
Grid of Segment Trees for Packet Classification

Yeim-Kuan Chang, Yung-Chieh Lin, and Chen-Yu Lin
Department of Computer Science and Information Engineering,

National Cheng Kung University, Tainan, Taiwan
{ykchang, p7894110, p7696136}@mail.ncku.edu.tw

Abstract—Packet classification problem has received much attention
and continued to be an important topic in recent years. In packet
classification problem, each incoming packet should be classified
into flows according to a set of pre-defined rules. Grid-of-tries (GoT)
is one of the traditional algorithmic schemes for solving 2-
dimensional packet classification problem. The advantage of GoT is
that it uses the switch pointers to avoid backtracking operation
during the search process. However, the primary data structure of
GoT is base on binary tries. The traversal of binary tries decreases
the performance of GoT due to the heights of binary tries are usually
high. In this paper, we propose a scheme called GST (Grid of
Segment Trees). GST modifies the original GoT by replacing the
binary tries with segment trees. The heights of segment trees are
much shorter than those of binary tries. As a result, the proposed
GST can inherit the advantages of GoT and segment trees to achieve
better performance. Experiments conducted on three different kinds
of rule tables show that our proposed scheme performs better than
traditional schemes, such as hierarchical tries and grid-of-tries.

Keywords-packet classification, segment tree, grid-of-tries

I. INTRODUCTION
Because of the rapid growth of the network, workloads of

Internet routers are increased sharply. Nowadays, packet
classification has received much attention and continued to be
an important topic. Packet classification is an enabling function
for network applications, such as quality of service (QoS),
security, monitoring, and multimedia communications and it is
often a bottleneck in high performance routers. In order to
classify a packet into a particular flow, each incoming packet
needs to be determined the output port it should be sent to and
the action it should be taken. Unlike the IP lookup problem,
packet classifiers in routers need to compare multiple header
fields of each incoming packet with a set of rules to determine
which action should be applied, for example, acceptance or
denial. Grid-of-tries [7] is a traditional algorithm for solving 2-
dimensional (2D) packet classification problem. The primary
data structure of grid-of-tries is binary tries. Binary tries might
have a maximum height h = W, where W is the length of
address. As a result, the time complexity of operations on
binary tries is O(W). A segment tree is a data structure that
stores a set R of n ranges; it allows querying which of stored
range contain a given value efficiently. Based on the dynamic
segment tree proposed in [3], time complexity of operations
was reduce to O(logn).

In this paper, we proposed a packet classification scheme
called Grid of Segment Tree (GST). GST is a hierarchical
scheme based on segment tree by replacing the binary trie in
grid-of-tries with segment tree. Furthermore, we employ the
concept of switch pointers in grid-of-tries to speed up the
search process. The rest of the paper is organized as follows.

Section II formally describes the packet classification problem.
In section III, we present an overview of previous works and
segment trees. Section IV gives a detailed description of the
proposed scheme. Section V presents the experimental results
in terms of search speed, average tree nodes accesses, and
memory requirement. Finally, our conclusions are stated in
Section VI.

II. PROBLEM STATEMENT
In the general packet classification (PC) problem, query

packets are classified according to a rule table, which define
the patterns that are matched against to the query packet. Each
rule R contains t components with a cost value and an attached
action. Suppose Ci is the ith component of rule R, R = { Ci | i =
1 to t}, where Ci = [Li, Ui] is a range from Li to Ui. For example,
the rule of the layer-four switching contains five components:
the source address, destination address, source port, destination
port, and protocol number. Table I shows an example of a 5D
rule table. A packet P is said to match R, if ∀ i, the ith header
field of P satisfy the constraints of Ci. The goal of PC problem
is to determine the least cost rule (sometimes called best
matching rule) or multiple rules that matches the query packet.
Consider a query through Table I with 5-tuple = (00101, 10111,

Table I. An example rule table consisting of eight 5D
rules, prefix length W = 5.

Rule Src.
Addr.

Dest.
Addr.

