
Fully Pre-Splicing TCP for Web Switches
Yeim-Kuan Chang, Wen-Hsin Cheng and Chung-Ping Young

Department of Computer Science and Information Engineering
National Cheng Kung University, Taiwan R.O.C.

{ykchang,cpyoung}@mail.ncku.edu.tw

Abstract—Fully pre-splicing (FPS) is an extension of TCP
splicing which is content-blind that prevents the switches
from using application layer information for forwarding
decisions. FPS extends TCP splicing to support content-
aware load balancing algorithms and pre-splices the client’s
connections to web servers. In addition, FPS extracts the
application information in kernel-space for eliminating the
cost of moving data twice through user/kernel protection
boundaries and the latency of scheduling the processes. To
achieve our design, we extended the TCPSP project of LVS
using Linux Netfilter which defines specific hooks to provide
a verdict for the packet. On the performance results, FPS
improves the TCPSP throughput dramatically.

Keywords: Fully pre-splicing, FPS, TCP splicing, TCP
handoff, layer-7 web switch, content switch, pre-fork
connection, distributed web server.

I. INTRODUCTION AND RELATED WORKS

A web site usually consists of a firewall, Layer2/3
switches, load-balancing devices, various kinds of cache
and web servers. In addition to these devices and servers,
applications such as Common Gateway Interface (CGI)
programs, Personal Home Page (PHP), Active Server
Page (ASP), and various Java technologies are used to
generate dynamic web pages. A typical web site has
become very complicated to manage because of the
increasing performance requirements, a rich set of
applications generating and storing dynamic web pages,
and rapidly changing Internet technologies. One way to
improve performance of a web site is to control how web
requests and responses go in and out of the web site. The
web switches can provide the highest level of flow control
over the web traffic. The web switches look up the
information in HTTP headers as well as TCP and IP
headers to decide how the requests get served from the
web site.

Traditionally it is the responsibility of proxy servers or
web servers to redirect the web requests using URL,
HTTP headers, or users’ registration information.
However, controlling how web requests and responses go
in and out of the web site becomes the bottleneck because
of the fast growth of Web services. Designing the web
switch to offload the classification tasks based on user
level information provides many benefits.

There are two characteristics for the layer-7 web
switches. The first concerns the implementation layer:
kernel-based or application-based. The second considers
the flow of the packet traffic between the client and the
web cluster. The main difference lies in the backward
flow, because all inbound packets must pass through the
web switch. In two-way architectures, the outbound
packets pertaining to a response pass again through the
web switch, the major technique called TCP splicing [1].
The TCP splicing takes care of all data forwarding

operations directly in the kernel, leaving the set-up, tear-
down and logging tasks specific to each type of proxy in
the user level application that are easy to modify or amend
as needed. It improves the current state of the art in three
ways [3]: Performance: A proxy or firewall using TCP
splicing acts like a layer 3.5 router; it does not incur either
transport or application layer protocol processing
overhead for each packet it processes. The reduced
complexity and code path length dramatically improves
throughput. Less book keeping: Proxies using TCP
splicing need to maintain less TCP state information for
each of the connections that pass through them, and the
proxy does not have to buffer any packets. Better end-to-
end semantics: TCP splicing enables two ends of the
connection to communicate as peers, allowing control
information to flow end-to-end. Aside from other
advantages, this provides the connection with true TCP
reliability semantics and correct urgent data handling.

The intuition behind TCP splicing is that we can change
the headers of incoming packets as they are received and
immediately forward them, rather than passing packets up
through the protocol stack to user space, only to have
them passed back down again. The effect is to have the
proxy relay packets as if it were a layer 3.5 router.
Authentication, logging, and other tasks are done by the
proxy in user space as normal, but the data copying part of
the proxy – where the performance is normally lost – is
replaced by single ioctl() call to set up the splicing. After
the splicing is initiated, the user level proxy can go on to
other tasks.

The problem of TCP splicing, is its content-blindness
such that only the first packet of the flow is used for load
balance. The major purpose of our proposed system is to
make TCP splicing to balance each packet in the flow.
The other purpose is to reduce the latency of accessing
web pages as much as possible. Our proposed system
succeeds in eliminating the server side three-way
handshake latencies by using fully pre-splicing methods.

The rest of the paper is organized as follows. Section 2
presents our proposed fully pre-splicing architecture and
the prototype implementation of FPS on Linux kernel
version 2.4.18. In Section 3, we describe the performance
evaluation and compare the proposed FPS with TCPSP
(TCP splicing) project [2] of the LVS (linux virtual server)
[3]. In Section 4, we conclude our proposed system FPS.

