
cycles. For this reason, it is possible to match complex regular
expression using this technique. A DFA will take in a string of
input character. In DFA definition, a DFA can have only one
active state. An advantage of a single active state is a compact
state encoding, which allows for efficient context switches that
are useful in certain applications. Non-deterministic finite
automata (NFA) approach can reduce the transition complexity
by allowing multiple active states. NFA has a balance of logic

and state that maps well to current architecture, allowing them
to achieve compact density.

The most popular real pattern sets are from the open source
software such as Snort [10] for intrusion detection and
ClamAV [1] for anti-virus. The requirements can be concluded
to be those matching the variable-length, multiple patterns and
on-line processing of all packet inspection systems.

The rest of the paper is organized as follows: In section II,
we review and summarize the related work. In section III, we
present our scheme. In section IV, we propose our multi-
character architecture and describe the solution of the false
positive that may be incurred by our simple design. In section
V, we present the multi-character simulation results with a
summary of our design and the comparison of our scheme with
other similar projects. Finally, in section VI, we present the
conclusions.

II. RELATED WORK
Since the throughput of hardware-based solutions is much

higher than the software-based ones, many FPGA based
implementations are proposed for network intrusion detection
in recent years. In this section, we will briefly introduce some
pattern matching architectures in previous works.

The brute-force (BF) approach compares the pattern with
the packet payload (called input string or text) for each possible
substring relative to the beginning of the packet payload. The
BF algorithm compares a character in the pattern and a
character in the text from left to right. In case of a match or
mismatch, it shifts only one position to the right. Take input
string “aabbcda” and pattern “bcd” as an example. In the first
attempt, the first characters from both input string and pattern
are compared. Since they don’t match, the search is shifted one
position to the right. The second attempt also results in a
mismatch, and the search is shifted one position to the right. In
the third attempt, the first characters match, but the second
characters don’t match. The search is again shifted one position
to the right. The fourth attempt results in a match, and the
searched pattern is found in the text. The Brute-Force algorithm
has O(nm) worst case time complexity, where n is the length of
text and m is the length of pattern.

Figure 1(a) shows the BF architecture whose pattern is
“Processor” where the nine blocks are character comparators.
Each character comparator compares a 1-byte character of text
per clock cycle and outputs TRUE signal if the input character

2010 24th IEEE International Conference on Advanced Information Networking and Applications

1550-445X/10 $26.00 © 2010 IEEE

DOI 10.1109/AINA.2010.42

385

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 07,2010 at 03:57:37 UTC from IEEE Xplore. Restrictions apply.

matches the desired character of comparator. The output signal
of comparator is connected to an AND gate with output signal
that were detected in the previous cycle. The final match signal
is obtained from the last AND gate. For example, if the input
text “Processor” arrives in order, the first comparator matches
“P” and output “1” to the flip-flop. In the next clock cycle, the
second comparator matches “r” and the output signal combined
with the output signal at previous stage by AND gate. The
AND gate outputs TRUE to the next flip-flop. Finally, we will
get a match signal at ninth clock cycle.

Traditionally, Non-deterministic Finite Automata (NFA)
represents each state by a pipelined stage. The longer length of
the pattern, the more slice of the circuit is needed. Similarly, if
we want to match multiple characters in the pattern per cycle,
the cost of hardware will be increased exponentially, compared
to single character design. There are many researches focusing
on BF in the literature [4, 5, 7, 8, 9, 11, 14, 15]. An example of
the BF of multi-character architecture is shown in Figure 1(b).
In [4], the proposed architecture uses a multi-character method
augmented by a pre-decoder. Figure 1(b) is two-character NFA
architecture. However, these proposed methods must duplicate
the circuit of one-character architecture. The result is that the
multiple-character architecture must match all possible
substrings of the input payload and the input character may be
shifted by one or more positions in input payload. In order to
match all possible substrings of the payload, the circuit must
express all kinds of input types. The duplication of the single-
character architecture results in the reduced slice utilization of
the circuit.