Src.
Port

Dest.
Port Protocol Cost Action

R1 0* 10* 0:65535 80:80 TCP 3 Accept
R2 00* 11* 80:80 8080:8080 UDP 1 Accept
R3 011* 00* 0:65535 80:80 TCP 2 Accept
R4 10* 1* 0:65535 0:65535 * 4 Deny
R5 10* 00* 0:65535 0:65535 TCP 5 Accept
R6 0* 01* 17:17 17:17 UDP 8 Accept
R7 00* 10* 0:65535 0:65535 TCP 6 Deny
R8 0* * 0:65535 0:65535 * 7 Deny

Destination trie

Figure 1. Grid-of-tries build according to Table I.

R3 R5
R4

R7 R2

x
R8

R1R6

Switch pointer

Source trie

2010 24th IEEE International Conference on Advanced Information Networking and Applications

1550-445X/10 $26.00 © 2010 IEEE

DOI 10.1109/AINA.2010.38

1144

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 07,2010 at 03:55:34 UTC from IEEE Xplore. Restrictions apply.

80, 80, TCP). There are three rules match the query packet as
follows: R1, R7 and R8. The classification result is R1 with
least cost against to R7 and R8.

III. RELATED WORKS
In network routers, packet classifiers match the header of

each incoming packet against to a set of predefined rules. Over
the past few years a considerable number of studies have been
made on 2D or 5D packet classification. In [7], authors
proposed three trie-based algorithms for solving 2D packet
classification. The Hierarchical tries is a simple extension of
the 1-dimensional binary trie, and is constructed recursively.
This algorithm stores each rule exactly once, and the storage
complexity of hierarchical trie for N rules is O(NdW). The
major drawback of hierarchical trie is the need of backtrack
while performing the search; hence, the time complexity of
query a d-dimensional hierarchical trie is O(Wd). A set pruning
tries is similar to hierarchical tries with reduced query time
obtained by replicating rules to eliminate backtracking.
Although the query time complexity is reduced to O(dW),
however, the memory blowup problem cause the storage
complexity increased to O(NdW). The grid-of-tries is designed
to solve the shortness of hierarchical tries and set pruning tries.
It reduces the storages space by allocating a rule to exactly one
node, and achieves O(W) query time complexity by using pre-
computation and switch pointers. Three algorithms described
above are design to handle 2D rules, such as source-destination
address pairs. Although they can be extend to deal with other
fields such as port ranges, however, it is an inefficient work
due to the range needs to be converted into prefixes, and a W-
bit range might be converted to 2W–2 prefixes at most. A new
multidimensional scheme based on the binary range and prefix
searches with fast update is proposed in [4]. In [5], a
hierarchical scheme called Fat Inverted Segment tree (FIS) was
proposed. Two survey papers in [6] and [9] give a complete
overview for a variety of software and hardware schemes. The
dynamic segment tree (DST) proposed in [3] uses all of the

distinct endpoints of ranges as the keys based on a new
endpoint scheme. Although the segment trees are designed for
ranges originally, we can treat a prefix as a limited range.

A. Grid-of-tries
The key ideas of this algorithm are use pre-computation and
switch pointers to speed up search in a later source trie based
on the search in an earlier source trie. Figure 1 shows the grid-
of-tries build according to two address fields in Table I. The
switch pointers are shown using dotted lines between
destination tries. This distinguishes the switch pointers from
the dimensional pointers using dashed lines that connect the
source trie nodes to corresponding destination trie.

To understand the role of switch pointers, consider
matching a packet with source address 001 and destination
address 010 in Figure 1. The search in the source trie gives S =
00 as longest match. So we start our search in the associated
destination trie. However, the search immediately fails, since
the first bit of the destination address is 0. In hierarchical trie [7]
without the help of switch pointers, we would backtrack along
the source trie and restart the search in the destination trie of all
the ancestors of S. In grid-of-tries, however, we use switch
pointer to directly jump to the node x in destination trie
containing R1, R6 and R8. Therefore, we can find a matching
rule R6. This in turn improves the search complexity from
O(W2) to O(W). The bold line in Figure 1 shows the traversing
path of this query example. By using the switch pointers, we
could find a matching rule ultimately. However, the matching
rule might not be the least cost rule due to we possibly miss
some rules with lower cost which also match the query packet.
For instance, the cost of R8 was smaller than R6 and also
matches the above query; hence, the result of query is incorrect.
Grid-of-tries solve this problem by using pre-computation.

Name Prefix Range
Minus-1 endpoint scheme

Start finish
P1 0* [0, 31] - 31
P2 01000* [16, 17] 15 17
P3 011* [24, 31] 23 31
P4 100* [32, 39] 31 39
P5 1101* [52, 55] 51 55

Table II. Prefix table with five prefixes, W = 6.

