Packet Processing with Blocking For Bursty Traffic
on Multi-thread Network Processor

Yeim-Kuan Chang and Fang-Chen Kuo
Department of Computer Science and Informationifggring
National Cheng Kung University
701 Tainan, Taiwan R.O.C.
ykchang@mail.ncku.edu.tw

p7895107 @mail.ncku.edu.tw

Abstract—It is well-known that there are bursty accesses in
network traffic. It means a burst of packets with he same
meaningful headers are usually received by routerat the same
time. With such traffic, routers usually perform the same
computations and access the same memory locationpeatedly.
To utilize this characteristic of network traffic, many cache
schemes are proposed to deal with the bursty accepatterns.
However, in the multi-thread network processor base routers,
the existing cache schemes will not suit to the bsty traffic. Since
all threads may all deal with the packets with thesame headers, if
the former threads do not update the cache entrieyet, the
subsequent threads still have to repeat the compuians due to
the cache miss.

In this paper, we propose a cache scheme called Bebe for
the multi-thread network processors. B-cache blocksthe
subsequent threads from doing the same computationghich are
being processed by former thread. By applying B-cdwe, any
packet processing tasks with high locality charactéstic, such as
IP address lookup, packet classification, and intrsion detection,
can avoid the duplicate computations and hence aahie a better
packet processing rate. We implement the proposed -8che
scheme on Intel IXP2400 network processor, the expmental
results shows that our B-cache scheme can achiethks line speed
of Intel IXP2400.

Keywords-multi-thread; network processor; cache; and Intel
1 XP2400

. INTRODUCTION

cause the increases of the duplicate computatiowk the
number of unnecessary memory accesses. To avog thi
wasted overhead, we may implement a naive cachehéor
packet processing task. The naive cache cacheesh#s of
the packet processing task for the former packets. the
subsequent packets with the same meaningful hedker,
cache hits can avoid the duplicate computations fzentce
increase the efficiency.

However, the naive cache described above maynstilsuit
to the burst traffics. Since the traffics arrive lrst, all
threads of a ME may all deal with the packets wlith same
meaningful header. If the former thread does natatp the
cache entry yet, the subsequent threads with thme sa
meaningful header will still have to repeat compotess due
to the cache miss. This overhead is proportionghéonumber
of MEs we allocate to the task. In other words, iere MEs
we allocate to the packet processing task the imeféciency
we suffer. This paper is mainly focusing on solkie above
problem. We propose a cache scheme called B-caBhe (
stands for blocking). B-cache blocks the threadElvprocess
the non-first-of-the-flow packets (i.e., subsequeatckets)
from repeat the same packet processing task a$otheer
thread. Hence, the duplicate computation can bé&asgoand
the higher packet processing rate can be achieved.

The rest of paper is organized as follows. Sectibn
presents the related works. The proposed B-cache
introduced in Section Ill. The implementation issusf B-

is

In the multi-thread network processor, such as lIntecache and its several variants are described itioBely/. An

IXP2400 [4], a single Micro Engine” (ME) is the basic
execution unit to a packet processing task (eRy.adidress
lookup, packet classification, intrusion detectiogtc.). A

single ME of IXP2400 has eight threads which can be I.

executed concurrently. Thus, in order to increabe t
performance, a single ME can do the packet proocgdsisk
for at most eight different packets concurrently. packet
processing tasks, we may only focus on the sulfseeader
fields (i.e. meaningful header). On the other hdhe,network
traffic usually appears with the burst pattern.(ia& burst of
packets with the same meaningful header are agiginthe
same time), lots of packets need to be treatedeasame way.
For example, in IP address lookup, if the destimatiddresses
of the incoming packets are the same, these pasketdd be
forwarded to the same next hop. With the bursfitait will

extensive performance results are shown in Sestidrinally,
we conclude the paper in Section VI.

RELATED WORK

A. Cache Design for Packet Processing on Network
Processor

Several studies focused on cache schemes for there
processor architecture. In [6] and [8], cache meidmas are
evaluated on Intel IXP1200 network processor. §6foicused
on the latency hiding techniques that the effeanafti-thread
and cache are considered separately. On the o#ret, Ii8]
focus on the effect of cache to the different pagkecessing
tasks. More parameters of cache are considerdeisttidy.

