
Set Pruning Segment Trees for Packet Classification
Yeim-Kuan Chang and Hsin-Mao Chen

Department of Computer Science and Information Engineering,
National Cheng Kung University,

Tainan, Taiwan
{ykchang, P76984500}@mail.ncku.edu.tw

Abstract—Nowadays, multi-field packet classification is one of the
most important technologies to support various services in next
generation routers. In this paper, we propose a segment tree
based parallel SRAM-based pipelined architecture called Set
Pruning Segment Trees (SPST) for multi-dimensional packet
classification. For solving the memory blowup problem, a
grouping scheme called Partition by Length (PL) is used to
reduce the rule duplications in SPST. Additionally, we also
propose an optimization called Set Pruning Multi-way Segment
Trees (SPMST) to reduce the tree level and hardware cost. The
key feature of our proposed architecture is that memory
consumption is reduced significantly regardless of the
characteristics of various rule tables. The proposed pipelined
architecture can achieve a throughput of 89.4 Gbps for minimum
sized packets with dual port memory on Xilinx Virtex-5 FPGA
device.

Keywords-segment tree; elementary interval; pipeline; FPGA;
packet classification

I. INTRODUCTION
The workload of next generation routers increases as the

various services on the Internet grow rapidly. These Internet
services include virtual private network (VPN), quality of
service (QoS), network security, and firewall. Packet
classification is the core functionality in the high-performance
routers [17] for supporting these Internet services. It is always a
challenge to develop a high-speed packet classification
algorithm in routers to sustain the ever-growing Internet traffic
required by these Internet services. To match a rule, packet
classification needs to compare multiple header values of each
incoming packet with the field values of all the rules in the rule
table. In a common rule table, there are five fields that are
source and destination IP address fields in the form of prefixes
of variable length, source and destination port fields in the form
of ranges of consecutive numbers, and protocol field in the
form of singleton value.

The packet classification approaches can be classified into
software and hardware based schemes. The software-based
solutions include decision schemes such as Hierarchical tries
[14], Grid of tries [14], Set Pruning tries [14], HiCuts [6], and
HyperCuts [15]. Dynamic Grid of Segment Trees (DGST) [4]
is proposed to allow dynamic insertions and deletions of ranges.
Hierarchical tries is a multi-dimensional binary tries. The
disadvantage of Hierarchical tries is that search operations can
not be completed without backtracks. Set pruning tries solves
the backtracking problem by duplicating rules. Unfortunately,
duplicating rules cause the memory blowup problem. Grid of
tries is another way of solving the backtracking problem for 2-

dimensional classification. The key feature is to use pre-
computations to set switch pointers pointing to the part of data
structure containing the matched rules. It is effective in dealing
with prefixes, but it is not suitable for other fields such as port
ranges. To make Grid of Trie work for rules containing range
fields, all the range field values must be converted to prefixes
first. However, Prefixes are limited ranges and the size is a
power of two. In the worst case, a W-bit range needs to be
converted to 2W – 2 prefixes. Thus, converting ranges to
prefixes becomes another source of suplications. HiCuts,
HyperCuts and DGST are suitable for range fields, but those
memory usages are too large to implement on Field
Programmable Gate Array (FPGA) easily.

 The hardware-based solutions include static random access
memory (SRAM) architecture such as Improved HyperCuts [9],
Set Pruning Multi-Bit Trie (SPMT) [3], and Power Saved
HyperCuts [11]. The hash-based schemes are Dual Stage
Bloom Filter Classification (2sBFCE) [12], Bloom Based
Packet Classification (B2PC) [13], and Nest Level Tuple
Merging and Cross-product (NTLMC) [5], etc. There are
schemes which are based on ternary content addressable
memories (TCAM) such as BV-TCAM [16]. Most TCAM-
based schemes are like the binary trie based schemes which are
not suitable for range fields. Moreover, the power consumption
is a pending issue. The memory usage of hash-based schemes
is efficient, but the throughput is limited due to resolve false
positives problems. It is important to pay attention to Improved
HyperCuts and SPMT which have higher throughputs and both
of them are trie-based pipelined architectures. Unfortunately,
those schemes have used all the SRAMs for implementing
large rule table such as ACL1_10K on FPGA. They could not
support all the large rule tables. On the other hand, there are
some problems on traditional trie-based pipelined architecture.
The size of the memory in each stage is unbalanced and the
utilization rate of SRAMs in some pipeline stages is inefficient.
For the above problem, some IP Lookup trie-based pipelined
architectures have been proposed for memory balancing in [8]
and [10].