11

7 15

23 23

15 15

7 23

15

7 23 15

7
R7

R1

R1

R2

R3

R6

R6

R5

w

x

y

z
a

b

R8

m

Dimensional
pointer

R4

Figure 3. A possible 2-dimensional DST built
according to Table I.

R8

31

17

15

23 51

39 55

P1

P1 P2

P3

P5 P4

Figure 2. A possible DST built according to Table II.

1145

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 07,2010 at 03:55:34 UTC from IEEE Xplore. Restrictions apply.

B. Dynamic Segment Tree
In [3], authors propose the dynamic segment tree (DST) to
solve the IP lookup problem by treating the prefixes as ranges.
The skeleton of DST is a height balanced binary search tree
that is built from the distinct endpoints of ranges based on a
novel minus-1 endpoint scheme, which generates fewer
endpoints than the traditional endpoint scheme. The elementary
intervals (EIs) [1,3], that are constructed from endpoints of the
range set R, correspond to the leaf nodes of the DST. As the
statement in [3], the interval covered by an internal node v is
the union of EIs corresponding to the leaf nodes in the subtree
rooted at v. Each node v is associated with a subset of R (called
canonical set). The DST can efficiently access and update the
ranges stored in the canonical set of a DST node. The set of
matching ranges for the given address d can be obtained by
traversing the DST from the root to the leaf node that
corresponds to the EI containing d. Figure 2 shows a possible
DST built from the prefixes in Table II. The query time
complexity of DST is O(logN), where N represents the number
of arbitrary ranges. Traditionally, the segment tree is
constructed by pre-computing the elementary intervals and then
using a bottom-up approach to build the data structure, this
makes the segment tree becomes a static data structure, hence,
the segment tree does not fit to dynamic routing tables.
However, the DST proposed in [3] can dynamically
insert/delete the ranges into/from the segment tree.

IV. PROPOSED SCHEME
By using the DST [3] as the basic data structure, the

skeleton of the proposed grid of segment trees (GST) is a 2-
dimensional DST and the DST were implemented as height
balanced binary search tree such as red-black tree [2]. The

details of how to build a DST are carefully described in [3].
This section will be focus on the construction between
dimensions in GST. Figure 3 shows a possible 2-dimensional
DST built according to two address fields in Table I.

A. Node structure
As the node of red-black tree, each node in GST contains the
following fields: key (endpoint of range), color (red or black),
left, right and parent (pointers to the left and right children and
parent). In addition to these original fields, each node also
contains six new fields: left_switch, right_switch (left and right
switch pointer), Pleft, Pright and Pcenter (pointers to DST in the
next dimension, called dimensional pointers). The node in
segment tree can determine two intervals, which are the left
interval (Intleft()) and right interval (Intright()), by its key.
Moreover, the interval covered by the node itself is the union of
left and right intervals, called center interval (i.e., Intcenter() =
Intleft() ∪ Intright()). Each interval of a node is correspond to a
dimensional pointer and also associated with a canonical set C
(or called Cset). In our scheme, we will store the rule R into the
Cset in the last dimension of GST.

B. Insertion in GST
To insert a rule R = {SA = [s1, f1], DA = [s2, f2]} into GST
requires the following steps:

1. If s1 is not zero, insert s1 – 1 as a new key in 1st-
dimensional DST; if f1 is not 2W – 1, insert f1 as a new key in
1st-dimensional DST.

2. Find proper dimensional pointers Pleft(v), Pright(v) or
Pcenter(v) to insert DA into 2nd-dimensional DST for some node
v, where Intleft(v) ∪ Intright(v) ∪ Intcenter(v) = [s1, f1].

3. Same as step 1 with s2 and f2 to build the 2nd-
dimensional DST.

Figure 5. An example to illustrate the switch pointers.

