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Abstract—It is well-known that there are bursty accesses in 
network traffic. It means a burst of packets with the same 
meaningful headers are usually received by routers at the same 
time. With such traffic, routers usually perform the same 
computations and access the same memory location repeatedly. 
To utilize this characteristic of network traffic, many cache 
schemes are proposed to deal with the bursty access patterns. 
However, in the multi-thread network processor based routers, 
the existing cache schemes will not suit to the bursty traffic. Since 
all threads may all deal with the packets with the same headers, if 
the former threads do not update the cache entries yet, the 
subsequent threads still have to repeat the computations due to 
the cache miss. 

In this paper, we propose a cache scheme called B-cache for 
the multi-thread network processors. B-cache blocks the 
subsequent threads from doing the same computations which are 
being processed by former thread. By applying B-cache, any 
packet processing tasks with high locality characteristic, such as 
IP address lookup, packet classification, and intrusion detection, 
can avoid the duplicate computations and hence achieve a better 
packet processing rate. We implement the proposed B-cache 
scheme on Intel IXP2400 network processor, the experimental 
results shows that our B-cache scheme can achieves the line speed 
of Intel IXP2400. 

Keywords-multi-thread; network processor; cache; and Intel 
IXP2400 

I.  INTRODUCTION 

In the multi-thread network processor, such as Intel 
IXP2400 [4], a single “Micro Engine” (ME) is the basic 
execution unit to a packet processing task (e.g., IP address 
lookup, packet classification, intrusion detection, etc.). A 
single ME of IXP2400 has eight threads which can be 
executed concurrently. Thus, in order to increase the 
performance, a single ME can do the packet processing task 
for at most eight different packets concurrently. In packet 
processing tasks, we may only focus on the subset of header 
fields (i.e. meaningful header). On the other hand, the network 
traffic usually appears with the burst pattern (i.e., a burst of 
packets with the same meaningful header are arriving at the 
same time), lots of packets need to be treated as the same way. 
For example, in IP address lookup, if the destination addresses 
of the incoming packets are the same, these packets should be 
forwarded to the same next hop. With the burst traffic, it will 

cause the increases of the duplicate computations and the 
number of unnecessary memory accesses. To avoid this 
wasted overhead, we may implement a naive cache for the 
packet processing task. The naive cache caches the results of 
the packet processing task for the former packets. For the 
subsequent packets with the same meaningful header, the 
cache hits can avoid the duplicate computations and hence 
increase the efficiency. 

However, the naive cache described above may still not suit 
to the burst traffics. Since the traffics arrive in burst, all 
threads of a ME may all deal with the packets with the same 
meaningful header. If the former thread does not update the 
cache entry yet, the subsequent threads with the same 
meaningful header will still have to repeat computations due 
to the cache miss. This overhead is proportional to the number 
of MEs we allocate to the task. In other words, the more MEs 
we allocate to the packet processing task the more inefficiency 
we suffer. This paper is mainly focusing on solve the above 
problem. We propose a cache scheme called B-cache (B 
stands for blocking). B-cache blocks the threads which process 
the non-first-of-the-flow packets (i.e., subsequent packets) 
from repeat the same packet processing task as the former 
thread. Hence, the duplicate computation can be avoided and 
the higher packet processing rate can be achieved. 

The rest of paper is organized as follows. Section II 
presents the related works. The proposed B-cache is 
introduced in Section III. The implementation issues of B-
cache and its several variants are described in Section IV. An 
extensive performance results are shown in Section V. Finally, 
we conclude the paper in Section VI. 

II. RELATED WORK 

A. Cache Design for Packet Processing on Network 
Processor 

Several studies focused on cache schemes for the network 
processor architecture. In [6] and [8], cache mechanisms are 
evaluated on Intel IXP1200 network processor. [6] is focused 
on the latency hiding techniques that the effect of multi-thread 
and cache are considered separately. On the other hand, [8] 
focus on the effect of cache to the different packet processing 
tasks. More parameters of cache are considered in the study. 