In order to solve the problem caused by range fields and
achieve a high throughput, we propose a packet classification
scheme called Set Pruning Segment Trees (SPST) in this paper.
SPST is very suitable for the pipelined architecture which is a
hierarchical scheme based on segment tree by replacing the
binary trie in set pruning tries with segment trees. We also use
the rule partitioning scheme, Partition by Length (PL), which
divide rules into subgroups by prefix lengths to reduce the rule
duplications in SPST. Each SPST is built for each subgroup
and all the SPSTs are searched in parallel to obtain the best

2011 International Conference on Advanced Information Networking and Applications

1550-445X/11 $26.00 © 2011 IEEE

DOI 10.1109/AINA.2011.69

688

matched rule. In order to further reduce the hardware cost in
our pipelined architecture, we will also propose a Set Pruning
Multiway Segment Trees to merge the stages using small
amount memory.

The rest of the paper is organized as follows. In section 2,
the background of packet classification is introduced. In section
3, we review the related work on software and hardware based
schemes. The section 4 describes our proposed scheme. Section
5 describes the implementation of our proposed design. Section
6 is our optimization. Section 7 presents the results of the
comparisons. And finally, the Section 8 is the conclusion.

II. BACKGROUND
In the general packet classification problem, query packets

are classified by searching the rule table to determine an action
(e.g., acceptance or denial) to be applied on the packets. Each
rule R contains a number of fields as well as the priority and
the associated action. Traditionally, the rule contains five fields:
the source and destination address which are variable length
prefixes, source and destination port which are range numbers,
and protocol which is explicit value. When a packet P matches
a rule R, it means that the all header fields of rule R matches all
corresponding fields of the incoming packet P. It is possible
that a packet may match multiple rules. And one of the packet
classification problems is to determine the highest priority rule
which called best match rule. Table I is a sample 5-field rule
table. If the field values of the incoming packet (SA, DA, SP,

DP, Protocol) = (00000, 10000, 21, 21, UDP), the matched
rules from Table I are R1 and R8. The priority of R1 is higher
than R8. So the best match rule is R1.

III. RELATED WORK
In this section we review the software based scheme called

Dynamic Grid of Segment Tree. On the other hand, we also
review the hardware based scheme called Set Pruning Multi-
Bit Trie and the important issues of trie-based pipelined
architecture.

A. Dynamic Grid of Segment Tree
Dynamic Segment Tree (DST) [2] is proposed to solve the

IP lookup problem caused by range fields and allow dynamic
insertions and deletions of ranges. DST is built from the
distinct endpoints of ranges which obtains by minus-1 endpoint
scheme. Table II is the minus-1 endpoint of SA and DA in
Table I. The interval between two endpoints is called
elementary intervals (EIs) [1]. Each node in DST covers a
number of consecutive EIs. For examples, each leaf nodes
represents an EI, and the parent node of leaf nodes represents
the EIs of the leaf nodes. DST improves the traditional
Segment Tree by supporting dynamic routing tables.