Authors of [1] proposed the digest cache to inaete
performance of packet classification. Differentttaditional
cache which stores the complete tag, the schemessbaly a
hash of the tag. Thus, with the scheme, larger aizeache
can be supported. Although the scheme can be used
independent cache, it can acts as the initialrfiti€ exact
match cache. The two levels cache architecturesolre the
mismatched problem results from not to store theplete tag.

A hybrid cache scheme for network processor wapqeed
in [7]. Packets with the same source address, ragisn
address, source port, destination port and protacel said
they belong to the same flow. With a traditionattea which
cached the result of packet processing, the autlatss
proposed a cache which cached the additional irdtom
shared by the packets belong to the same flow. aithikors
proposed the cache which cached such informatigether in
one cache entry to utilize the spatial locality.

cache, we at least have two main fielidgy andresult. If the

corresponding fields of subsequently packets maltcte

cached tag of the former packet, then the previoaisket
processing result, can be returned directly withfurther

eompute again. It is possible that the field tagamposed of
several sub-fields. Obviously, the contents of tive fields

should be different for different packet processiagks. For
ip lookup problem, the tag is the destination adslref the
packet while the result is the next-hop that thekpa should
forward to. For 5-dimensional packet classificatigmoblem,

the field tags are source address, destinationeaddisource
port, destination port, and the protocol while fiedd result is
the action which the packet should be treated.

In this paper, we don't focus the cache algorithrahsas
cache replacement policies or the degree of setc@asive.
Thus the proposed B-Cache is an extension of thes mache.
For the convenient, we will use the direct-mappedthe

This paper focus on avoid the problem which severatlesign through this paper. It is still easy to agt¢he design

threads duplicate computing to the packets belorthed same
flow before the cache entry is updated by one efthThe
problem will occur
environment. We try to delay the processing of spabkets
using the proposed scheme. As the redundant meaumgss
and computing can be reduced, higher throughput lan
achieved.

B. Implemented Packet Processing Scheme

in this paper to implement different cache algonish
The main idea of this paper is that we hope to ggsdhe

in multi-thread network processo packet of the busty traffic only once. In other d&rwe only

process the former packet and we block (i.e. dekng
subsequent packets of the busty traffic to be @ until
the thread which processes the former packet hdateg the
cache. To achieve this, the B-Cache has the addltifield
if_blocking. The main function of this field is to indicateeth
former packet has been processing currently. Tige ated

The proposed cache scheme is suitable for any packgssult of the cache entry will be updated by therfer thread

processing tasks with high locality characteridticthis paper,
we choose the HBSPC (hierarchical binary prefixa®a[3]

after the processing is finished.
To indentify which packet is being processing, themer

packet classification scheme for the evaluated @ack thread sets the field if_blocking with the tag loé tpacket and

processing task. Other well-known packet -clasdifica
schemes can be found in [11]. Basically, [3] iseexied from
the ip lookup scheme BPS (binary prefix search) HBSPC
use hierarchical structure to handle typical 5-disienal rule
tables. The two prefix fields of the rule tables aprted and
stored in the arrays which become the first andrsédevel of
the hierarchical structure. The last three fieldssiored in the
linked list pointed by the second level of the &rehical
structure.

The searching operation of HBSPC is as follows: Titst
step is to binary search the whole first level @rarchical
structure to find the LMP (longest matching prefikhe LMP
has stored the information of search space of hextl
structure. With that, we can again binary searcthénsecond
level to find the LMP in the second level. Againittwthe
LMP, we can obtain the searching space in the tlaxel
structure. Finally, we can linear search the linkstito find
the highest priority rule for the result.

To simplify the implementation, the HBSPC mentioned

here is the basic version. The author of HBSPC dlas
proposed the improved version which requires lessnary.
The further detail can be found in [3].