The authors in [5] improved the BF architecture and
proposed a hardware-based pattern match architecture by
employing a multi-character processor array. The proposed
multi-character processor array is a parallel and pipelined
architecture which can process multiple characters of the input
text per clock. We proposed a regular design for multi-
character architecture [5]. In our design, the details of each
processor element (PE) are the same. It is easy to implement
and increase multi-character degree due to the regularity of the

PE. In general, it is a trade-off of throughput and area cost.
Throughput of the architecture is decreased as area cost is
increased. Therefore, we provide a precise method to design
multi-character architecture for processing N bytes per cycle.
The important addition what we have said about our design is
we reduce 83% of the computations compared with the brute-
force approach.

In [8] the authors have proposed the idea of pattern infix
sharing to reduce the number of slices per pattern match engine
across many similar patterns. Hutchings et al. [7] proposed a
method to reduce the area cost of BF approach. They share the
circuits of common prefix in different pattern. But this
technique is not useful on FPGA. Based on the simulation
results by using FPGA software, the area cost of sharing prefix
is similar to the cost of BF approach. Processing multiple input
characters per cycle is needed in order to improve the
throughput. The BF matching module can be scaled by simply
widening the bus and adding duplicate modules. But the
architecture is not regular and wastes too many computations
when comparing characters.

One of the early exact string matching algorithms of
Automata design approach is the Aho-Corasick [2] algorithm.
The Aho-Corasick algorithm locates all occurrences of any
keywords in a text string. It works in constructing a finite state
pattern matching machine from all of the keywords, and then
using the pattern matching machine to process the payload
string in a single pass. The state machine starts from an empty
root node. Each pattern to be matched adds states to the
machine, starting at the root and going to the end of the pattern.
The state machine is then traversed and failure pointers are
added to indicate any disconnection between two states. The
time complexity of Aho-Corasick algorithm is linear in the size
of the input.

Brodie et al. [3] also improve the throughput by processing
the multiple characters at each clock cycle. They converted the
regular expression patterns into DFAs and implemented them
with pipelined FSM structures specially designed for regular
expression matching. They also use a complicated alphabet
encoding scheme and a transition table compression to reduce

P r r
….

Match

Input Payload

o
8

(a) One-Character degree

Figure 1. The BF architecture.

….

Input Payload

r o r

….

Match

r

16

(b) Two-Character degree

o c

r o

P

P
1-bit

register

Figure 2. Transition chain of multi-character matching NFA.

Pattern: “Processor”

(c) Four-character matching NFA

P r o c e s s o r

(a) One-character matching NFA

Proc esso r***

**Pr
oces

roce

sor*

*Pro

***P ssor

Pr oc es so r*

(b) Two-character matching NFA

**

*P ro ce ss or

*

cess or**

386

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 07,2010 at 03:57:37 UTC from IEEE Xplore. Restrictions apply.

the exponentially increasing number of states.
Tan et al. [13] proposed a bit-split state machine by

splitting Aho-Corasick state machine. The proposed algorithm
works by separating the set of the patterns into group and
building a small state machine for each group. Each state
machine recognizes a subset of the patterns from the rule set.
The disadvantage of Aho-Corasick method is that building a
state machine requires an exponential number of states. This
results in large amount of storage. Tan et al. [13] split the state
machine into a new set of many binary state machines. The
advantage of this method is that binary state machines can be
run independently the number of states is reduced.