Dynamic Grid of Segment Tree (DGST) [4] that is similar
to Grid of Trie replaces the binary tries in Grid of Trie by DSTs
to inherit advantage of reducing memory usage and avoiding
backtracking. There are switch pointers and extended pointers
to speed up the search operations by finding potential match
rules in DGST. The nodes also contain dimension pointers to
pointer to next dimensional DST. In DST, each node
distinguishes three intervals which are left interval, right
interval, and union of right and left intervals (called canonical
set C) by the key of the node. Figure 1 is a 2-dimension
example of DGST without extended pointer built according to
Table II. To find the best match rule, the trace of an incoming
packet with (SA, DA) = (6, 16) is m-n-x-y-R7-R1. The matched
rules are R1 and R7, and the best matched rule is R1. Because

m

Figure 1. A possible 2D DGST without extended pointer

11

23

15

Dimensional pointer

7 23

15
7

R5

15

R7

R2

15

7 23

R1 R6

R8

R3

15

7 23

R1R6

R8

Switch pointer

n o

px

R4

y

Rule SA DA SP DP PORT PRIORITY ACTION

R1 0* 10* [0:31] [0:31] TCP 1 Accept

R2 00* 11* [0:15] [21:21] TCP 2 Accept

R3 011* 00* [16:23] [20:22] TCP 3 Accept

R4 10* 1* [31:31] [0:15] TCP 4 Accept

R5 * 00* [16:31] [5:8] TCP 5 Accept

R6 0* 01* [15:16] [10:15] UDP 6 Deny

R7 00* 10* [0:7] [16:31] TCP 7 Deny

R8 0* * [0:31] [0:31] UDP 8 Deny

TABLE I. A SAMPLE RULE TABLE

SA DA
Rule

Prefix Start Finsh Prefix Start Finsh

R1 0* - 15 10* 15 23

R2 00* - 7 11* 23 31

R3 011* 11 15 00* - 7

R4 10* 15 23 1* 15 31

R5 * 0 31 00* - 7

R6 0* 0 15 01* 7 15

R7 00* 0 7 10* 15 23

R8 0* 0 15 * - 31

TABLE II. MINUS – 1 ENDPOINTS OF SA AND DA IN TABLE I

689

of the feature of Grid of Tries, DGST extended to 3 or more
dimensions will also need backtracking.

B. Set Pruning Multi-Bit Trie
In [3], the authors proposed a trie-based SRAM pipelined

architecture for packet classification. In order to solve the
memory blowup problem caused by rule duplications, the
authors proposed two rule grouping schemes called Partition
by Wildcards (PW) and Partition by Length (PL). PW divides
rule table into 16 subgroups. Those are classified according to
the wildcards values in SA, DA, SP, and DP fields (excluding
protocol field). When most of prefixes in the rule table are
short (say length = 1 or 2), most subgroups will be empty and
the rule duplication is still high. Thus, scheme PL deals with
the rule duplication of short prefixes. PL divides rule table into
k subgroups by select k – 1 different prefix lengths in the first
field. The prefix lengths are selected by computing the
Duplicating Cost (DC) of the rule table. The set of k prefix
lengths is selected if it produces the smallest DC. Because the
traditional multi-bit trie is suitable for the IP Lookup pipelined
architecture [7], the authors developed a multi-bit scheme
called Set Pruning Multi-Bit Trie (SPMT) to share nodes for
reducing the number of pipeline stages and avoiding the
redundant data structures.

C. Balance The Memory
As shown in Figure 2, each trie level is assigned to a

different pipeline stage in traditional trie-based pipelined
architecture. However, there is only one node in first stage and
the stage containing the maximum number of nodes depends on
the rule table. The hardware clock rate is determined by the
largest stage and it’s called the unbalanced memory problem.
In [10], the authors proposed two different schemes to
incrementally update and balance memory usage for IP Lookup
trie-based pipelined architecture. The authors use the No
Operation Performed (NOP) instructions to make the nodes in
the same trie level map onto different pipeline stage for
balancing memory. For dealing with the route updates, the
traditional pipelined engines need re-map the entire trie onto
the pipeline. The update cost is high and the authors proposed
two trade-off schemes to reduce the cost of updating the
pipeline based on only mapping the newly inserted nodes onto
the pipeline. Additionally, the authors also proposed another

pipelined architecture that assigns few stages to be the external
stages for supporting large rule tables.