Authors of [1] proposed the digest cache to increase the 
performance of packet classification. Different to traditional 
cache which stores the complete tag, the scheme stores only a 
hash of the tag. Thus, with the scheme, larger size of cache 
can be supported. Although the scheme can be used as 
independent cache, it can acts as the initial filter of exact 
match cache. The two levels cache architecture can solve the 
mismatched problem results from not to store the complete tag. 

A hybrid cache scheme for network processor was proposed 
in [7]. Packets with the same source address, destination 
address, source port, destination port and protocol are said 
they belong to the same flow. With a traditional cache which 
cached the result of packet processing, the authors also 
proposed a cache which cached the additional information 
shared by the packets belong to the same flow. The authors 
proposed the cache which cached such information together in 
one cache entry to utilize the spatial locality. 

This paper focus on avoid the problem which several 
threads duplicate computing to the packets belong to the same 
flow before the cache entry is updated by one of them. The 
problem will occur in multi-thread network processor 
environment. We try to delay the processing of such packets 
using the proposed scheme. As the redundant memory access 
and computing can be reduced, higher throughput can be 
achieved.  

B. Implemented Packet Processing Scheme 

The proposed cache scheme is suitable for any packet 
processing tasks with high locality characteristic. In this paper, 
we choose the HBSPC (hierarchical binary prefix search) [3] 
packet classification scheme for the evaluated packet 
processing task. Other well-known packet classification 
schemes can be found in [11]. Basically, [3] is extended from 
the ip lookup scheme BPS (binary prefix search) [2]. HBSPC 
use hierarchical structure to handle typical 5-dimensional rule 
tables. The two prefix fields of the rule tables are sorted and 
stored in the arrays which become the first and second level of 
the hierarchical structure. The last three fields are stored in the 
linked list pointed by the second level of the hierarchical 
structure. 

The searching operation of HBSPC is as follows: The first 
step is to binary search the whole first level of hierarchical 
structure to find the LMP (longest matching prefix). The LMP 
has stored the information of search space of next level 
structure. With that, we can again binary search in the second 
level to find the LMP in the second level. Again, with the 
LMP, we can obtain the searching space in the third level 
structure. Finally, we can linear search the linked list to find 
the highest priority rule for the result. 

To simplify the implementation, the HBSPC mentioned 
here is the basic version. The author of HBSPC has also 
proposed the improved version which requires less memory. 
The further detail can be found in [3]. 

III.  PROPOSED CACHE SCHEMES 

Network traffic has the busty access pattern. It is easy to 
implement a naïve cache scheme to handle such traffic to 
improve the overall performance. For an entry of a naïve 

cache, we at least have two main fields: tag and result. If the 
corresponding fields of subsequently packets matched the 
cached tag of the former packet, then the previous packet 
processing result, can be returned directly without further 
compute again. It is possible that the field tag is composed of 
several sub-fields. Obviously, the contents of the two fields 
should be different for different packet processing tasks. For 
ip lookup problem, the tag is the destination address of the 
packet while the result is the next-hop that the packet should 
forward to. For 5-dimensional packet classification problem, 
the field tags are source address, destination address, source 
port, destination port, and the protocol while the field result is 
the action which the packet should be treated. 

In this paper, we don’t focus the cache algorithm such as 
cache replacement policies or the degree of set associative. 
Thus the proposed B-Cache is an extension of the naïve cache. 
For the convenient, we will use the direct-mapped cache 
design through this paper. It is still easy to extend the design 
in this paper to implement different cache algorithms. 

The main idea of this paper is that we hope to process the 
packet of the busty traffic only once. In other words, we only 
process the former packet and we block (i.e. delay) the 
subsequent packets of the busty traffic to be processed until 
the thread which processes the former packet has updated the 
cache. To achieve this, the B-Cache has the additional field 
if_blocking. The main function of this field is to indicate the 
former packet has been processing currently. The tag and 
result of the cache entry will be updated by the former thread 
after the processing is finished.  