III. PROPOSED SCHEME
All transition states in traditional NFA graph are matched

against the input character simultaneously. We find the chain
with the least transition edge length from the initial state to a
finish state in transition graph of NFA. The chain is called
“transition chain” which has an equal number of states as the
pattern length. The NFA is implemented in a pipelined
architecture, and each state of transition chain is a pipeline
stage. For example, with the pattern “Processor”, we
implement the pipeline architecture as in Figure 2(a). The
pipeline architecture is equal to Brute-Force architecture of
Figure 1(a). However, one-character matching NFA pipeline
architecture implementation is simple in hardware, but its
throughput is disappointing. In order to improve the throughput,
we usually use the multi-character matching NFA architecture.
We can build the transition graph of multi-characters NFA and
find the multiple transition chains in the graph. Figure 2(b) is
the same example that finds two transition chains in two-
characters matching NFA. Each chain must be implemented as
a pipeline circuit of two-character matching NFA as shown in
Figure 1(b).

Although two-character matching NFA pipeline
architecture improves the throughput, it doubles the number of
character comparators. The multi-character matching NFA
increases transition edges because there are many possible
substrings in the input string that will match the pattern. To
reduce the doubled cost of the character comparators, we
propose to use a pre-processing based scheme as follows. Take

a 2-character case as an example. In the original 2-character
NFA architecture, there are two sets of 1-character NFA
circuits, one is called the non-shift condition and the other is
called shift condition. We try to avoid using the shift condition
NFA by detecting if the input string can be matched by the shift
condition NFA. Then, we can adjust the input string in the pre-
processing unit to make it non-shift condition.

We propose a pre-processing based multi-character
matching transition graph as shown in Figure 3 in which the
initial state is built as a pre-processing state. We use two-
character matching NFA of the Figure 3(a) as an example to
explain how the proposed architecture works. We assume input
string is “ABCProcessor”. The 2-character input is “AB” in
the first cycle which does not match any character. In the
second cycle, the 2-character input is “CP” which partially
matches the prefix of the pattern “*P”. In this cycle, the pre-
process state will hold partial matching string with “P”. In the
next cycle, the 2-character input is "ro". The pre-process state
will combine the 2-character inputs in the current and previous
cycles and send combined string "Pr" to next state for
matching. At the same time, the leftover character “o” is held
for waiting for the 2-character input in the next cycle. We
summarize the operations in all the cycles in Table I. The
differences between the traditional NFA and pre-processing
based NFA are as follows. In traditional multi-character
scheme, total transition NFA edges increase as the number of
input characters increases. And the number of states keeps the
same. In the proposed pre-processing based transition graph,
the number of the states becomes approximate 1/n of the
traditional NFA if the number of input characters is n. The
transition edge of each stage is only one. When we increase the
number of input characters, the pre-processing based NFA keep
as simple as the 1-character NFA.

IV. PROPOSED ARCHITECTURE ON FPGA
In this section, we implement the proposed architecture in

FPGA. We design a Pre-Process Module (PPM) which can
handle the operations needed in the pre-processing state. In
order to effortlessly explain the proposed PPM design, we use
the same example described in previous section. For example
in Figure 4(a), the PPM can handle the matching operations of
three cases in which PPM should indicate a control signal.

In case 1, the input string exactly matches the pattern
“Processor” at each clock cycle. For initial cycle, the packet
payload will match “Pr”. In the second and three cycles, the
“oc” and “es” have been matched in this case. For simplifying

***P

Pre-Process state Normal state

Pr oc es so r*

(a) Two-character matching NFA

*P

**

Pattern: “Processor”

Proc esso r***

(b) Four-character matching NFA

**Pr

Final state

**** *Pro

Figure 3. Reduce transition edge and stage for Pre-Process State.

Input payload “ABCProcessor”
Cycle 2-character

input
Pre-Process State

output string
Combined
sub-string

Store sub-
substring

1 “AB” “AB” No action “B”
2 “CP” “CP” No action “P”
3 “ro” “Pr” “P” and “r” “o”
4 “ce” “oc” “o” and “c” “e”
5 “ss” “es” “e” and “s” “s”
6 “or” “so” “s” and “o” “r”
7 “**” “r*” “r” and “*” “*”

TABLE I. PRE-PROCESS STATE OPERATIONS

387

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 07,2010 at 03:57:37 UTC from IEEE Xplore. Restrictions apply.

description of the proposed architecture later, case 1 is called
the “Normal Case”.