IV. PROPOSED SCHEME
In [4], the authors solve the range problem in multi-

dimensional packet classification. There is a problem that the
DGST’s data structure is too complex to implement in FPGA
effectively. Another problem is that DGST will cause
backtrack problem in D-dimension DGST (D>2) and thus the
traditional trie-based pipelined architecture is not suitable.
Another scheme called SPMT is a very fast pipelined
architecture and solves the memory blowup problem for being
implemented on FPGA. Because the ranges need to covert into
a number of prefixes and the trie level may be the maximum.
Therefore, there are a large number of pipeline stages and
usage of memory. In this section, we propose a new scheme in
the subsequent two subsections to solve the above problems.

1) Set Pruning Segment Trees (SPST): SPST is a segment
tree based data structure which is suitable for solving 5-
dimensional packet classification problem. SPST is also
the Set Pruning trie based data structure which can be
implemented in FPGA easily.

2) Grouping Set Pruning Segment Tree: In SPST, there is
also rule duplicating problem. We use the Partition by
Length to reduce the memory usage. But we do not reduce
the rule duplication as much as possible. There is a trade-
off between memories consumption and hardware cost.

A. Set Pruning Segment Trees (SPST)
In SPST, each node contains the key (endpoint of range

based on minus-1 endpoint scheme), two link pointers (pointer
to left and right children), and the link type (indicating that the
pointer children are the same dimension or next dimension).
Constructing SPST is similar to the Set Pruning Trie
construction. In the first step, the first-dimensional segment
tree is constructed. The endpoints are used to create the

R4

R5

R1

R2

R3

Root
Stage 1

Stage 2

Stage 3

Stage 4

Figure 2. A traditional binary trie-based pipeline
architecture according to SA of Table I.

Dimensional pointer

7

11

23

1515

7 23

R5 R6 R1 R2

15

7 23

R5 R6 R1 R8

15

7 23

R3 R6 R1 R8

15

7

R5

R4

15

R4

m

n o

p
x

y z

Figure 3. A possible 2D SPST according to Table I

690

elementary intervals. Then, the Segment Tree is constructed by
using the most balancing Segment Tree to minimize the tree
level and duplicating all the rules to the leaf nodes. After
constructing the first dimensional Segment Tree, we repeat the
above steps and will obtain the 5-dimensional SPST. In the last
dimensional Segment Tree, the leaf nodes only store the
highest priority rule of the best match rule. Figure 2 shows an
example of 2-dimensional SPST built according to source and
destination addresses in Table I. The search in SPST is from
root to leaf node. Each node compares the key and the
corresponding fields of the query packet. If the key is small
than or equal to the corresponding field value of the packet, it
travels to the left child or vice versa. Repeating the above step
to the leaf node will find the best match rule. For the example
in Figure 3, if the header values of the incoming packet is (SA,
DA) = (6, 16), the trace is m-n-x-z-R1. And the best match rule
is R1.

B. Grouping Set Pruning Segment Tree
Because all the rules are duplicated into the leaf nodes, the

search process is simpler. But as shown in Figure 3, the
memory blowup problem is in existence. In order to reduce the
duplicated rules, the partition scheme from [3] is employed.
We compare the efficiency of Partition by Wildcards (PW) and
Partition by length (PL) in our scheme. Table II shows the node
numbers of SPST divided by PW and PL. Those three different
type tables are generated by ClassBench [18]. By PW, the
SPST is divided into 16 subgroups some of which are empty.
In Table III, we can notice that we just divide rule table into
two subgroups by PL, but the efficiency results are better than
PW in each table. As a result, we determine to use the PL
grouping scheme to improve our SPST. Figure 4 is an example
of 2D PL SPST built according to Table 1. If the header values
of the incoming packet is also (6, 16), the match rule of Group
1 is R7 and Group 2 is R1. And the best match rule is R1.