To indentify which packet is being processing, the former 
thread sets the field if_blocking with the tag of the packet and 
clears the field after the processing is finished. The field can 
be viewed as the second tag of the cache entry which enables 
other threads to identify what packet is being processing. The 
content to be stored in the field is related to the packet 
processing task. A thread can detect which kinds of packet 
(former or subsequent ones) it is processing currently when it 
checks the field for the first time. For a thread which process 
the subsequent packet, it can detect the processing to the 
former packet is finished by check the same field continually. 
Because our goal is that we only process the former packet, so 
the thread should block the subsequent packets to be processed 

01 Packet_Processing_Procedure() { 
02        if tag is matched                  // Case 1 
03                return result; 
04        else if if_blocking is set {   // Case 2 
05                  blocking the packet until if_blocking is clear 
06                  continue 
07         }  
08         else {                                   // Case 3 
09                  set if_blocking 
10                  process the packet 
11                  update tag and result 
12                  clear if_blocking 
13         } 
14 } 

 
Figure 1. Searching Procedure of B-Cache 



until the cache entry is updated. Figure 1 shows the packet 
processing procedure of the proposed B-Cache which 
described as follows:  

 
Case 1: When a thread obtains a packet, it should checks if 

the corresponding fields of the packet have matched the tag 
within the cache entry first. If the result is “true” (i.e. cache 
hit), the cached result will return and the processing to that 
packet is finished (Line 02~03). 

Case 2: If the cache is not hit, the thread should check if the 
field if_blocking has been set. If the result is “true”, it means 
the packet belongs to the subsequent packets. So, the thread 
should not process the packet immediately. Until block the 
packets to be processed for some period, the thread can re-
check the field to determine if there is necessary to block the 
packet again. If the result is not, the thread is free to process 
the packet using the cached result (Line 05~06). 

Case 3: If the cache is not hit and the field if_blocking is 
not set, the packet should belong to the former packet. It 
means that we have to process the packet actually. Before the 
real apply process operation to the packet, the thread needs to 
set field if_blocking using the tag of the packet to prevent 
subsequent packets go into the same step. After the processing 
is finished, the thread needs to update the tag and result of the 
cache entry to let subsequent packets can use the result 
directly. More important, the thread needs to clear the field 
if_blocking to unblock the blocked packets (Line 09~12). 

We describe some of issues when we implement the 
proposed B-Cache and present the design we adopt in Section 
IV. 

IV.  IMPLEMENTATION ISSUE 

A. Intel IXP2400 Hardware Brief 

The Intel IXP2400 network processor has an ARM 
compatible XScale core and eight Micro Engines (ME) which 
can work in parallel or pipeline for processing packets in high 
speed. Each ME has eight threads which can execute 
concurrently to utilize the resource [4].  

There are four kinds of memory units different in sizes and 
speeds that can be accessed by IXP2400 MEs. They are Local 
Memory, Scratchpad, SRAM and DRAM. Each ME has 
640*4 Bytes Local Memory which is private to other MEs. 
Local Memory is the fastest memory unit. Each IXP2400 chip 
has 16 KB scratchpad which is the largest on-chip memory 
interface shared among MEs. DRAM is the largest and 
slowest memory interface of IXP2400. Although IXP2400 
only supports one channel of DRAM, however, IXP2400 
supports two channels of SRAM interfaces. The speed and 
size of SRAM are in the middle of Scratchpad and DRAM.  

B. Resource Allocation 

As IXP2400 has eight MEs, we allocate one for receiving 
packet, and another for transmitting packet. Tests we have 
done show that such setting is sufficient to achieve the 
maximum speed of IXP2400. For the reason, we are free to 
use the remained six MEs for implementing the evaluated 
cache schemes. Briefly, the forwarding rate will increase with 

the number of MEs we use, until the limitation of the scheme 
or maximum speed of IXP2400 is achieved.  

We allocate SRAM for holding the data structure of 
evaluated packet processing scheme due to the memory 
requirement of the HBSPC. Besides, we use the scratchpad as 
scratch ring to implement inter-ME communication while the 
DRAM is used as packets buffer.  