Network traffic has the busty access pattern. leasy to
implement a naive cache scheme to handle suchctraff
improve the overall performance. For an entry ohaive

PrROPOSEDCACHE SCHEMES

clears the field after the processing is finish€de field can
be viewed as the second tag of the cache entryhwdniables
other threads to identify what packet is being pssing. The
content to be stored in the field is related to frecket
processing task. A thread can detect which kindpaafket
(former or subsequent ones) it is processing ctiyrevhen it
checks the field for the first time. For a threaklich process
the subsequent packet, it can detect the procedsinthe
former packet is finished by check the same fiedtioually.
Because our goal is that we only process the fopaeket, so
the thread should block the subsequent packets pydressed

01 Packet_Processing_Procedure() {
02 iftag is matched /| Case 1
03 returresult;
04 else iff_blocking is set { // Case 2
05 blocking the packet uittilblocking is clear
06 continue
07
08 else { /I Case 3
09 sét_blocking
10 process the packet
11 updatag andresult
12 cleaf_blocking
13 }
14}
Fiaure 1.Searchina Procedure o-Cacte

until the cache entry is updated. Figure 1 shoves ghcket

the number of MEs we use, until the limitation bé& tscheme

processing procedure of the proposed B-Cache whichr maximum speed of IXP2400 is achieved.

described as follows:

Case 1 When a thread obtains a packet, it should chécks

the corresponding fields of the packet have matahedtag
within the cache entry first. If the result is “#u(i.e. cache
hit), the cached result will return and the protesgto that
packet is finished (Line 02~03).

Case 2 If the cache is not hit, the thread should chétke
field if_blocking has been set. If the result isud”, it means
the packet belongs to the subsequent packetsh8ahtead
should not process the packet immediately. Uniticklthe
packets to be processed for some period, the thrandre-
check the field to determine if there is necessarlock the
packet again. If the result is not, the threadré® fto process
the packet using the cached result (Line 05~06).

Case 3 If the cache is not hit and the field if _blockimg
not set, the packet should belong to the formerketadt
means that we have to process the packet actisfpre the
real apply process operation to the packet, theathneeds to
set field if_blocking using the tag of the packetgrevent
subsequent packets go into the same step. Aftgrrdwessing
is finished, the thread needs to update the tagest of the
cache entry to let subsequent packets can use ehdt r
directly. More important, the thread needs to clier field
if_blocking to unblock the blocked packets (Line-QQ).

We allocate SRAM for holding the data structure of
evaluated packet processing scheme due to the mgemor
requirement of the HBSPC. Besides, we use thechpatl as
scratch ring to implement inter-ME communicationiletihe
DRAM is used as packets buffer.

It is an issue of using which memory interface tddhthe
B-Cache. In our first tests, we place the B-Cachthé Local
Memory with the reason it is the fastest memory>d¥2400.
However, the size limitation makes it impossiblenplement
cache which size is larger than 128 entries. Tivasgecide to
store the B-Cache in the SRAM. IXP2400 has two ok&nof
SRAM interfaces. To balance the memory utilizatiamr, store
data structure of packet processing and B-Cachehen
different channels of SRAM. There is another reasoms to
store the cache in SRAM. The private property ofcdlo
Memory is not easy to implement the shared datactsire
among MEs. We believe that the shared cache ootpesf
than the distributed one.

C. Cache Entry Design of B-Cache

The B-Cache is an extension of the naive cache thigh
additional field if_blocking which controls the medure of
packet processing. Because we won't focus on tleheca
algorithm of the B-Cache, this section will focus the design
of if_blocking.

We describe some of issues when we implement the At first, we use one bit per field to present thegessing

proposed B-Cache and present the design we ad&@#dtion
V.

IV. IMPLEMENTATION ISSUE

A. Intel IXP2400 Hardware Brief

state of the B-Cache entry. That is, if the bitset, other
packets should be delayed to be processed untiitlhe clear.
The design is easy to implement; however, it issfis that
several packets which belong to the different btredtic may
be hashed to the same cache entry (i.e. B-Cache ent
collision). We can'’t detect the case with this eadesign. In

The Intel IXP2400 network processor has an ARMother words, when the field becomes unset, it ssibe that

compatible XScale core and eight Micro Engines (MiB)ch
can work in parallel or pipeline for processing kgts in high

the unblocked packet still miss-matched the cachmctw
result in more tag comparisons.

speed. Each ME has eight threads which can execute The second design of the field is to store the daghe

concurrently to utilize the resource [4].
There are four kinds of memory units different ires and
speeds that can be accessed by IXP2400 MEs. Theyoanl

packets which is being processed. This is the ded#ggcribed
in the previous section. As the design, each cacttiey will
has two sets of the tag. The first tag is used withcached