After choosing the partition scheme, we consider how many
subgroups are appropriate. In general, we will minimize the
Duplication Cost (DC) as much as possible. DC is defined as a

value of additional cost due to duplicate rule when constructing
a SPST. We calculate the sum of all the rules copy times when
constructing a SPST. If the value of DC is small, it means that
we don’t need waste a lot of additional cost. But in the next
section we will propose a parallel architecture. It means the
more groups we divide, the more hardware cost is needed. On
the other hand, before the rule table is divided up into the
numbers of the lowest DC groups, the effect of reducing rule
duplication decreases quickly. As shown in Table IV, we
calculate the DC from three rule tables containing 10k rules. In
ACL1 table, the DC using 3 groups is about 10 thousands less
than that of using 2 groups. But the difference of DC between
using 3 groups and 4 groups is less than one hundred. This
situation is similar in IPC1 table. For the above reasons, we
determine to trade off between the hardware cost and the
memory usage. If the DC difference between two groups is not
over the threshold, we will choose a smaller k to divide the rule
table into k subgroups in SPST. In addition, For FW2 table, the
DC of 3 groups is the minimum, so we don’t show the DC that
uses 4 groups.

V. HARDWARER IMPLEMENTATION
In this section, the proposed hardware design is given. We

design a pipelined and parallel architecture to improve the
throughput of the SPST groups. About the pipelined
architecture, each node in SPST is marked as a level according
the tree level in SPST. Then the nodes with the same level are
mapped to the same pipeline stage. The nodes in the different
dimension Segment Tree are not mapped to the same pipeline
stage. Each query packet searched from the root to the leaf
nodes is the same as traveling the pipeline architecture stage by
stage. Figure 5 is our designed pipelined architecture. The
actions of each pipeline stage are described as follows:

Duplication Cost
of groups

ACL1 IPC1 FW2

2 27576 28422 13501

3 17265 27445 12401

4 17170 12188

TABLE IV. DUPLICATION COST BY PW

Figure 4. A possible PL 2D SPST according to Table I

Dimensional pointer

7

11

23

15 23

R215

R7

15

R4

7

R3

15

7 23

R5 R6 R1 R8

15

7

R5

Group 1

Group 2

Partition by Wildcards Partition by Length Rule
Table # of nodes # of groups # of nodes # of groups

ACL1_1K 9297 5 7766 2

ACL1_5K 55034 5 36566 2

ACL1_10K 226805 5 193876 2

IPC1_1K 63528 12 26173 2

IPC1_5K 962500 12 171699 2

IPC1_10K 57515415 12 225036 2

FW2_1K 40706 6 15136 2

FW2_5K 806723 6 80505 2

FW2_10K 2503799 6 161733 2

TABLE III. COMPARE THE PW AND PL GROUPING SCHEMES.

691

1) The memory of each piepline stage is accessed to obtain
the key of the node in this stage, the next address, and the
next stage NOP signal.

2) If the import NOP signal is asserted, this stage passes the
import address to the next stage. The NOP singal is
deasserted until the next dimensional stage.

3) If the import NOP signal is deasserted, this stage will
compare the key and the corresponding field of the query
packet to determine the address of the next stage.

4) In the last dimensional pipeline stage, if the NOP signal is
asserted, this stage will obtain the information of match
rule and pass it to the last stage.

As shown in Figure 6, we also take advantage of the FPGA

with massive parallelism to propose a parallel architecture.
Additionally, FPGA also provides a dual-port Block RAMs. It
contributes to improve the throughput massively. We construct
a set of pipelines each of which is built from different SPST
subgroup. When a query packet is coming, the packet header
will be imported to all the pipeline sets. Each pipeline will
execute independently and output the result to the Rule
Selection module individually. Then the Rule Selection module
will output the highest priority rule. This rule is the final result.