II. THE PROPOSED FULLY PRE-SPLICING (FPS)
In this section, we propose a fully pre-splicing (FPS)

technique by extending the TCP splicing technique and
make the web switches to be content-aware. Content-
aware switches can always use the application layer
information contained in HTTP requests from clients to
make forwarding decisions. After receiving the responses
generated from web servers, the web switches reply them
to clients by packet forwarding. FPS completes the

Proceedings of the First International Conference on Innovative Computing, Information and Control (ICICIC'06)
0-7695-2616-0/06 $20.00 © 2006

Figure 1. The packet flow of FPS

dispatching work in kernel-space instead of user-space for
reducing the unnecessary data copy latency between
kernel and user space. FPS has been implemented as an
extension of the TCPSP project of the LVS project.
Therefore, FPS was developed as loadable kernel module
of Netfilter [6] in RedHat 8.0 with Linux kernel 2.4.18.

A. Architecture
Layer-7 web switch establishes a TCP connection with

the client and another TCP connection with a selected
server. The switch forwards TCP data between these two
TCP connections. This task requires TCP endpoint
processing and application layer data forwarding. Web
switching is much more complicated than that of IP
routers or Layer 4 switches, which forward packets based
on packet header information. Current application layer
proxies suffer major performance penalties as they spend
most of their time moving data back and forth between the
two connections: context switching and crossing
protection boundaries for each chunk of data they handle.
TCP splicing provides kernel support for data relaying
operations which can sustain a higher data throughput of
normal proxies. Cohen [3] showed that TCP splicing using
URL information results in a 67% higher number of
connections than normal proxies.

TCP splicing that provides kernel support for data
relaying operations which can improve a data transfer
throughput of normal proxies. In HTTP/1.1, because TCP
splicing makes load balancing only for the first request,
following requests are distributed with no load balancing.
Therefore, the load in each cluster server is unequal. Yang
and Luo [4] proposed a Scalable Server Architecture
approach; we named it SSA in this paper. SSA is similar
to TCP splicing, but supporting sophisticated load
balancing policies. In addition, SSA has also implemented
with a pre-fork connection approach that web switch has
pre-forked connections to web servers before the client
connects to the switch. The pre-fork connection method
reduces the latency of connecting the selected web server
significantly.

The dispatching module also handles the persistent
connections suggested by HTTP 1.1. The persistent
connection uses one TCP connection to carry multiple
HTTP requests, thereby reducing server load and client
perceived latency. For HTTP 1.0 requests, the distributor
can reuse the pre-forked connections to carry these
requests, which will avoid extra TCP three-way
handshakes and multiple slow-starts. Otherwise, the
distributor splits multiple HTTP 1.1 requests within a
persistent connection into single requests. If these requests
belong to the same session, the dispatcher routes them to
the server assigned to the same session. Else, it schedules
the individual HTTP 1.1 requests to different servers
based on content of theses requests.

But we argue that there are too many swapping times
between the pre-fork connections and the mapping table.
The client automatically sends subsequent requests to get
all embedded objects for merging into a complete page. In
SSA’s approach which is based on Round Robin
algorithm. The request “GET /a.jpg HTTP/1.1” may be
dispatched to the different Server. In this case, the number
of swapping between mapping table and available
connection list is more once. In current www environment,
the number of embedded objects of a page is most likely

more than four. Therefore, the performance of SSA will
become worse.

In our proposed FPS, pre-splices all the connections
between the web switch and web servers, which resembles
the SSA. The client establishes a TCP connection to web
switch that splices the client’s connection with one
connection of each web server. The difference between
FPS and SSA is the number of produced connection
entries in the mapping table. Because of fully pre-spliced
connection with each web servers, dispatching requests
from the same client to the selected web servers will cost
no extra swapping delay. The detailed steps of FPS are
shown in Figure 1.
0) Web switch pre-forks several TCP connections to

each backend server. These pre-forked connections
are kept in a long time and put into the available
connection list.

1) After the TCP three-way handshake between the
client and the web switch is completed, the client
requests the required page, the same as TCP splicing
and SSA.

2) The packet will never go to the upper application
layer. The packet is sent to the dispatcher module for
making server decisions.

3) In this state, the dispatching module parses the HTTP
request in the kernel space and makes a decision to
send the request to the selected server according to
the URL table.

4) Once the dispatcher selects a target server, it also
chooses a pre-forked connection from the available
connection list connecting to each server and splices
them. Then, the dispatcher stores related information
about acknowledge number, sequence number,
timestamp, and TCP options in the fully pre-splicing
table. The connection table adds new entries with the
number of cluster servers while one client’s
connection comes.

5) After the protocol header modifications of the packet
are finished, the packet is sent to the real server for
serving this HTTP request.

6) The server receives forwarded request from switch,
acknowledges receipt of packet and begins to process
it. The server replies the response of the request to
the switch.

