1996 International Conference on Parallel Processing

An Efficient Hybrid Cache Coherence Protocol for
Shared Memory Multiprocessors *

Yeimkuan Chang and Laxmi N. Bhuyan
Department of Computer Science
Texas A&M University
College Station, Texas 77843-3112
E-mail: {ychang, bhuyan }Q@cs.tamu.edu

Abstract — This paper presents a new tree-based
cache coherence protocol which is a hybrid of the lim-
ited directory and the linked list schemes. By utilizing
a limited number of pointers in the directory, the pro-
posed protocol connects the nodes caching a shared
block in a tree fashion. In addition to the low commu-
nication overhead, the proposed scheme also contains
the advantages of the existing bit-map and tree-hased
linked list protocols, namely, scalable memory require-
ment and logarithmic invalidation latency. We evalu-
ate the performance of our protocol by running four
applications on an execution-driven simulator. Our
simulation results show that the performance of the
proposed protocol is very close to that of the full-map
directory protocol.

1 Introduction

Several cache coherence schemes have bieen pro-
posed to solve the cache consistency problem in shared
memory multiprocessors[1]. Most of the popular cache
coherence protocols are based on snooping on the bus
that connects the processing elements to the mem-
ory modules [2] But the obvious limitation to such
schemes is the limited number of processors that can
be supported by a single bus. The single bus be-
comes the bottleneck in the system. To make shared
memory multiprocessors scalable with respect to a
large number of processors, non-bus-based networks
such as point-to-point networks and multistage inter-
connection networks are normally employed. Since
the broadcast procedure generates a lot of traffic
on networks, non-broadcast based directory proto-
cols are used to implement cache coherence Full-map
and linked list schemes are two categories of directory
protocols|3, 4].

The fall-map directory scheme maintains a bit map
which contains the information about which node in
the system has a shared copy of an associated block.
When a read or write miss occurs, a request is sent
to the home memory module as determined by the
address of the requested data. Upon receiving the re-
quest, the home memory module sends a reply along
with the data to the requesting node. Thus, it takes
two messages to serve a read miss request, However,

*This research has been partly supported by NSF grant MIP-
9301959.

the storage overhead necessary to maintain the direc-
tory is large, and becomes prohibitive as the size of
the system grows. Also, the latency of cache trans-
actions is usually larger since these systems do not
have a broadcasting medium like a shared bus to send
invalidation signals. The limited directory approach
[3, 5] limits the number of pointers associated with
each block in order to keep the directory size manage-
able. However, this approach also limits the number
of processors that can share a block. The existing
schemes are discussed in more detail in Section 2 of
this paper.

One way to reduce the storage overhead in the
directory scheme is to use linked lists instead of a
sparsely filled table to keep track of riultiple copies of
a block. The IEEE Scalable Coherent Interface (SCI)
standard project [4, 6] applies this approach to define
a scalable cache coherence protocol. In this approach
the storage overhead is minimal, but maintaining the
linked list is complex and time consuining. The proto-
col is oblivious of the underlying interconnection net-
work and therefore, a request may be forwarded to
a distant node although it could have been satisfied
by a neighboring node. The major disadvantage is
the sequential nature of the invalidation process for
write misses. The scalable tree protocol (STP) [7]
and the SCI tree extension protocol [3] were proposed
to reduce the latency of wrive misses, The low la-
tency of read misses 1s sacrificed in order to construct
a balanced tree connecting all the shared copies of a
cache block. The large number of messages generated
for read misses, however, makes these protocols pro-
hibitive for an application with a smaller degree of
data sharing.

In this paper, we propose a new tree-based cache
coherence scheme for shared memory multiprocessors.
The proposed scheme aims at reducing the latency
of both read and write misses. The main idea is to
utilize the sharing inforrnation available from the lim-
ited number of pointers in the directory in forming an
appropriate number of trees. It is a hybrid of the lim-
ited directory and the linked list prctocols with only
forward pointers. The proposed protocol has the ad-
vantages of the bit-map protocol and the tree-based
linked list protocol, naraely, small read miss latency
(two messages), logarithmic write latency, and scal-
able directory memory requirement.

I-172

0190-3918/96 $5.00 © 1996 IEEE

http://iQcs.tamu.edu

1996 International Conference on Parallel Processing

The rest of this paper is organized as follows. In
Section 2, existing schemes are discussed. The detailed
design of the proposed tree-based directory protocol is
provided in Section 3. Performance comparisons be-
tween different protocols are given in Section 4, by
using an execution driven simulation. Finally, con-
cluding remarks are presented in Section 5.