15

10

5

15

5

10

R3 R4R2

R1

x z

m

n

y
w

Switch
pointer

Dimensional
pointer Cmatch

Algorithm GST_Construct_Sw_Pointers([L, U], root_T2)
Begin
1 x = root_T2;
2 while (1){
3 if (U > key(x)){
4 if (L < key(x))
5 SWITCH_POINTER points to x; break;
6 else{
7 if (right(x) ≠ null) x = right(x);
8 else{
9 if (L � key(x))
10 SWITCH_POINTER points to x; break;
11 else
12 SWITCH_POINTER points to x; break;
13 }
14 }
15 else if (U < key(x)){
16 if (left(x) ≠ null) x = left(x);
17 else SWITCH_POINTER points to x; break;
18 }
19 else if (U = key(x)){
20 if (left(x) = null)
21 SWITCH_POINTER points to x; break;
22 else{ y = left(x);
23 while (1){
24 if (L � key(y))
25 SWITCH_POINTER points to y; break;
26 else
27 if (right(y) ≠ null) y = right(y);
28 else SWITCH_POINTER points to y; break;
29 } // END of 2nd while loop
30 } // END of 1st while loop
End

Figure 4. The switch pointer construction algorithm.

1146

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 07,2010 at 03:55:34 UTC from IEEE Xplore. Restrictions apply.

4. Store R into proper canonical sets in the 2nd-
dimensional DST.

5. Construct the switch pointers if necessary according
to the GST_Construct_Sw_Pointers algorithm (Figure 4).

1) Inserting a field in GST
To insert one of the rule fields into GST is executed in step 1 or
3. The detail of insert an endpoint into DST was described in
[3]. We insert endpoints follow the minus-1 endpoints scheme
[3]. If the new endpoint already exists in the DST which we are
going to insert, no new node is created.

2) Finding the dimensional pointers to next dimension
After inserting the endpoints of SA, we need to find proper
intervals that contain the range of SA (i.e., from s1 to f1) in step
2, because each interval is correspond to a dimensional pointer
which point to another DST in next dimension. We can follow
these dimensional pointers to insert DA in step 3.

3) Storing the rule into GST
After two endpoints of DA are inserted in step 3, the rule R can
then be stored in the canonical sets of some proper nodes in the
2nd-dimensional DST.

C. Constructing the switch pointer
The purpose of switch pointers is to avoid backtracking during
search. There are two possible switch pointers in the node,
each of them corresponds to an interval, and that is, the
left_switch and right_switch corresponds to Intleft() and Intright(),
respectively. Consider matching a packet with (source address,
destination address) = (5, 10) in Figure 5. Assume that the
switch pointers do not exist. The search in the DST rooted at
node x is fail and we need to backtrack to another DST rooted
at z. The query path without switch pointers is m-n-x-y-n-z-w.
However, while the switch pointers have been constructed,
query path becomes m-n-x-y-w and R3 will be found as the

match rule without backtracking. The switch pointer was
connected from one DST to another, say from T1 to T2.
Assume we would like to construct the switch pointer of a
range [L, U] in T1 (i.e., the corresponding interval), for
example, the range of left_switch(y) in Figure 5 is [6, 15]. The
aim is to find an interval of a node, g, in T2, where Intcenter(g)
cover the range [L, U] and both Intcenter(right(g)) and
Intcenter(left(g)) do not cover [L, U]. Figure 4 shows the
algorithm of constructing the switch pointers. The purpose of
switch pointers is to reduce the number of traverd nodes
during the search process as many as possible.

D. Querying the GST
The goal of packet classification is to determine the input
packet belongs to which rules in the rule table. In a GST, a
query packet p with two addresses (s, d) may be found by
traversing a path from the root in the 1st-dimension toward a
leaf in the 2nd-dimension. Figure 6 and 7 shows the GST search
algorithms in 1st and 2nd dimension separately. The while loop
in Figure 6 does the DST traversal according to query key s,
the traverse of 1st-dimension will finally leads to a dimensional
pointer which points to another DST in 2nd-dimension. The
search in the 2nd-dimension was more complicated, for some
node v, while left(v) = null, the search still need to examine
whether the left_switch(v) is null or not. Consider matching a
packet with (s, d) = (5, 20) in Figure 3. We traverse the DST in
1st dimension with s = 5 and leads to a dimensional pointer
Pleft(w) which covered the interval [0, 7]. Then we start the
search for d = 20 in the DST pointed by Pleft(w), and then
following the right_switch(z) = y to search another DST rooted
at node a. The query path of this packet is m-w-x-z-y. The