It is an issue of using which memory interface to hold the 
B-Cache. In our first tests, we place the B-Cache in the Local 
Memory with the reason it is the fastest memory of IXP2400. 
However, the size limitation makes it impossible to implement 
cache which size is larger than 128 entries. Thus, we decide to 
store the B-Cache in the SRAM. IXP2400 has two channels of 
SRAM interfaces. To balance the memory utilization, we store 
data structure of packet processing and B-Cache in the 
different channels of SRAM. There is another reason for us to 
store the cache in SRAM. The private property of Local 
Memory is not easy to implement the shared data structure 
among MEs. We believe that the shared cache outperforms 
than the distributed one. 

C. Cache Entry Design of B-Cache 

The B-Cache is an extension of the naïve cache with the 
additional field if_blocking which controls the procedure of 
packet processing. Because we won’t focus on the cache 
algorithm of the B-Cache, this section will focus on the design 
of if_blocking.  

At first, we use one bit per field to present the processing 
state of the B-Cache entry. That is, if the bit is set, other 
packets should be delayed to be processed until the bit is clear. 
The design is easy to implement; however, it is possible that 
several packets which belong to the different burst traffic may 
be hashed to the same cache entry (i.e. B-Cache entry 
collision). We can’t detect the case with this cache design. In 
other words, when the field becomes unset, it is possible that 
the unblocked packet still miss-matched the cache which 
result in more tag comparisons.  

The second design of the field is to store the tag of the 
packets which is being processed. This is the design described 
in the previous section. As the design, each cache entry will 
has two sets of the tag. The first tag is used with the cached 
result while the second tag is used to identify which packet is 
being processing currently. To achieve this, the second tag 
must be as large as the first one (i.e. all of the needed 
information are stored in the tag). It needs 104-bits to store the 
full tag for the 5-dimensional packet classification. Thus for 
the packet processing scheme used in this paper, it will need at 
least 208-bits per cache entry. That is too large to adopt in 
practice. As the tradeoff, we reference the design in [1] that 
the third design of the tag is obtained by hash all of the 104-
bits into 32-bits content using the CRC function. The design 
will require less memory than the second one. Besides, the 
field can be checked in the least unit of SRAM access. The 
miss-classification problem described in [1] will not happen to 
us because the original tag will act the exact match cache. As 
the result, we adopt the third design in all of the tests which 
each B-Cache entry is 20-bytes. 



D. Packet Blocking Procedure Design of B-Cache 

 

Another issue of B-Cache is how we done of blocking the 
packet from further processing. In this section, we will 
propose several architectures to handle this problem. 

The proposed cache scheme is developed based on the ENP 
SDK [10] Static Forward project which is the example of an 
IXP2400 development board ENP-2611 [9]. In the 
architecture of the static forward project (Figure 2), the 
incoming packets will first receive by a ME (we note as Rx in 
this section) and after some simple operating by processing 
ME (note as P), the packets will be transmitted out of ENP-
2611 by third ME (note as Tx). With the property of IXP2400, 
scratchpad can be programmed as FIFO scratch rings which 
can be used for inter-ME communication. In the static forward 
project, MEs exchange the information of packets through the 
scratch rings. We note the operation that writes the 
information of packet into the scratch ring as “enqueue the 
packet”. In the other hand, the operation which reads the 
information of the packet from the scratch ring is noted as 
“dequeue the packet”. As shown in Figure 2, there is a scratch 
ring between Rx and P ME. Besides, there are four scratch 
rings between P ME and Tx ME – one ring serves per physical 
port of ENP-2611. To reduce the space requirement of the 
figure, the four rings will be shown as one ring in the rest of 
the paper. With the same reason, although it is possible to use 
all of the remained six MEs for the packet processing at the 
same time, these figures will only show the case that using one 
ME. 