The pattern has been cut by m-character, where m is the
number of input characters per cycle. In case 2, the input string
matches k-byte suffix characters in first cycle and the non-
match (m－k)-bytes prefix characters are wildcard. The case 2
is called “Shift Case” which may have a (m－1)-byte shift in
pattern. In the example of case 2 of Figure 4(a), m is 2 and k is
1. And the case 3 is called “No Match Case” which does not
match any string in initial cycle.

The proposed pre-processing based NFA architecture is
constructed by two circuits as shown in Figure 4(b). The left
one is the PPM and the right one is the two-character matching
NFA pipeline circuit. Each comparator can contain two
characters. PPM uses the input string to determine which case
the current input belongs. After PPM determines the case, it
will output shifted or non-shifted string to the next stage, which
is called modified string in our architecture.

A. The Detailed Design of Pre-Process Module
The PPM is constituted by four components that are prefix

compactor, selector, buffer, and parallel-in parallel-out (PIPO)
shifter.

 The prefix compactor is mainly used to compare pattern
prefix. When the number of input character is m, prefix
compactor needs to consider m possible shift matching
conditions. So, we need m prefix compactors. As shown in
Figure 4(a), m is 2, PPM have two prefix compactors, that

are “Pr” and “*P”+“r*”. If input string is “*P” that “P” and
“r” are separated in two continuous cycles, prefix compactor
can identify shifted matching condition. Prefix compactor
results will be output to the selector.

 The selector is a special component that is designed for PPM
to be used to control PIPO shifter output. If we use the
results of prefix compactor to control PIPO shifter, single
shifter is not enough to satisfy our requirement. Some
mistakes may occur in our architecture, explained as follows.
When prefix comparator matches a pattern prefix, PPM
needs to have a component to record if it is a shifted or non-
shifted condition. We design the selector for this purpose.
The circuit of Figure 5 is the detailed design of the selector.
We use flip-flop registers to hold on the signal of the match.
The m-characters have m flip-flop registers. When m is 2 as
in Figure 5, two registers are needed. As shown in the
Characteristic Table of Figure 5, when CLK is triggered,
S0(t+1) and S1(t+1) are the output signals of the selector. S0
and S1 are the output signals in the previous cycle. When M1
or M0 is set because of pattern prefix is matched at the
current cycle, the selector will know to output shifted or non-
shifted control signal to buffer at the next cycle.

 The buffer stores the least significant m – 1 characters of m-
character input string in the current cycle. In other words,
when input string is “im ... i1”, the buffer will store “bm-

1 ...b1”. If m is 2, then buffer just stores the last one character
of input string, as shown in Figure 4(a). Buffer outputs the
stored m – 1 characters of the pervious cycle to PIPO shifter
which in turn outputs characters to the right side NFA circuit.

Figure 4. The proposed architecture.

Pre-Process Module

16
8

8

16

1

16
8

[8:15]

[0:7]

Input
String

Pattern:
“Processor”

Modified String

1 1

8

Parallel-In
Parallel-Out

Shifter

[0:7]

Selector

Case Input Case Segmented Pattern
1 Normal Case Pr oc es so r* **
2 Shift Case *P ro ce ss or **
3 No Match Case ** Pr oc es so r*

(a) All possible input cases of pattern “Processor”

(b) Pre-Process Module and two-characters matching NFA

oc

Match

PE
*P

Pr

16

1

r*
es

PE
so

PE
r*

PE

1

1

1

Buffer

Match
Signal

M0
M1

Prefix Comparator

1

S1 S0

1

1 1

M1 M0

S1 S0 M1 M0 S1(t+1) S0(t+1)
0 0 0 0 Indeterminate
0 1 0 0 0 1
1 0 0 0 1 0
1 1 0 0 Indeterminate
* * 0 1 0 1
* * 1 0 1 0
* * 1 1 Indeterminate

Characteristic Table

CLK

Figure 5. Selector.