2 Discussion on Existing Schemes

Existing directory schemes fall into two categories,
namely bit-map and linked list protocols. A nomei-
clature, Dir;X, was introduced in [3] for bit-map co-
herence protocols. The index 7 in Dir; X represents the
number of pointers for recording the owners of shared
copies, and X is either B or NB depending on whether
a broadcast is issued when the pointers overflow. We
introduce a new notation Dir;Tree; for the linked
list protocols that will cover all the existing linked
list protocols. The subscript ¢ in Dir; represents the
number of pointers in the directory and subscript &
in Treey represents the number of pointers in the tree
structure. For example, Stanford’s singly linked list
protocol [6] and SCI [4] belong to Diry'Tree; because
they have a single pointer in the directory pointing to
the head of the list. Note that Dir;Tree; does not dis-
tinguish between singly linked list protocol (i.e., with
only forward pointer% and double linked list protocol
(i.e., with both forward and backward pointers). The
index i of Dir;Treeg represents the number of nodes
having shared copies in their local caches. STP [7] be-
longs to DiraTree; because it maintains a k-ary tree
and keeps pointers to the root of the tree and the latest
node joining the tree. Similarly, the SCI tree extension
(P159¢.2 [8]) belongs to DirgTrees because it main-
tains a balanced binary tree and keeps two pointers,
one to the root of the tree and the other to the head
(latest node joining the tree). Our tree-based protocol
is a Dir; Treer scheme with only forward pointers.

2.1 Bit-map Schemes

A. Full-Map (Dir,NB)

In this scheme, n bits are associated with each memory
block, one bit per node. If a copy of the shared block
is contained in the local cache of a node, the presence
bit corresponding to that node is set. The directory
also has a dirty bit. If the dirty bit is set, only one
node in the system has a copy of the corresponding
shared block.

The advantage of this scheme lies in that only the
nodes caching thc block receive the invalidation mes-
sages. The disadvantage is the large directory size.
The amount of the directory memory in the n-node
system is B - n? bits, where B is the number of shared
blocks in each node.

B. Limited Directory Schemes

The main idea behind these schemes is based on the
empirical results that in most of the applications, only
a small number of processors share a memory block
most of the time. Thus, a limited number of pointers
n the directory will perform as well as the full-map
scheme most of the time. The advantages of having
a limited number of pointers are the scalable mem-
ory requirement and faster hardware support. If the
pointers are not sufficient to record all the nodes hav-
ing shared copies (i.e., pointer overflow), a mechanism

must be employed to deal with it. The memory re-
quirement in a limited directory schemeis B-i-nlogn
in an n-node system, where each node has B blocks of
shared memory and ¢ is the number of pointers in the
directory.

T wo limited directory schemes, Dir; B and Dir;NB,
ha - been proposed in the literature[3]. The broad-
cas. scheme Dir;B employs an overflow bit to han-
dle pointer overflow. If there is no pointer in the
dirctory available for subsequent requests, the over-
flow bit is set. Then, invalidation messages will be
broadcast to all the processors in the system to main-
tain cache coherence when a write miss occurs. This
scheme performs poorly if the number of shared copies
is just greater than the number of pointers. The
non-broadcast scheme Dir;NB avoids the broadcast
designed for solving the pointer overflow problem in
Dir;B by invalidating one of the processors pointed by
the pointers and replacing it with the current request.
This scheme does not perform well when the number
of shared copies is much greater than the number of
the pointers.

In LimitLESS; [5] and Dir; SW [9], the pointer over-
flow problem is solved by software. All the pointers
that can not fit into the limited hardware-supported
directory space are stored in traditional memory by
the software handler. The delay in calling the soft-
ware handler is their major disadvantage.

2.2 Linked List Schemes

Singly Linked List Protocol

In this protocol [6], a list of pointers is kept in the pro-
cessors caches instead of main memory. Each shared
block only keeps a pointer to a node which contains
a valid copy of the block. The node called the head,
pointed to by the home memaory module, is the last one
which accesses the corresponding shared block. The
head in turn uses its pointer to point to another node
which also has a valid copy. Continuing the above
pointing process, a singly linked list is formed. The
last node in the list, called the teil, points back to the
home memory module.

On a read miss, a request is first sent to the home
memory module. The memory module informs the
head to supply the requested block to the requester.
In the meantime, the memory updates its pointer to
point to the requester. Upon receiving the block, the
requester points to the supplier. The requester now
becomes the head of the list.