Memory, Scratchpad, SRAM and DRAM. Each ME hasresult while the second tag is used to identifychhpacket is

640*4 Bytes Local Memory which is private to othdiEs.
Local Memory is the fastest memory unit. Each IX@24hip
has 16 KB scratchpad which is the largest on-chg@mory

being processing currently. To achieve this, theosd tag
must be as large as the first one (i.e. all of temded
information are stored in the tag). It needs 104-tu store the

interface shared among MEs. DRAM is the largest andull tag for the 5-dimensional packet classificatiorhus for

slowest memory interface of IXP2400. Although IXP24

the packet processing scheme used in this papei| iteed at

only supports one channel of DRAM, however, IXP2400least 208-bits per cache entry. That is too lameadopt in

supports two channels of SRAM interfaces. The spemdl
size of SRAM are in the middle of Scratchpad andADR

B. Resource Allocation

As 1XP2400 has eight MEs, we allocate one for ngngi
packet, and another for transmitting packet. Tegshave
done show that such setting is sufficient to acdhidkie
maximum speed of IXP2400. For the reason, we ae o
use the remained six MEs for implementing the eataid
cache schemes. Briefly, the forwarding rate witlrease with

practice. As the tradeoff, we reference the desigfl] that
the third design of the tag is obtained by hastofithe 104-
bits into 32-bits content using the CRC functiomeTdesign
will require less memory than the second one. Bxssidhe
field can be checked in the least unit of SRAM ascd he
miss-classification problem described in [1] witlitrhappen to
us because the original tag will act the exact matiche. As
the result, we adopt the third design in all of thsts which
each B-Cache entry is 20-bytes.

Figure 2. Architecture of StatiForwarc Projec

D. Packet Blocking Procedure Design of B-Cache

Another issue of B-Cache is how we done of blockimg
packet from further processing. In this section, wdl
propose several architectures to handle this pnoble

If_blocking is clear
Case 1.Tag Matched => ReturResult Directly
Case 3.Tag Mismatched (Cache Miss) => Real Processing
1

T ’

Case .. If_blocking is set,
block thepacke

Figure 4. Block Packet using AdditioniScratch Rin

Rx and P ME, lots of packets will be passed wité thng.

The proposed cache scheme is developed based &Nthe \yith the higher latency of the ring it is difficuthat the

SDK [10] Static Forward project which is the exampif an
IXP2400 development board ENP-2611 [9].
architecture of the static forward project (Figu?g the
incoming packets will first receive by a ME (we @@sRx in
this section) and after some simple operating hycgssing

subsequent packets which come with the former pacie

In thepeen dequeue again before the processing to theefgracket

is finished.
When there is a collision of a specific B-Cacheagnwhich
several packets are desired to update the samecBeGantry,

ME (note asP), the packets will be transmitted out of ENP-jt wjll become a problem. Most of the packets va# cache

2611 by third ME (note a8x). With the property of IXP2400,

scratchpad can be programmed as FIFO scratch vihgsh
can be used for inter-ME communication. In theistarward
project, MEs exchange the information of packeteugh the

miss due to the race condition. Even some of pachei

become the former packets and have a chance tmbessed;
however, most of packets will be blocking and enguato
scratch ring again and again. In our test, we card@ke this

scratch rings. We note the operation that write® thdesign workable.

information of packet into the scratch ring as “eege the
packet”. In the other hand, the operation whichdsethe
information of the packet from the scratch ringnsted as
“dequeue the packet”. As shown in Figure 2, thera scratch
ring between Rx and P ME. Besides, there are foratch
rings between P ME and Tx ME — one ring servegpgsical
port of ENP-2611. To reduce the space requiremérthe
figure, the four rings will be shown as one ringtlie rest of
the paper. With the same reason, although it isiplesto use
all of the remained six MEs for the packet progggst the
same time, these figures will only show the cas¢ tising one
ME.
1) Block Packet Using Original Scratch Ring

The first design is based on the architecture aticst
forward project. As in Figure 3, when there is algd which
needs to be blocking, we enqueue the packet icsthatch
ring which shared by Rx and P ME. This is the ddifference
between Figure 2 and 3. After the operation, theatth of P
ME can freely dequeues another packet from the smmadch
ring to handle with it. Because the scratch ringhared by the