VI. OPTIMIZATION
Memory balancing is a major problem in trie based pipeline

architecture [10]. In our pipelined architecture, the SRAM in
each pipeline is unbalance. And the clock rate of the hardware
is determined by the pipeline with the largest SRAM. For the
above reason, we propose an optimization scheme called Set
Pruning Multiway Segment Trees (SPMST) to combine the
stages with few nodes for reducing the trie level and hardware
cost in our pipelined architecture. We combine the stages in the
first dimension of SPMST and the combined SRAMs would
not be larger than the largest SRAM in SPST. In SPMST, the
node and the children nodes are combined to form a multiway
node. The data structure of SPMST is similar to SPST. Each

node contains the key set, the corresponding link pointers and
link type. Figure 7 is a possible 2D SPMST which is built from
Table II. Compared with Figure 3, the tree level of first
dimension decreases.

VII. PERFORMANCE
In this section, we present the performance results of our

proposed scheme and other schemes on memory, hardware cost
and throughput. We implement our scheme by using 4-way
Segment Tree in the first dimensional Segment Tree. The node
size of original node is 54 bits which needs 3 Block RAMs and
the 4-way node is 108 bits which needs 6 Block RAMs. The
implementation result of pipeline stages in first dimension
decreases to half of the pipeline stages needed in the original
architecture.

The memory performance of our proposed scheme and
without partition is shown in Table V. The rule tables are
obtained from ClassBench [18] and three real-life rule tables.
Compared with our scheme using no partitioning, it shows that
partition scheme is effective on the data structure we proposed.
The memory usage is reduced effectively. Based on our results,
our scheme can save a lot of memory regardless of the
characteristics of the rule table. The memory usage of each rule
table is small enough to fit in the Block RAM of FPGA.
Furthermore, the highest level in ACL_10K is 19, in FW2_10K
is 17, and in IPC1_10K is 24. It means that our proposed
pipeline stages are equal to or less than the traditional IP
lookup trie-based pipelined architecture. Additionally,
ACL1_10K and FW2_10K were partitioned into three groups.
And IPC1_10K was partitioned into four groups. It shows that
we do not need a lot of parallel pipeline search engines. For the
above two reasons, we can conclude that our scheme also can
reduce a large number of hardware cost. We will show the
detailed results below with other schemes.

Table VI is the FPGA implementation results. We use
Xilinx ISE 10.1 development tools to implement our proposed
scheme on FPGA. In Table VI, there are other methods’ results
such as Improved HyperCuts proposed in [9] and Set Pruning
Multi-bit Trie Partition by Wildcards and Length combined
(SPMT PW and PL) proposed in [3]. For having a fair
comparison with Improved HyperCuts and SPMT with PW and

Dimensional pointer

7 11 2315

15

7 23

R5 R6 R1 R8

15

7 23

R3 R6 R1 R8

15

R4

15

7

R5

R4

15

7 23

R5 R6 R1 R2

Figure 7. A possible 2D SPMST according to Table II

Stage k

M
at

ch
 R

ul
e

Pa
ck

et
 H

ea
de

r

Address

NOP

Stage2Stage1

Match
Rule

Address

NOP

Stage k-1

���� ���� ����

First Dimension Last Dimension

Figure 5. Pipeline Architecure

Pa
ck

et
s

Pa
ck

et
 H

ea
de

r
 P

ro
ce

ss
or

Pipeline P1

Pr
io

ri
ty

Se

le
ct

io
n

�
�
�

�
�
�

�
�
�

�
�
�

Figure 6. Parallel Architecure
Th

e
B

es
t M

at
ch

 R
ul

e

Pipeline P2

Pipeline Pn

692

PL, we also use the same FPGA device, Xilinx Virtex-5
XCVFX200T [19] with ‘-2’ speed grade, and dual-port
memory. The three methods’ implementation results are
obtained by using ACL1_10k rule table. Compared with
Improved HyperCuts, we can see that our hardware cost is
lower. The slice utilization is less than twenty percent of
Improved HyperCuts (33% vs. 6%). The Block RAMs
utilization is less than one third of Improved HyperCuts (89%
vs. 28%). And the throughput is also higher than Improved
HyperCuts (80.23 Gbps vs. 89.4 Gbps). On the other hand, our
proposed scheme is compared with the SPMT using PW and
PL partitioning schemes. Although our throughput is lower