On a write, the request is again sent to the home
memory module. The memory module then follows
the pointers on the linked list to invalidate all the valid
copies in the system. Upon receiving the invalidation
message, the head supplies the requested block to the
requester. The tail sends an acknowledgment to the
requester to indicate the completion of the invalidation
process. The directory memory requirement for this
protocol is (C+B)-nlog n bits, where B and C are the
numbers of memory and cache blocks in each node.
Scalable Coherent Interface
Scalable Coherent Interface (SCI) is an IEEE standard
(P1596) [4]. It is based on a doubly linked list. On
a read miss, the reading cache sends a request to the
memory. If the list is empty, the memory points to
the requester and supplies the data. Otherwise, the

I-173

1996 International Conference on Parallel Processing

old head of the list is returned to the requester. After
receiving the reply from home memory, the read re-
quester sends a new request to the old head of the list.
The old head returns the requested data and updates
its predecessor pointer to the requester. The requester
sets its successor pointer to the old head and becomes
the new head of the list. :

On a write miss, the requester puts itself as the new
head of the list as in the read miss situation. Then
it sends an invalidation message to its successor and
waits for for an acknowledgment. After its successor
is invalidated and taken out of the list, the requester
updates its successor pointer to the successor of its
old head and continues the same invalidation process.
It takes 2P messages to invalidate a list of P cached
copies. Adding the four messages for inserting itself
as a new head, the requester takes 2P +4 messages to
get the write permission.

Scalable Tree Protocol

The scalable Tree Protocol (STP) [7] uses a top-down
approach to construct a balanced tree. Take a binary
tree as an example. The first node issuing a read re-
quest to a specific memory block will be the root of the
tree. The 2nd and 3rd nodes issuing read requests will
be the children of the first one. Similarly, the 4th and
5th nodes making a read request will be the children
of the 2nd node. Continuing the same procedure, a
balanced tree is formed. The invalidation process fol-
lows the tree structure and can be done in logarithmic
time.

This protocol attains a logarithmic invalidation
process by constructing a balanced tree, but paying
the price of generating too many messages for read
misses. Since most of the requests in an application
are read misses, the protocol performs poorly when
the degree of data sharing or write misses is low.
SCI Tree Extension
This scheme is proposed as an IEEE standard exten-
sion (P1596.2) of SCI [8]. It constructs a balanced
tree by using AVL tree algorithm. This scheme has a
read miss overhead similar to STP. Thus, it does not
perform well for the applications with a low degree of
data sharing and less frequent write misses.

We summarize the number of messages generated
by a read or a write miss for the various protocols in
Table 1. The pros and cons of each protocol are also
given in Table 2. The DirsTree; is an example of the
new protocol, proposed in the next section.

3 The New Cache Coherence Protocol

We propose a Dir;Trees. cache coherence protocol
that combines a limited directory scheme with a tree-
based scheme. The design of the protocol aims at min-
imizing the communication overhead for constructing
the tree structure when a read miss occurs, and for in-
validating the copies of the shared memory block when
a write miss occurs. We begin by discussing the direc-
tory structures for cache and memory blocks. Then,
coherence actions are described for read misses, write
misses, and block replacements.

A. Directory Structure

The proposed scheme maintains many optimal or
near-optimal trees for all shared cache blocks. We
call it a Dir;Tree; scheme because 7 k-ary trees are

maintained. The indices 7 and k of Dir;Tree; indi-
cate the number of pointers in each memory block and
cache block, respectively. Thus, Dir;Treer employs ¢
pointers in a memory block and constructs k-ary trees
poinied to by these i pointers. As an example, the
org- :iization of the trees with 14 shared copies con-
st1 ~ted for the DiryTree, scheme is shown in Figure 1,
wi s the numbers in the circles denote the arriving
seis i uce of the read requests. The construction of the
tre s is explained in detail later under read miss. The
n:emory requirement is B -7 - 2ilogn + C - klogn in
at n-node system, where B and C are the numbers of
memory and cache blocks per node, respectively.

Memory

° 0
!
T
|
!
|
,

(or
e
&

Figure 1: The organization of trees constructed for
DirgTrees.

The empirical results in [10] suggest that in many
applications, the number of shared copies of a cache
block is lower than four, regardless of the system size.
Thus, we feel comfortabe in using ¢ = 4 and k = 2
to construct binary trees in this study. The write op-
eration can be implemented by employing either an
invalidation or an update protocol. We use an inval-
idation protocol with a strong consistency model in
this paper. Figure 2 shows the structures of cache
and memory blocks. The variable level in the mem-
ory block is used to record the height of the trees, and
facilitates constructing near-optimal trees.

mstate

ack counter{ data -
cstate - data

“level | level | level | level :

__0 1 2 3 :

pointer | pointer Lpoimer pointer ack counter) tag | SOR S(lm
G 1 2 3

(@ (b)
Figure 2: The structures of cache and memory blocks.