Case2.If_blocking is se, blocking thepacke

A
If_blocking is cléar
Case 1Tag Matched => ReturRResult Directly
Case 3.Tag Mismatched (Cache Miss) => Real
Processing

Figure 3. Block Packet using OriginiScratch Rin

2) Block Packet Using Additional Scratch Ring

Different to the first design which use the oridisaratch
ring to “buffer” the blocked packets, the secondige (Figure
4) allocates another scratch ring (noteBe&cratch ring) to
temporary store the blocked packets. In the sedesdyn, the
P ME has two scratch ring inputs need to be hanbigdcot
only one in the first design. There is an issué¢ théen” we
should process “which” scratch rings as defauloun design,
we will process the packet from the B-Scratch ringen
previous result of packet processing belongs te éaand case
3 of the figure which usually indicates the progggsf the
former packet is done. If the result of previousgassing
belongs to case 2, we will enqueue the currentgiadoko the
B-Scratch ring and dequeue the new one from ttge sirared
by the Rx and P ME. After that, we will dequque tracket
from the B-Scratch Ring until we process a packéiciv
needs not to be blocking. In our tests, the seaberign is
workable but performs worse than the naive cache.

3) Block Packet Without Using Scratch Ring

Case 1Tag MatchedI => ReturiResult

Case 2Tag Miss +If_blocking is Set =>
Block the packet

Case 3Tag Miss +If_blocking is not set
=> Real Processil the packe

Figure 5. Block Packet without usinScratch Rin

After implement and test the above two designsphserve

that the performance does not perform well. Withmeo TABLE I. RULE TABLE FOR5-D PACKET CLASSIFICATION
studies about the possible reasons, we believe tiat Rule Table 5D_5000
performance is decreased due to the additional earequ Number of Rules 4704
dequeue operations and queuing delay. Further nvanen Number of different Destination Addr¢ 212
the blocked packet is dequeued again, in our imehgation, Number of different Source Address 65
the thread which handle the packet need to achesBRAM Number of different Destination Port 49

. . - Number of different Source Port 28
again to_obtaln the packet headers for the _pack&lepsmg Number of different Protocol 5
task we implemented. The task we choose is a ®uional
packet classification scheme, that is, we needctess 104-
bits to determine which operation we should takes bn't TABLE Il PARAMETERS USED BYCLASSBENCH TO
pass the header by using the scratch ring bechiss®o large, db_generatdr <# of [<smoothnesdzaddred<applicatioh
although the solution is workable for packet preogg task -be filetrs> scope scope>
such as ip lookup. To solve the problem, we propbeehird 5D_5000 | 5000 58 -0.5 0.5

design of blocking procedure.

As the Figure 5, the third scheme is almost lodks the
original architecture of static forward project there is no)) o _)
need of scratch ring to buffer the blocked packéthen a indicate the locality. That is, 5000H indicates thilpcality
packet is needed to be blocked, we let the threhithw trace while 5000L indicates low locality trace. \Wieow the
handles the packet to swap out for a while uglng_s‘,vap number of paCketS in each trace in Table IIl. Tb&lﬁgs for

instruction. After the thread has a chance to eteeagain, we TABLE Il STATISTICS OF SIMULATION TRAEFICS

let the thread to check the field if_blocking agtirdetermine Name of traces 5000050001
if it is necessary to block the packet (i.e. swaplf) again. On Locality High | Low
the other hand, the procedure of the packet whigds not to # of Packets 48,09948,113
be blocked is just the same as the previous deskfter the
eValuann, we adOpt thIS deSIgn al"ld ShOW the ﬂ'eBu'he TABLE IV. PARAMETERS USED BYCLASSBENCH TO
Section V. GENERATE THE SIMULATION TRAFFICS
<Pareto parameter [a><Pareto parameter b><gcale>
V. PERFORMANCE EVALUATION 5000H 1 1 10
50001 1 0.1 10