// Cmatch stores rules that matches (s, d). Cmatch is initially empty.
Algorithm GST_Query_Second_Dimension(x, d)
Begin
1 while (x ≠ null){
2 Cmatch = Cmatch ∪ Ccenter(x);
3 if (d ≦ key(x)){
4 if (left(x) ≠ null)
5 x = left(x);
6 else{
7 Cmatch = Cmatch ∪ Cleft(x);
8 if (left_switch(x) ≠ null)
9 x = left_switch(x);
10 else
11 break;
12 }
13 }
14 else{
15 if (right(x) ≠ null)
16 x = right(x);
17 else{
18 Cmatch = Cmatch ∪ Cright(x);
19 if (right_switch(x) ≠ null)
20 x = right_switch(x);
21 else
22 break;
23 }
24 }
25 } // END of while loop
26 if (Cmatch ≠ Ø)
27 Report all rules stored in Cmatch.
28 else
29 No rules match the query packet.
End

Figure 7. The GST query algorithm for 2nd-dimension.

Algorithm GST_Query_First_Dimension(root, s, d)
Begin
1 z = root;
2 while (1){
3 if (Pcenter(z) ≠ null)
4 Next = Pcenter(z);
5 if (s � key(z)){
6 if (left(z) = null){
7 if (Pleft(z) ≠ null)
8 Next = Pleft(z);
9 break;
10 }
11 else
12 z = left(z);
13 }
14 else{
15 if (right(z) = null){
16 if (Pright(z) ≠ null)
17 Next = Pright(z);
18 break;
19 }
20 else
21 z = right(z);
22 }
23 } // END of while loop;
24 GST_Query_Second_Dimension(Next, d);
End

Figure 6. The GST query algorithm for 1st-dimension.

1147

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 07,2010 at 03:55:34 UTC from IEEE Xplore. Restrictions apply.

matching rule of the query packet is R1, R7 and R8. Note that
R1 and R7 are founded during the traversal of GST and R8 is
founded via the precomputation technique that is similar to [10].

V. EXPERIMENTAL RESULTS

A. Environment and test data

We programmed our GST in C code, and all experiments
were run on a 1.86GHz Core-2 PC with 1GB main memory.
The compilation environment is gcc-3.4.2 with optimization
level O2. Our experiments were conducted by using three
different kinds of IPv4 rule tables. The rule tables of various
sizes are generated by using ClassBench [8] with parameters
“acl1_seed”, “fw2_seed”, “ipc1_seed”, wher ACL, FW, and
IPC stand for Access Control List, Firewall, and IP Chain,
respectively. All rules are 5-tuples that consist of 32-bit
source/destination IP addresses (represented as prefixes), 16-bit
source/destination port numbers (represented as ranges), and 8-
bit transport layer protocol (represented as discrete numbers).

B. Performance comparison
In this section, we present the experimental results of the

proposed GST and other existing schemes. First, we compare
the proposed GST with hierarchical tries (HT) [7] and grid-of-
tries (GoT) [7] in terms of number of traversed nodes during
the search process. For each of these three schemes, we first
build a hierarchical structure that consists of two dimensional
tries (1’st dimensional trie and 2’nd dimensional trie), where
1’st and 2’nd dimensional tries are built according to the source
address prefix field and destination prefix field, respectively.

For the remaining three fields of port ranges and protocol
numbers, we store them linearly in the 2’nd dimensional tries
like [10]. Table III (Table VI), Table IV (Table VII) and Table
V (Table VIII) shows the performance on ACL, FW, and IPC
tables, respectively. As we can see, the average traversed nodes
of hierarchical tries are quite huge because the backtracking
was needed. GoT can reduce the average traversed nodes to
less than 30 with the help of switch pointers. Our proposed
GST decreases the tree height to O(logN) by implementing the
segment tree as a height balanced search tree, where N is the
number of rule in table. The average traversed nodes of our
scheme are much smaller than GoT and HT. Moreover, since
the number of nodes in GoT is much more that that in GST,
GST consumes less memory than GoT.

VI. CONCLUSION
We have presented a dynamic segment tree (DST)-based

hierarchical structure called GST (Grid of Segment tree) which
can solve the multidimensional packet classification problem
efficiently. GST replaces the binary tries structure in Grid-of-
tries [7] with dynamic segment trees [3] to improve the
shortness of Grid-of-tries. Hence, our proposed scheme
combines the advantages of dynamic segment trees [3] and
Grid-of-tries [7]. The experiments using the rule sets generated

of traversed nodes in average
Size HT GoT GST
1k 33 14 6
2k 28 13 6
3k 26 14 7
5k 34 15 8
8k 60 20 10

10k 60 19 11

Table III. Performance of ACL.