Modified String “oc”

“o” “ce”

2 bytes

1 byte

eo c

3 bytes

Input:
10

2 bytes

(b) The pattern“Processor” (m=2)

2m-1 bytes

Modified String

input string

bm-1

buffer Select
Signals

m bytes

m-1 bytes

… i1 b1 … im

(a) The m-byte Shifter

…

Select
Case 2

Shift 1 byte

Figure 6. Parallel-In Parallel-Out Shifter.

m bytes

388

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 07,2010 at 03:57:37 UTC from IEEE Xplore. Restrictions apply.

 The Parallel-In Parallel-Out Shifter (PIPO shifter) is a (2m–
1)-to-m multiplexer, as shown in Figure 6(a). PIPO shifter
gets its input data from buffer and the m-character input
string and select appropriate substring by signals from
selector. PIPO shifter behaves like the sliding window.
Figure 6(b) is the example of two-character PIPO shifter.
Assume the initial three cycles have input string “*P”, “ro”
and “ce”, respectively. In the third cycle, PIPO shifter
includes the current input string “ce” and temporary input
“o”. The selector selects case 2 that matches prefix pattern.
So sliding window will shift left 1 byte and the output
modified string is “oc”.

B. The False Positive of Pro-Process Module
In our architecture, we allow all possible matched cases in

PPM. In Figure 4, we can exactly match this pattern
“Processor” from this exercise. The m-character per cycle can
have m+1 match cases. Each segmented pattern in PPM may
have at most m-bytes length. This design can match the most of
patterns in rulesets.

But if we have a pattern “PreProcessor”, and the pattern can
be segmented to “Pr”, “eP”, “ro”, “ce”, “ss”, and “or” for each
cycle. The prefix sub-pattern are “Pr” and “*P” in PPM.
Assume we have a payload input “RootPreProcessor”. There
have a special case which may lead to a false positive in our
architecture. From the above exercise, the input strings are
“Ro” and “ot” in the first two cycles. At the third cycle, the
input string is “Pr”. The selector will trigger case 1 from its
multiplexer. This selected state has been held on since the
trigger time. In our design, the multiplexer selects the type of
possible cases. In the next several cycles, the suffix of the
pattern will be matched. But in the forth cycle, the input
payload is “eP”, the multiplexer has changed the select signal.
This action will be effect the path to match sub-pattern. At the
later cycles, the modified payload would not match next sub-
pattern.

The reason that results in this problem is that the prefix sub-
pattern may repeat in the inner part of the pattern. We call this
repeated prefix as recursive prefix. This may confuse the match
case of multiplexer. In the example above, prefix ‘Pr’ is the
recursive prefix. Let the maximal recursive prefix be the
longest possible recursive prefix of the pattern. One way to
prevent the false positive problem is to be aware if the maximal
recursive prefix is matched or not. Specifically, we have to
determine the maximal recursive prefix (say p1, p2…pr) and add
extra circuit to determine if p1, p2…pr, pr+1 is matched or not.
Figure 8 shows the design of m = 2 for the pattern
‘PreProcessor’ in which we replace the shift registers of the
original design, ‘Pr’ and ‘*P’+‘r*’, with ‘*P’+‘re’ and
‘Pr’+‘e*’. In general, we perform the following steps. We
assume that the n-byte pattern is P = p1, p2…pn and m-character
per cycle where m < n. The prefix pattern bases the length of m-
byte which is H(m)= {p1, p2…, pm} and H(m) ⊂ P. We want to
find out the recursive prefix pattern in P. So we also define W(i,
m)={pi, pi+1, pi+2…, pi+m-1} which is the subset of pattern. The
necessary condition which we want to satisfy is H(m) ≠ W(i,m).
The method to find out the condition is to increase i of W(i,m)
sequentially for i<n-m. When we find out any sub-pattern and
don’t satisfy the necessary condition, we increase m by one and
continue to perform the same steps until the condition H(m) ≠
W(i,m) is satisfied.