(110.73 Gbps vs. 89.4 Gbps), our hardware cost is lower. Our
slice utilization is equal to twenty-five percent of SPMT PW
and PL (24% vs. 6%). And the Block RAMs utilization is also
less than one third of SPMT PW and PL (94% vs. 28%). Also,
according to the above results, these three schemes can achieve
the throughput of OC-768 but hardware cost and memory
usage of our proposed scheme are the lowest. As we can see,
Xilinx Virtex-5 XC5VFX200T is sufficient to support the three
methods with 10k rules. But Improved HyperCuts and SPMT
PW and PL have used almost Block RAMs for implementing
ACL1_10K rule table. The XC5VFX200T is not sufficient to
support both of them for FW2_10K or IPC1_10K rule tables.
The memory usage and the Block RAMs of our proposed
scheme are both small regardless of the type of rule table. Our
proposed scheme is accurately implemented with the
XC5VFX200T.

Table VII compares the throughput of our scheme and other
schemes. Our proposed scheme is implemented with Xilinx
Virtex-5 XC5VFX200T and packet size is assumed to be 40
bytes. We can see that our throughput is better than all the
schemes except for SPMT PW and PL. But as showd in Table
V, our slice and Block RAMs utilization are less than SPMT
PW and PL.

VIII. CONCLUSION
In this paper, we proposed a SRAM-based pipelined

architecture for packet classification and reducing the memory
usage and hardware cost for being implemented on FPGA with
high throughput. First, we proposed a segment tree based data
structure called Set Pruning Segment Trees which is suitable
for range fields and mapping onto pipelined architecture.
Because of the Set Pruning property, we need to solve the
memory blowup problem caused by rule duplication. We
partition the rule table into some subgroups by Partition by
Length grouping scheme to reduce the memory usage and
trade-off the hardware cost. Finally, we proposed an improved
data structure called Set Pruning Multiway Segment Trees to
combine the nodes in the stages using less memory for
reducing the tree level and hardware cost. We implemented our
proposed scheme with Xilinx Virtex-5 FPGA. Based on our
performance experiments, our scheme can achieve 89.4 Gbps
with dual port memory and support all kind of large rule tables.

Rule table # of group The level # of node Total Memory (Kb) No partition Memory (Mb)

ACL1_1K 2 17 6085 255.65 0.49

ACL1_5K 3 19 27681 960.9102 2.39

ACL1_10K 3 19 95013 3618 21.07

IPC1_1K 2 14 12593 398.60 50.06

IPC1_5K 3 16 66448 2287.943 1746.36

IPC1_10K 3 17 145464 5017.68 2230.03

FW2_1K 3 19 18977 597.16 65.24

FW2_5K 3 19 91813 2941.251 1020.55

FW2_10K 4 24 141813 5005.68 Overflow

TABLE V. MEMORY PERFORMANCE OF SPMST

 Improved
HyperCuts

SPMT by PW
and PL SPMST

of slices / utilization 10307 / 33% 6854 / 24% 2136 / 6%

of Block RAMs /
utilization 407 / 89% 429 / 94% 129 / 28%

Frequency (MHz) 125.4 173.02 139.76

Throughput (Gbps) 80.23 110.73 89.4

Approaches # of rules Throughput (Gbps)

SPMT PW and PL 9603 110.73

SPMT PW 4451 107.16

MSPST 9603 89.4

Improved HyperCuts 9603 80.23

B2PC in ASIC 3300 13.60

NTLMC 12507 12.16

Power Saved HyperCuts ����25000 10.24

BV-TCAM 222 10.00

2sBFCE 4000 5.86

TABLE VII. COMPARING THROUGHPUT WITH
OTHEER METHODS

TABLE VI. HARDWARE RESOURCE COMPARSION

693

REFERENCES
[1] M.D. Breg, M.V. Kreveld, M. Overmars, and O. Schwarzkopf,

Computational Geometry: Algorithms and Applications. Springer Verlag,
1997.