7) Because the server IP and server Port has been
hashed in the fully pre-splicing table, in Step 4, the
response from the server will redirect to the client

Proceedings of the First International Conference on Innovative Computing, Information and Control (ICICIC'06)
0-7695-2616-0/06 $20.00 © 2006

Figure 2. Time diagram of Fully Pre-Splicing.
with protocol header restored.

8) The client receives the response of the first request.
The major differences between FPS and SSA appear.
When this client sends several requests in the same
connection, it always hits in the fully pre-splicing
table. This is our point to reduce the overhead of
SSA’s approach. The extra overhead of our approach
is caused by searching the fully pre-splicing table
containing more connection entries than SSA.

B. The Mechanism of FPS
We present the operations of our proposed system in

Figure 2. First, the content switch pre-forks a number of
TCP connections to the web servers (Step1), shown as
serfd[0], serfd[1], ... serfd[n] in the figure. These pre-
forked connections are kept long-lived and put into the
available connection list. After the TCP connection setup
is completed, the client sends packets conveying the
HTTP request for accessing some page (Step2). Once such
a packet arrives, the dispatcher parses the URL of this
request, and then looks up the URL table to select the least
loaded server that possesses the requested content (Step3).
Turn the connection status flag on, and send the request
directly to the real serverA (Step4). When the designated
server receives the request, it parses the URL to determine
the requested content. It then fulfills the request and
transmits the response to the client. The forwarding
module also intercepts theses response packets and
performs the reverse packet modification so that the client
can transparently receive and recognize these packets
(Step5).

When the client sends the subsequent request by HTTP
1.1’s persistent connection, the forwarding module will
accept and parse the request to decide the real server
(Step6). If the decided server is the same as last time, the
request is sent to the server with non extra-load. We get
the pre-forked connection from the pre-connection list and
splice clifd with serfd[1]. Of course, we should turn the
clifd and serfd[1] connection flag on, and turn the last
time connection flag off (Step7). If the client sends the
packet with FIN flag to the real server, the content switch
will intercepted the packet and close all the fully pre-
spiced connections with this client (Step8).

C. Implementation
To implement our system and content-aware

dispatching algorithms, we have modified the TCP
Splicing (TCPSP project) from LVS. TCPSP implements
TCP splicing mechanism within the Linux Netfilter
infrastructure. The Linux Netfilter package encapsulates
functional support for network address translation,
firewalls, and other forms of programmable layer 4 and
layer 3 filtering. The programming interface for the
Netfilter package allows filtering based on IP address and
port number of source and destination.

Netfilter consists of two main parts. First, each network
protocol defines well defined points in a packet’s traversal
of that protocol stack, called “hooks”. Second, kernel
modules may register to listen to specific hooks of
different protocols. When a packet traverses the protocol
stack, Netfilter checks if any modules have registered for
that protocol and hooked, in which case they are given the
chance to examine, possibly alter and provide a verdict for
the packet. The verdict may discard the packet, accept and
allow it to continue the traversal of the protocol stack,
steal it, or request Netfilter to queue it for user-space
processing.

The implementation of the FPS is based on the
NF_IP_LOCAL_IN hook in order to intercepts all packets
that pass through the content switch. FPS intercepts the
packets by the NF_IP_LOCAL_IN hook in the
ip_local_deliver() function. The ip_local_deliver()
function is the boundary between IP and TCP layer for the
incoming path. When the packets traps into the
NF_IP_LOCAL_IN hook, fps_in() function of the FPS
handles the packets. FPS must check the protocol header
length, checksum update, parse header, compute
sequences and timestamps, dispatch and rebuild the
protocol header. If the FPS finishes the works, the packet
is sent to the destined computer by the ip_send() function.
The ip_send() function is the boundary between IP and
MAC layer for the outgoing path. Therefore, as long as
the FPS handles the packets, the packets will never go to
upper TCP layer.

III. PERFORMANCE EVALUATION

Experiments are divided into three parts. The first set of
experiments measured and compared the performance of
four different methods, direct request (client requests
server directly), application proxy, TCPSP, and TCPSP
with header parsing. Header parsing parsed the header
information from the client’s requests and allocated a
memory space for storing the information. Thus, TCPSP
with header parsing meant that TCPSP parsed header
information and stored it for all requests. In this
experiment, we want to show the overhead of HTTP
header parsing in TCPSP.

Figure 3 show a comparison of the requests per second
and throughput of the TCP splice and application proxy.
The test was run on the client directly requested to the
web server without any content switch presented. The
results of this test should represent the best possible
throughput for the test software we were using. The
average difference of the direct and TCP splicing is 5%,
and the average difference of the direct and application
proxy is 15%. We prove that the TCP splicing has the
better performance than application proxy as expected.