We now give the detailed algorithm SearchPrefixPattern
for finding the maximal recursive pattern prefix in Figure 7.
SearchPrefixPattern receives, as the input, the n-byte pattern
and m-character input string and return the maximal recursive
prefix of the pattern.

V. PERFORMANCE EVALUATION
In this section, we present the results of hardware

simulation implemented in Xilinx 10.1i. The simulation for
each pattern set was synthesized, placed, and routed on the
Virtex5 XC5VLX85 [16] chip where the package and speed are
FF676 and -3, respectively. The pattern sets are selected from

Figure 8. Recursive prefix “pre” of PPM where the pattern is
“PreProcessor”. In two-character match (m=2), the original prefix
“Pr” may has false positive to cause mismatch. It should be find out
recursive prefix in it.

Pre-Process Module

16

8

8

16

16

8

[8:15]

[0:7]

8

Buffer

Parallel-In
Parallel-Out

Shifter

[0:7]

Pr

*P

16

e*

re

1

1

Input
String

11

Selector

Match
Line

Modified
String

M0
M1

Figure 7. Algorithm for searching the recursive prefix.

n – Pattern length.
m – Multi-character per cycle.
W(i,m) – Subset of pattern which use to compare H(m) where i is

index of sub-pattern, and m is length of sub-pattern.
H(m) – Recursive Prefix.

Algorithm SearchPrefixPattern(P, m, n)
{

01 H(m) = {p1, p2…, pm};
02 W(i,m) = { pi , pi+1,…, pi+m-1};
03 while (m ≦ n) {
04 for (i = 1 to n-m) { // Search for each sub-pattern.
05 if (H(m) == W(i,m)){ // Exist same prefix pattern.
06 m=m+1; // Add one character to prefix.
07 break;
08 }
09 } // end for
10 if (i >= n-m) // Return the recursive prefix.
11 return H(m);
12 } // end while
13 return NULL;
 }

389

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 07,2010 at 03:57:37 UTC from IEEE Xplore. Restrictions apply.

ClamAV (Version 0.92) [1] which contains 54351 static
patterns. Figure 9 plots the distribution of the pattern lengths
varying from 4 bytes to 392 bytes. The average pattern length
is 120 bytes. To evaluate whether the proposed implementation
performs well or not, we could perform the simulations based
on the following issues:

Input Chars (bits): Each character is an 8-bit width data. If
we could process more characters per cycle, we might have
better throughput.

Slice: Slice is the FPGA resource in Xilinx FPGA chip. The
number of logic elements in a slice is dependent on the FPGA
device. Number of slices represents the area cost. In Virtex-5,
each FPGA slice contains four LUTs and four flip-flops.

Clock period: The clock period is the speed of the
maximum critical path in FPGA. The period can be obtained
from the synthesis report of Xilinx software. The smaller is
clock period, the faster is implementation.

Throughput: Throughput = Input bits / Clock period. So
decreasing the clock period or processing more characters per
cycle will get better throughput.

Characters/Slice: The “Characters/Slice” indicates the
average number of characters that can be implemented by a
slice.

In general, clock period and area cost are trade-off. The
clock period of the architecture decreases as the area cost
increases. These two metrics are both considered when we
compare the simulation results with different existing pattern
matching architectures. We use a new metric “Performance”
defined to be the area cost divided by implementation speed as
follows.