[2] Yeim-Kuan Chang and Yung-Chieh Lin, “Dynamic Segment Trees for
Ranges and Prefixes”, IEEE Transations on Computers, vol. 56, no. 6,
pages. 769-784, June 2007.

[3] Yeim-Kuan Chang, Yi-Shang Lin, and Cheng-Chien Su, “A High-Speed
and Memory Efficient Pipeline Architecture for Packet Classification”,
Proc. IEEE FCCM, pages. 215-218, 2010.

[4] Yeim-Kuan Chang, Y.-C. Lin, and C.-Y. Lin, “Grid of Segment Trees
for Packet Classification”, In IEEE AINA, pages. 1144-1149, 2010.

[5] S. Dharmappurikar, H. Song, J. Turner, and J. Lockwood, “Fast Packet
Classification Using Bloom Filters”, In ACM/IEEE ANCS, 2006.

[6] P. Gupta and N. McKeown, “Classifying packets with hierarchical
intelligent cuttings”, IEEE Micro, vol. 20(1), pages. 34-41, 2001.

[7] W. Jiang and V. K. Prasanna, “A Memory-Balanced Linear Pipeline
Architecture for Trie-based IP Lookup”, In IEEE HOTI, pages, 83-90,
2007.

[8] W. Jiang, Q. Wang, and V. K. Prasanna, “Beyond TCAMs: An SRAM-
based parallel multi-pipeline architecture for terabit IP lookup”, in Proc.
INFOCOM, pages. 1786-1794, 2008.

[9] W. Jiang and V. K. Prasanna, “Large-Scale Wire-Speed Packet
Classification on FPGAs”, In ACM/SIGDA FPGA, 2009.

[10] W. Jiang and V. K. Prasanna, “Towards Practical Architectures for
SRAM-based Pipelined Lookup Engines”, in Proc. INFOCOM’10
Work-in-Progress track, Mar. 2010.

[11] A. Kennedy, X. Wang, Z. Liu, and B. Liu, “Low Power Architecture for
High Speed Packet Classification”, In ACM/IEEE ANCS, 2008.

[12] A. Nikitakis and I. Papaefstathiou, “A Memory-Efficient FPGA-Based
Classification Engine”, In IEEE FCCM, 2008.

[13] I. Papaefstathiou and V. Papaefstathiou, “Memory-Efficient 5D Packet
Classification at 40 Gbps”, In IEEE FCCM, 2008.

[14] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
Scable Layer Four Switching”, ACM SIGCOMM Computer
Communication Review, vol. 28, pages. 191-202, October 1998.

[15] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification
using multidimensional cutting”, In Proc. SIGCOMM, pages. 213-224,
2003.

[16] H. Song and J. W. Lockwood, “Efficient Packet Classification for
Network Intrusion Detection Using FPGA”, in Proc. FPGA, pages. 238-
245, 2005.

[17] D. E. Taylor, “Survey and Taxonomy of Packet Classification
Techniques”, ACM Computing Surveys, vol. 37, no. 3, pages. 238-275,
Sep. 2005.

[18] D. E. Taylor and J. S. Turner, “ClassBench: A Packet Classification
Benchmark”, IEEE/ACM Transation on Network, vol. 15, no. 3, pages.
499-511, June 2007.

[19] Xilinx, “Virtex-5 Family Overiew”, Product Specification, DS100 (v5.0),
Feb. 6, 2009, at http://www.xilinx.com.

694