Table IV. Performance of FW.
of traversed nodes in average

Size HT GoT GST
1k 46 16 9
2k 63 17 11
3k 95 20 11
5k 124 29 12
8k 50 24 13

10k 50 18 13

Table V. Performance of IPC.
of traversed nodes in average

Size HT GoT GST
1k 32 15 8
2k 33 17 8
3k 35 17 8
5k 44 19 8
8k 51 21 9

10k 49 19 9

Table VI. Performance of ACL in terms of classification
speed and memory requirement.

Search Time (clock cycles) Memory Requirement (MB)
Size GoT GST GoT GST
1k 1,815 509 0.140 0.071
2k 1,666 491 0.207 0.145
3k 2,062 665 0.349 0.212
5k 2,142 688 0.584 0.320
8k 2,132 757 1.817 0.851

10k 2,126 646 3.038 1.584

Table VII. Performance of FW in terms of classification
speed and memory requirement.

Search Time (clock cycles) Memory Requirement (MB)
Size GoT GST GoT GST
1k 1,043 533 0.268 0.150
2k 1,209 875 0.686 0.345
3k 1,304 1,015 1.000 0.513
5k 1,446 1,285 1.611 0.885
8k 1,461 1,336 2.530 1.601

10k 1,633 1,403 3.079 1.906

Table VIII. Performance of IPC in terms of classification
speed and memory requirement.

Search Time (clock cycles)Memory Requirement (MB)
Size GoT GST GoT GST
1k 1,976 704 0.294 0.141
2k 1,915 865 0.508 0.242
3k 2,010 957 0.658 0.359
5k 2,178 1,095 1.030 0.704
8k 2,062 1,453 1.672 1.284

10k 1,974 1,293 2.169 1.776

1148

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 07,2010 at 03:55:34 UTC from IEEE Xplore. Restrictions apply.

from ClassBench [8] showed that the GST acheive a better
performance than Hierarchical trie [7] and Grid-of-tries [7].

REFERENCES
[1] M.D. Berg, M.V. Kreveld, M. Overmars, and O. Schwarzkopf,

Computational Geometry: Algorithms and Applications. Springer
Verlag, 1997.

[2] T. Cormen, C. Lieserson, R. Rivest, and C. Stein, Introduction to
Algorithms, 2nd edition MIT Press, 2001.

[3] Yeim-Kuan Chang and Yung-Chieh Lin, "Dynamic Segment Trees for
Ranges and Prefixes", IEEE Transactions on Computers, vol. 56, no. 6,
pages. 769-784, June 2007.

[4] Yeim-Kuan Chang, "Efficient Multidimensional Packet Classification
with Fast Updates", IEEE Transactions on Computers, vol. 58, no. 4,
pages. 463-479, April 2009.

[5] A. Feldman and S. Muthukrishnan, "Tradeoffs for Packet
Classification", Proceeding of IEEE INFOCOM, vol. 3, pages. 1193-
1202, March 2000.

[6] P. Gupta and N. McKeown, "Algorithms for Packet Classification",
IEEE Network Special Issue, vol. 15, no. 2, pages. 24-32. March/April
2001.

[7] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, "Fast and
Scalable Layer Four Switching", ACM SIGCOMM Computer
Communication Review, vol. 28, pages.191-202, October 1998.

[8] David E. Taylor and Jonathan S. Turner, "ClassBench: A Packet
Classification Benchmark", IEEE/ACM Transactions on Networking,
vol.15, no. 3, pages. 499-511, June 2007.

[9] David E. Taylor, "Survey and Taxonomy of Packet Classification
Techniques", ACM Computing Surveys, vol. 37, no. 3, pages. 238-275,
September 2005.

[10] F. Baboescu, S. Singh, and G. Varghese, “Packet Classification for Core
Routers: Is there an alternative to CAMs?”, Proceeeding of IEEE
INFOCOM, vol. 1, pages. 53-63, March 2003.

1149

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 07,2010 at 03:55:34 UTC from IEEE Xplore. Restrictions apply.