Area Cost Char SlicePerformance
Speed Period

= =

The Table II shows the experiment results. The # of chars
(the number of characters) is the total number of characters in
all the patterns of five pattern sets. The numbers of characters
in these pattern sets are from 928 to 16028. Two-character and
four-character designs are simulated for each pattern set. The #
of registers and # of LUTs show the utilization of registers and
LUTs in our architecture. In this table, we can see that the more
number of characters in each pattern sets, the more slice has
been used. But we can also observe the # of register. The 4-
character has lower number of register than 2-character design
in each pattern sets. This is because our architecture doesn’t

of
Chars

Input
Chars
(bits)

Proposed Pre-Process NFA Architecture

Slice # of
Register

of
LUT

Char/
Slice

Period
(ns)

Throughput
(Gbps) Performance

928 16 360 592 973 2.58 2.70 5.93 0.96
32 406 301 1105 2.28 3.50 9.13 0.65

1903 16 642 1,173 1,845 2.96 4.41 3.63 0.67
32 692 568 2,039 2.75 3.49 9.16 0.79

3582 16 1,258 2,224 3,564 2.85 3.41 4.69 0.83
32 1,380 1,070 4,189 2.60 4.14 7.72 0.62

8417 16 3,025 5,235 8,397 2.78 3.34 4.79 0.83
32 4,127 3,328 12,171 2.04 3.99 8.01 0.51

16028 16 5,626 9,690 15,374 2.86 3.42 4.68 0.84
32 7,635 6,550 30,387 2.10 4.40 7.27 0.48

TABLE II. EXPERIMENTAL RESULTS ON INPUT N CHARACTER PER CLOCK

Design Device Input Chars # of Chars Slice # of
Register # of LUT Char/Slice Throughput

(Gbps) Performance

Our design Virtex5-LX85T 16 16,028 5,626 9,690 15,374 2.86 4.68 0.84
32 7,635 6,550 30,387 2.10 7.27 0.48

Chang et al. [5] Virtex5-LX85T
8 1,796 581 1,757 1,773 3.09 2.19 0.85

16
16,028

7,221 15,640 15,736 2.21 4.67 0.65
32 15,531 15,943 48,767 1.03 6.27 0.20

Norio Yamagaki
et al.

Multi-Character
NFA [15]

Altera Stratix II
EP2S180

16
15,506

n/a 11,640 12,072 n/a 2.67 n/a

32 n/a 14,765 11,327 n/a 4.00 n/a

Clark et al.
NFA decoder [4] Virtex2-8000

8 7,996 8,852 n/a n/a 0.90 2.20 0.25
17,537 17,239 n/a n/a 1.01 2.02 0.26

32 7,996 20,500 n/a n/a 0.39 7.30 0.09
17,537 37,740 n/a n/a 0.46 7.00 0.10

Sourdis et al.
Discrete

Comparators [11]
Virtex2-6000 32 2,457 23,843 n/a n/a 0.05 8.06 0.01

Hutchings et al
Sharing prefix[7] Virtex2-6000 8

2,008 2,331 n/a n/a 0.86 0.40 0.04
4,003 4,375 n/a n/a 0.92 0.35 0.04
8,003 10,309 n/a n/a 0.78 0.25 0.02

TABLE III.COMPARSION OF PREVIOUS WORKS

Figure 9. Pattern length of ClamAV set.

390

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 07,2010 at 03:57:37 UTC from IEEE Xplore. Restrictions apply.

duplicate the same circuit of 1-character NFA to support the
matching of all possible substring of the pattern. The increase
of Input Chars, the # of register will be decrease. Another
advantage is that our proposed PPM architecture also can
reduce design complexity. The only additional cost is the PPM
whose cost increases as the number of characters input in each
cycle increases.

The Table III summarizes the performance comparison
between related works and our design. We focus on the
Char/Slice metric. Our design has the best throughput in all
approaches. We also can see that our design has higher
throughput and performance than Brute-Force and Norio
Yamagaki et al. [15]. The result is that our design has lower
hardware complexity. This may effects FPGA synthesis tools
to perform the result during placement and routing the circuits.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel pre-processing-based

pattern matching architecture, and implemented it in FPGA.
The advantage is that the proposed architecture has a higher
slice utilization and a lower hardware complexity. The
simulation results show that the proposed architecture performs
better than the existing approaches that also are based on Brute-
Force scheme, in terms of the throughput and the slice
utilization. Specifically, the proposed architectures of 2-
character and 4-character designs can achieve the throughputs
of 4.68 and 7.27 Gbps and the Char/Slice of 2.86 and 2.10,
respectively.