1) Block Packet Using Original Scratch Ring 

The first design is based on the architecture of static 
forward project. As in Figure 3, when there is a packet which 
needs to be blocking, we enqueue the packet into the scratch 
ring which shared by Rx and P ME. This is the only difference 
between Figure 2 and 3. After the operation, the thread of P 
ME can freely dequeues another packet from the same scratch 
ring to handle with it. Because the scratch ring is shared by the 

Rx and P ME, lots of packets will be passed with the ring. 
With the higher latency of the ring it is difficult that the 
subsequent packets which come with the former packet has 
been dequeue again before the processing to the former packet 
is finished.  

When there is a collision of a specific B-Cache entry, which 
several packets are desired to update the same B-Cache entry, 
it will become a problem. Most of the packets will be cache 
miss due to the race condition. Even some of packets will 
become the former packets and have a chance to be processed; 
however, most of packets will be blocking and enqueue into 
scratch ring again and again. In our test, we can’t make this 
design workable. 

2) Block Packet Using Additional Scratch Ring 

Different to the first design which use the original scratch 
ring to “buffer” the blocked packets, the second design (Figure 
4) allocates another scratch ring (notes as B-Scratch ring) to 
temporary store the blocked packets. In the second design, the 
P ME has two scratch ring inputs need to be handled but not 
only one in the first design. There is an issue that “when” we 
should process “which” scratch rings as default. In our design, 
we will process the packet from the B-Scratch ring when 
previous result of packet processing belongs to case 1 and case 
3 of the figure which usually indicates the processing of the 
former packet is done. If the result of previous processing 
belongs to case 2, we will enqueue the current packet into the 
B-Scratch ring and dequeue the new one from the ring shared 
by the Rx and P ME. After that, we will dequque the packet 
from the B-Scratch Ring until we process a packet which 
needs not to be blocking. In our tests, the second design is 
workable but performs worse than the naïve cache. 

3) Block Packet Without Using Scratch Ring 

Figure 2. Architecture of Static Forward Project 

Rx Tx P 

Rx Tx P 

Case2. If_blocking  is set, blocking the packet 

If_blocking  is clear 
Case 1. Tag Matched => Return Result Directly 
Case 3. Tag Mismatched (Cache Miss) => Real 

Processing 

Figure 3. Block Packet using Original Scratch Ring 

Figure 4. Block Packet using Additional Scratch Ring 

Rx Tx P 

If_blocking is clear 
Case 1. Tag Matched => Return Result Directly 

Case 3. Tag Mismatched (Cache Miss) => Real Processing 

Case 2. If_blocking  is set, 
block the packet 

Figure 5. Block Packet without using Scratch Ring 

Rx Tx P 

Case 1. Tag Matched => Return Result 
Case 2. Tag Miss + If_blocking  is Set => 

Block the packet 
Case 3. Tag Miss + If_blocking  is not set 

=> Real Processing the packet 



After implement and test the above two designs, we observe 
that the performance does not perform well. With some 
studies about the possible reasons, we believe that the 
performance is decreased due to the additional enqueue, 
dequeue operations and queuing delay. Further more, when 
the blocked packet is dequeued again, in our implementation, 
the thread which handle the packet need to access the DRAM 
again to obtain the packet headers for the packet processing 
task we implemented.  The task we choose is a 5-dimensional 
packet classification scheme, that is, we need to access 104-
bits to determine which operation we should take. We can’t 
pass the header by using the scratch ring because it is too large, 
although the solution is workable for packet processing task 
such as ip lookup. To solve the problem, we propose the third 
design of blocking procedure.  

As the Figure 5, the third scheme is almost looks like the 
original architecture of static forward project that there is no 
need of scratch ring to buffer the blocked packets. When a 
packet is needed to be blocked, we let the thread which 
handles the packet to swap out for a while using ctx_swap 
instruction. After the thread has a chance to execute again, we 
let the thread to check the field if_blocking again to determine 
if it is necessary to block the packet (i.e. swap itself) again. On 
the other hand, the procedure of the packet which needs not to 
be blocked is just the same as the previous designs. After the 
evaluation, we adopt this design and show the result in the 
Section V. 