A. Smulation setup
We simulate all of the codes with IXA SDK 3.5 Deweér

Workbench. The code is developed based on the EDIR S TABEEO\LJQE%JAGCTEUSTC%?MBEE'(D&‘F",’;,TE'; THE
3.5_ R4 _Stat|c_ Forward project. The fmglryal projecis tota_II%/ SchemelCache SZEMERMERMENMEEVE BME
written in microcode which uses “receive-processismit High Locality Traffic (5000H)
programming model. We rewrote the microcode of pssing No-Caché 0 1.352.673.834.50024.7014.73
ME using MicroC [5]. Then, the packet processingesne 128 |3.195.18]6.45|6.45|6.46]6.46
HBSPC and the proposed cache scheme (MicroC) vaeheda Nallve 256 |3.24]5.30/6.45/6.45/6.46|6.46
for evaluating. We didn't change neither the reirgjvnor Cache 312 [3.25/5.32/6.45/6.45/6.46)6.46
transmit related codes. We modified both the XSeai¢ ME 1024 |3.2815.4116.45/6.4616.46/6.46
frequency from 400 MHz to 600 MHz in all tests whis the 2048 |3.345.52/6.456.46/6.4616.46

128]3.56]5.95]6.45|6.46|6.46|6.46]
256 |3.56)6.00]6.45|6.46|6.46|6.46

same as our ENP-2611.

The data structures used by the HBSPC are pre-desipu B-Cachd 512 13.60(6.0816.45/6.26|6 466 261
using PC. We load the structures into Workbenclsdnpts. 1024 13.626.1716.45/6.4616.46|6.46l
On the other hand, the structure for the propos&th&he is 2048 |3.66|6.22]6.45(6.46]6.46]6.46}
dynamically maintained by the processing ME. Thecdure Low Locality Traffic (5000L)
of HBSPC is stored in channel 1 of SRAM while tegosed No-Cach¢ O 1.33]2.65/3.83(4.62/4.91]4.97
B-Cache is stored in the channel 0 of SRAM. Finalig use 128 11.8313.464.87)5.86/6.186.24

256 1.8413.49]4.9415.926.24]6.30]

the traces corresponding to the rule table to gaeethe i
acket streams usgd in tr?e simulation gglc\fe °12_ 11.8013.595.045.996.336.39
P : 1024]1.90[3.62]5.15/6.11]6.43]6.45)
B. 5-D Packet Classification Evaluation Settings 2048 11.96]3.75/5.32/6.26/6.46/6.46
128 [1.863.59[5.20]6.21]6.46]6.46
We use ClassBench [12] to produce rule t&ifile 5000 for 256 |1.883.64/5.2616.296.46/6 .46
the tests using the setting: “firewall”. There d/&4 rules in B-Cachd 512 |1.9013.68/5.31]6.38]6.46/6.46
this table. Other information can be found in Tableand 1024 |1.933.74]5.42]6.45]6.46/6.46]
parameters to produce the table can be found ikeThb 2048 | 1993.87]5.61{6.46{6.46{6.46}

To test the rule table, we use ClassBench agapradduce
two corresponding trace filé&s000H and5000L, where suffix

TABLE VI THE PERCENTAGE OFMEMORY ACCESSREDUCTION
TO THEHBSPCSTRUCTURE(%)
Cache Sizé 128 | 256 | 512 [1024] 2048
High Locality Traffic (5000H
Naive | 75.2075.5975.8476.2076.8§
Proposed|84.3784.3384.4484.6485.01
Low Locality Traffic (5000L)
Naive |43.0143.7244.8346.2648.7§
Proposed|46.9447.5948.5949.9252.18

producing these traces are shown in Table IV. Atkets in
above traces are 64 bytes. With the smallest dizeth@ernet
packets, we can observe the worst case performafice
evaluated cache scheme.

C. Proposed B-Cache Evaluation

1) Throughput of HBSPC enhance by the B-Cache

The line speed of IXP2400 is OC-48, i.e. 2.5 Ghffih
the traffic which size of each packet is 64 byte&€?2400

should process 6.46 Million packets per seconcttieae the
maximum rate. We expect the evaluated cache scluvame

Table V that the proposed B-Cache outperforms thiven
cache even with the low locality traces. The prego8-
Cache can reduce about 9% of memory access of tpacke
processing with the evaluated high locality traeet the low
locality trace, the reduction is increased with daehe size.
With the presented experiments, we believe thaptbposed
B-Cache can further enhance the throughput of packe
processing in the multi-thread network processeirenment.