REFERENCES

[1] Clam Anti-Virus signature database, www.clamav.net.
[2] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to

bibliography search,” Comm. Of the ACM, vol 18, no.6, pp.333-340,
1975.

[3] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A Scalable Architecture
For High-Throughput Regular-Expression Pattern Matching, ” In
Proceedings of the 33nd Annual International Symposium on Computer
Architecture (ISCA’06), pp. 191–202, 2006.

[4] C.R. Clark and D.E. Schimmel, “Scalable pattern matching for high
speed networks," In Proceedings of the 12th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines(FCCM '04), pp.
249-257, 2004.

[5] Yeim-Kuan Chang, Ming-Li Tsai and Yu-Ru Chung , “Multi-Character
Processor Array for Pattern Matching in Network Intrusion Detection
System,” In Proceedings of the 22th IEEE International Conference on
Advanced Information Networking and Applications (AINA’08), pp.
991-996, 2008.

[6] Young H. Cho, W.H. Mangione-Smith, “Deep packet filter with
dedicated logic and read only memories,” In Proceedings of the 12th
Annual IEEE Symposium on Field-Programmable Custom Computing
Machines(FCCM '04), pp. 125-134, 2004.

[7] B. L. Hutchings, R. Franklin, and D. Carver, “Assisting network
intrusion detection with reconfigurable hardware,” In Proceedings of the
10th Annual IEEE Symposium on Field-Programmable Custom
Computer (FCCM’02), pp. 111–120, 2002.

[8] Cheng-Hung Lin, Chih-Tsun Huang, Chang-Ping Jiang, and Shih-Chieh
Chang, “Optimization of Pattern Matching Circuits for Regular
Expression on FPGA," IEEE Transactions On Very Large Scale
Integration Systems (VLSI’07), vol. 15, no. 12, pp. 1303-1310, 2007.

[9] R. Nidhu and V. K. Prasanna, “Fast Regular Expression Matching Using
FPGAs,“ In Proceedings of the 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’01), pp. 227-238,
2001.

[10] Snort: The Open Source Network Intrusion Detection System,
www.snort.org.

[11] I. Sourdis, D. Pnevsmatikatos, "Fast, Large-Scale String Match for a 10
Gbps FPGA-based Network Intrusion Detection System, "In
Proceedings of the 13th International Conference on Field
Programmable Logic and Applications (FPL’03), pp. 880-889, 2003.

[12] Lin Tan, Timothy Sherwood, “Architecture For Bit-Split String
Scanning in Intrusion Detection,” IEEE mirco., pp. 110-117, 2006.

[13] Lin Tan, Timothy Sherwood, “A High Throughput String Matching
Architecture for Intrusion detection and Prevention,” In Proceedings of
the 32nd Annual International Symposium on Computer Architecture
(ISCA’05), pp. 112-122, 2005.

[14] Yi-Hua E. Yang, Weirong Jiang and Viktor K. Prasanna, “Compact
Architecture for High-Throughput Regular Expression Matching on
FPGA”, in proceedings of the 4th ACM/IEEE symposium On
Architecture For Networking And Communications Systems (ANCS’08),
pp.30-39, 2008.

[15] Norio Yamagaki, Reetinder Sidhu, and Satoshi Kamiya, “High-Speed
Regular Expression Matching Engine Using Multi-Character NFA," In
Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL ‘08), pp. 697-701, 2008.

[16] Xilinx Virtex-5 Plarform FPGAs: Detailed description.
http://www.xilinx.com/support/documentation/virtex-5.htm.

391

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 07,2010 at 03:57:37 UTC from IEEE Xplore. Restrictions apply.