V. PERFORMANCE EVALUATION 

A. Simulation setup 

We simulate all of the codes with IXA SDK 3.5 Developer 
Workbench. The code is developed based on the ENP SDK 
3.5 R4 Static Forward project. The original project was totally 
written in microcode which uses “receive-process-transmit” 
programming model. We rewrote the microcode of processing 
ME using MicroC [5]. Then, the packet processing scheme 
HBSPC and the proposed cache scheme (MicroC) were added 
for evaluating. We didn’t change neither the receiving nor 
transmit related codes. We modified both the XScale and ME 
frequency from 400 MHz to 600 MHz in all tests which is the 
same as our ENP-2611.  

The data structures used by the HBSPC are pre-computed 
using PC. We load the structures into Workbench by scripts. 
On the other hand, the structure for the proposed B-Cache is 
dynamically maintained by the processing ME. The structure 
of HBSPC is stored in channel 1 of SRAM while the proposed 
B-Cache is stored in the channel 0 of SRAM. Finally, we use 
the traces corresponding to the rule table to generate the 
packet streams used in the simulation. 

B. 5-D Packet Classification Evaluation Settings 

We use ClassBench [12] to produce rule table 5D_5000 for 
the tests using the setting: “firewall”. There are 4704 rules in 
this table. Other information can be found in Table I, and 
parameters to produce the table can be found in Table II.  

To test the rule table, we use ClassBench again to produce 
two corresponding trace files 5000H and 5000L, where suffix 

indicate the locality. That is, 5000H indicates high locality 
trace while 5000L indicates low locality trace. We show the 
number of packets in each trace in Table III. The settings for 

TABLE III .  STATISTICS OF SIMULATION TRAFFICS 
Name of traces 5000H 5000L 

Locality  High Low 
# of Packets 48,09948,113 

 

TABLE II. PARAMETERS USED BY CLASSBENCH TO 
GENERATE THE RULE TABLE 

db_generator 
-bc 

<# of 
filetrs> 

<smoothness><address 
scope> 

<application
 scope> 

5D_5000 5000 58 -0.5 -0.5 

 

TABLE I. RULE TABLE FOR 5-D PACKET CLASSIFICATION 

Rule Table 5D_5000
Number of Rules 4704 

Number of different Destination Address 212 
Number of different Source Address 65 
Number of different Destination Port 49 

Number of different Source Port 28 
Number of different Protocol 9 

 

TABLE IV. PARAMETERS USED BY CLASSBENCH TO 
GENERATE THE SIMULATION TRAFFICS 

 <Pareto parameter a><Pareto parameter b><scale>
5000H 1 1 10 
5000L 1 0.1 10 

 

TABLE V THROUGHPUT OF HBSPC WITH THE 
PROPOSED CACHE SCHEMES (MPPS) 

Scheme Cache Size 1ME2ME 3ME4ME5ME6ME
High Locality Traffic (5000H) 

No-Cache 0 1.35 2.67 3.83 4.50 4.70 4.73 
128 3.19 5.18 6.45 6.45 6.46 6.46 
256 3.24 5.30 6.45 6.45 6.46 6.46 
512 3.25 5.32 6.45 6.45 6.46 6.46 
1024 3.28 5.41 6.45 6.46 6.46 6.46 

Naïve 
Cache 

2048 3.34 5.52 6.45 6.46 6.46 6.46 
128 3.56 5.95 6.45 6.46 6.46 6.46 
256 3.56 6.00 6.45 6.46 6.46 6.46 
512 3.60 6.08 6.45 6.46 6.46 6.46 
1024 3.62 6.17 6.45 6.46 6.46 6.46 

B-Cache 

2048 3.66 6.22 6.45 6.46 6.46 6.46 
Low Locality Traffic (5000L) 

No-Cache 0 1.33 2.65 3.83 4.62 4.91 4.97 
128 1.83 3.46 4.87 5.86 6.18 6.24 
256 1.84 3.49 4.94 5.92 6.24 6.30 
512 1.86 3.55 5.04 5.99 6.33 6.39 
1024 1.90 3.62 5.15 6.11 6.43 6.45 

Naïve 
Cache 

2048 1.96 3.75 5.32 6.26 6.46 6.46 
128 1.86 3.59 5.20 6.21 6.46 6.46 
256 1.88 3.64 5.26 6.29 6.46 6.46 
512 1.90 3.68 5.31 6.38 6.46 6.46 
1024 1.93 3.74 5.42 6.45 6.46 6.46 

B-Cache 

2048 1.99 3.87 5.61 6.46 6.46 6.46 

 



producing these traces are shown in Table IV. All packets in 
above traces are 64 bytes. With the smallest size of Ethernet 
packets, we can observe the worst case performance of 
evaluated cache scheme.  