VI. CONCLUSION

In this paper, we first implement a naive cachessuh to
improve the performance of HBSPC packet classificat
scheme. Basically, the cache scheme can solveethendant
processing problem to the busty traffic briefly. wver, due
to the Intel IXP2400 is a multi-thread processat theveral
threads are executes concurrently. It is possibé dbther
threads will duplicate the processing of the pacteé¢ to
cache miss before the cache is updated complétetiie case,
the redundant processing to the packet will wastadputing
power and involves additional memory access to dh&a
structure. The B-Cache proposes in this paper sth®

achieve such throughput. Table V shows the throughp yropiem by blocking such packets from being proegasmtil

(number of million packet processes per second)thef

the cache is updated. With the proposed scheméhefur

proposed scheme using two kinds of traffic. Theletab throughput can be achieved on the IXP2400.

compares the case with no-cache, naive cache, lamd
proposed B-Cache. For the naive cache and the BeCae
evaluate the cases which the cache size ranges f&@no
2048. Different column of the table show the thimpgt using
from one to six MEs for packet processing. We nthekcase

which achieves the maximum rate of IXP2400 whosgg)

background color as gray.

As the table, HBSPC can't achieve line rate withosing
the cache whether how many MEs are used. It caebe that
naive cache improves the throughput of HBSPC fah hi
locality traffic dramatically thus we can achiete tine speed
when using more than three MEs. However, it is Hardhe
naive Cache to achieve the same speed when usnipuh
locality traffic. On the other hand, the goal cam dchieved
when we adopt the proposed B-Cache. The most isupois

that the throughput of HBSPC enhances with B-Cache

becomes higher than the naive cache when usingldiglity
traffic. It is important that the B-Cache is just additional
cache scheme which solves the duplicate procegsigem
which other threads repeat handles the packetddiercache
entry has been updated.

2) Reduction of memory access of HBSPC

It is obviously that the scheme requires less acteshe
memory performs better. Table VI compares the réoliof
memory access to the HBSPC structure of B-Cachthd¢o
naive cache. The table shows the reduction pemgentsith
cache size from 128 to 2048 which only one ME isdufor
packet processing. The table presents the sameé &erthe

1)

Francis Chang, Wu-chang Feng, Wu-chi Feng, and KantEfficient
Packet Classification of Digest CacheBfoc. of the Third Workshop on
Network Processors & Applications (NP3), February 2004.

Yeim-Kuan Chang, “Fast Binary and Multiway PrefixeaBches for
Packet Forwarding"Computer Networks, VVolume 51, Issue 3, pp. 588-
605, February 2007.

Yeim-Kuan Chang, “Efficient Multidimensional Pack€fassification
with Fast Updates”, Accepted IREE Transactions on Computers.

Intel Corporation, “Intel® [XP2400 Network Processélardware
Reference Manual”, November 2003.

Intel Corporation, “Intel® [IXP2400/IXP2800 NetworlProcessors
Microengine C Language Support Reference ManuaiVeshber 2003.
Zhen Liu, Hao Che, Kai Zheng, Shanzhen Chen, Chengtlu and Bin
Liu, “A Trace Driven Comparison of Latency Hidingedhniques for
Network Processors’Proc. of the IEEE ICC 2006, pp. 122-127, June
2006.

Z. Liu, K. Zheng and B. Liu, “Hybrid cache architece for high-speed
packet processing'Computers & Digital Techniques, IET, Volumel,
Issue 2, March 2007.

Zhen Liu, Jia Yu, Xiaojun Wang, Bin Liu, and LaxnBhuyan,
“Revisiting the Cache Effect on Multicore Multittaged Network
Processors"Proc. of the IEEE DSD 2008, pp. 317-324, Sepetmber 2008.
RadiSys Corporation, “ENP-2611 Hardware Referendagust 2003.

RadiSys Corporation, “ENP Software Development Ribgrammer's
Guide”, April 2004.

David E. Taylor, “Survey and Taxonomy of Packet gSification
Techniques”, ACM Computing Surveys, Volume 37, Issue 3, pp. 238-
275, September 2005.

David E. Taylor and Jonathan S. Turner, “ClassBenghPacket
Classification Benchmark”JEEE/ACM Transactions on Networking,
Volume 15, Issue 3, pp. 499-511, June 2007.

(2

(4]

(5]

6l

(7]

(8]

9]

[10]

[11]

[12]