Proceedings of the First International Conference on Innovative Computing, Information and Control (ICICIC'06)
0-7695-2616-0/06 $20.00 © 2006

We had tested the overhead of the HTTP request header
parser in TCP splicing by the header parser line of the
Figure 3 and Figure 4. The overhead is less than 2% that
we can accept.

The second set of experiments compares the CPU load
of the cluster servers in TCPSP and FPS. We monitor the
CPU load of the web server in six minutes. The client and
the controller PCs were configured with Windows XP.
The web switch and the web server PCs were configured
with Linux RedHat 8.0. The web servers were configured
with apache 2.0.4. In order to display the difference of
each server CPU load, the workload in WebBench was set
in HTTP 1.1 version and the HTTP requests were for
dynamic cgi programs that were CPU intensive. We used
the load balancing algorithm, MCRR [7], for TCPSP in
the application layer and FPS in the kernel space.

Figure 4 and Figure 5 shows the results of the servers
with TCP splicing in one-second intervals. Clearly, the

Figure 4. CPU load of the web server with TCP splicing.

Figure 5. CPU load of the web server with FPS.

CPU load is very unbalanced in the TCP splicing. Because
the TCP splicing only made the first packet of the flow
with the load balancing algorithm, following packets were
directly sent to the same web server. In fact, TCP splicing
supported no load balancing algorithms.

As a result, we find out FPS suffers more load than
TCPSP comparing others. The reason is because
WebBench would not send more requests before the
responses come back. The throughput results show that,
TCPSP handles 10 requests per second and FPS handles
41 requests per second. So, the throughput of FPS
outperforms four times than TCPSP. It is the major reason
that the load in each server of FPS is higher than TCPSP.
Besides, the average latency time is 202 ms in TCPSP and
39 ms in FPS, so that FPS outperforms five times than
TCPSP.

IV. CONCLUSION

Fully pre-splicing mechanism (FPS) has several
advantages: first, it extracts HTTP header in the kernel
space to reduce the twice data copying between user and
kernel space. Second, it forwards the response from server
to client in the layer 3.5 of TCP/IP protocol stacks with
packet header modification to decrease unnecessary data
copy time from kernel to application layer. Third, it uses
the pre-connection method to diminish the three-way
handshake time between the switch and the server
connections. Fourth, we extend the TCP splicing which is
content blind to support load balancing algorithm for
balancing the load of the cluster servers. Finally, FPS has
succeeded reducing the overhead of SSA.

REFERENCES

[1] Maltz, D., and Bhagwat, P. “TCP Splicing for Application Layer
Proxy Performance”, IBM Research Report RC 21139(03/17/98)
(March 1998).

[2] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel. “Scalable
Content-aware Request Distribution in Cluster-based Network
Servers”, In Proceedings of the USENIX 2000 Annual Technical
Conference, San Diego, CA, June 2000.
http://citeseer.nj.nec.com/aron00scalable.html

[3] Ariel Cohen, S. R., and Slye, H. “On the Performance of TCP
Splicing for URL-aware Redirection”, Second USENIX
Symposium on Internet Technologies and Systems, Boulder, CO,
Oct. 1999.

[4] C. Yang, M. Luo, “Efficient Support for Content-Based Routing in
web Server Clusters”, Proceedings of USITS’99-2nd USENIX
Symposium on Internet Technologies & Systems, Boulder,
Colorado, USA, October 11-14, 1999.

[5] TCP Splicing project (TCPSP),
http://www.linuxvirtualserver.org/software/tcpsp/index.html.

[6] Netfilter, http://www.netfilter.org/.
[7] E. Casalicchio and M. Colajanni, “Scalable web cluster with static

and dynamic contents”, Proceedings of IEEE Int’l Conf. on
Cluster Computing, pp. 170-177, Chemnitz, Germany, Dec. 2000

Figure 3: The performance result of requests per
second (a) and throughput (b).

(b) Throughput

(a) Requests per second

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1_c
lie

nt

8_
cli

ent

16
_c

lie
nt

24
_c

lie
nt

32
_cli

en
t

40_
cli

en
t

48_
cli

en
t

56
_c

lie
nt

direct

tcpsp

Proxy

Header Parser

Th
ro

ug
hp

ut
 (K

B
yt

es
/S

ec
)

Max Name

0.000
100.000
200.000
300.000
400.000
500.000
600.000
700.000
800.000

1_
cli

en
t

8_
cli

en
t

16
_c

lie
nt

24
_c

lie
nt

32
_c

lie
nt

40
_c

lie
nt

48
_c

lie
nt

56
_c

lie
nt

drect

TCPSP

Proxy

Header

R
eq

ue
st

Pe
r S

ec
on

d

Max Name

Proceedings of the First International Conference on Innovative Computing, Information and Control (ICICIC'06)
0-7695-2616-0/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