C. Proposed B-Cache Evaluation 

1) Throughput of HBSPC enhance by the B-Cache 

The line speed of IXP2400 is OC-48, i.e. 2.5 Gbps. With 
the traffic which size of each packet is 64 bytes, IXP2400 
should process 6.46 Million packets per second to achieve the 
maximum rate. We expect the evaluated cache scheme can 
achieve such throughput. Table V shows the throughput 
(number of million packet processes per second) of the 
proposed scheme using two kinds of traffic. The table 
compares the case with no-cache, naïve cache, and the 
proposed B-Cache. For the naïve cache and the B-Cache, we 
evaluate the cases which the cache size ranges from 128 to 
2048. Different column of the table show the throughput using 
from one to six MEs for packet processing. We mark the case 
which achieves the maximum rate of IXP2400 whose 
background color as gray.  

As the table, HBSPC can’t achieve line rate without using 
the cache whether how many MEs are used. It can be seen that 
naïve cache improves the throughput of HBSPC for high 
locality traffic dramatically thus we can achieve the line speed 
when using more than three MEs. However, it is hard for the 
naïve Cache to achieve the same speed when using the low 
locality traffic. On the other hand, the goal can be achieved 
when we adopt the proposed B-Cache. The most important is 
that the throughput of HBSPC enhances with B-Cache 
becomes higher than the naïve cache when using high locality 
traffic. It is important that the B-Cache is just an additional 
cache scheme which solves the duplicate processing problem 
which other threads repeat handles the packet before the cache 
entry has been updated.  

2) Reduction of memory access of HBSPC 

It is obviously that the scheme requires less access to the 
memory performs better. Table VI compares the reduction of 
memory access to the HBSPC structure of B-Cache to the 
naïve cache. The table shows the reduction percentage with 
cache size from 128 to 2048 which only one ME is used for 
packet processing. The table presents the same trend as the 

Table V that the proposed B-Cache outperforms the naïve 
cache even with the low locality traces. The proposed B-
Cache can reduce about 9% of memory access of packet 
processing with the evaluated high locality trace. For the low 
locality trace, the reduction is increased with the cache size. 
With the presented experiments, we believe that the proposed 
B-Cache can further enhance the throughput of packet 
processing in the multi-thread network processor environment. 

VI.  CONCLUSION 

In this paper, we first implement a naïve cache scheme to 
improve the performance of HBSPC packet classification 
scheme. Basically, the cache scheme can solve the redundant 
processing problem to the busty traffic briefly. However, due 
to the Intel IXP2400 is a multi-thread processor that several 
threads are executes concurrently. It is possible that other 
threads will duplicate the processing of the packet due to 
cache miss before the cache is updated completely. In the case, 
the redundant processing to the packet will wasted computing 
power and involves additional memory access to the data 
structure. The B-Cache proposes in this paper solve this 
problem by blocking such packets from being processed until 
the cache is updated. With the proposed scheme, further 
throughput can be achieved on the IXP2400. 
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TABLE VI  THE PERCENTAGE OF MEMORY ACCESS REDUCTION 
TO THE HBSPC STRUCTURE (%) 

Cache Size 128 256 512 1024 2048 
High Locality Traffic (5000H) 

Naïve 75.20 75.55 75.84 76.20 76.88 
Proposed 84.37 84.33 84.44 84.64 85.01 

Low Locality Traffic (5000L) 
Naïve 43.01 43.72 44.83 46.26 48.78 

Proposed 46.94 47.59 48.59 49.92 52.18 

 