B. The Protocol and its Coherence Operations
The states of cache blocks are E (ezclusive), V (valid),
and IV (invelid), RM_IP (Read Miss In Process),
WM_IP (Write Miss In Process), and INV_IP (Inval-
idation In Process). The state transition diagram of
cache blocks is shown in Figure 3. RM_IP, WM_IP,
and INV_IP are transient states. In general, the co-
herence operations are similar to those in the full-map
protocol.

I-174

1996 International Conference on Parallel Processing

| Protocol | Read miss]| Write Miss
full-map 2 2P +72
Dir,NB 2 2P + 2 plus unnecessary invalidations and read misses
LimitLESS, 2 2P 4 2 plns (P — 4) software handler delay
singly linked list 3 P+2
SCI 4 2P+2
SCI tree extension | 4to 2log P log P
STP (binary) 40 8 log P
proposed DirgTree, 2 ~ log P

Table 1: Number of messages generated by a read or write 1uiss for various schemes, where P is the number of
processors that access the memory block under consideration.

Protocol | Pro

[Con

Full Map

Simple to implement
No replacement overhead
Low read miss overhead

High memory overhead
Sequential invalidation process

(hardware)

Dwr; NB Simple to implement High invalidation overhead
Low memory overhead Sequential invalidation
Low read miss overhead

LimitLESS, Low memory requirement Sequential invalidation

slow software handler

Single Link Chain

Moderate memory overhead

Sequential nvalidation

Double Link Chain

Moderate memory overhead

Sequential invalidation

SCIT extension

Logarithmic invalidation

High read miss overhead
High replacement overhead

STP Logarithmic invalidation High read miss overhead
High replacement overhead
Dir;Treeg Low read miss overhead replacement overhead

Logarithmic invalidation
Low memory overhead

Table 2: Pros and Cons for various protocols.

Since we use a strong consistency model, the state
of a cache block which sends invalidation messages to
its children is changed to WM.IIP and waits for the
acknowledgments. The transient state WM_I_IP for
cache blocks does not exist in the full-map protocol.
Two kinds of invalidation messages are shown in Fig-
ure 3. INV is used for the regular invalidation mes-
sages, as in the full-map protocol. Replace_INV is
used for the coherence operations for cache replace-
ments and will be explained in detail later.

The states of the memory blocks are the same as
those in the full-map directory protocol. Figure 4
shows the state transition diagram of the memory
blocks. The memory transient states are RM_.WW
(Read Miss Waiting for Writeback), WM_.WW (Write
Miss Waiting for Writeback), and WM_LIP (Write
Miss’s Invalidation In Process).

The major differences between Dir;Treer and the
full-map protocol lic in how the tree is constructed by
using the hmited number of pointers and in the ac-
tions taken for block replacements. As in the full-map
directory protocol, the requested block is always pro-
vided by the home node. We discuss the read miss,

write miss and the coherence operations for cache re-
placements in detail below.

Read miss: A read request is said to be a miss
if the cache controller finds that the requested data is
not in any cache block, or the cache block containing
the requested data is 1n invalid state. When a read
miss occurs, a local cache is first selected for replace-
ment. The request is then passed over the network to
the home memory module. The operations to serve
a read miss are the same as in the limited directory
scheme if a null pointer in the directory is available for
the request. Otherwise, two pointers are selected and
sent to the requesting node along with the requested
data. The processors which were pointed to by the
selected pointers will become the children of the re-
questing processor. One of these two pointers is set
to point to the requesting processor and the other is
set to null. Figure 5 shows how a tree is constructed
while the fifteenth request arrives at the home mem-
ory module in Figure 1. It can be seen that after the
read miss is completed, processors 11 and 13 become
the children of processor 15.

Figure 6 lists in detail the coherence operations for

I-175

1996 International Conference on Parallel Processing

INV_OK if not complete

Figure 3: State transition diagram of the cache blocks.

WM/RM(Waitog)

INV_OK
if nck complete

Figure 4: State transition diagram of the memory
blocks.

serving a read miss at the home memory rmodule. Four
different situations are considered in Iigure 6. First,
it checks whether or not the processor has been al-
ready recorded. This situation might occur when the
cached block in a processor was replaced and later on
that processor issues a read request again. The second
situation considers the case when a processor has a
read miss the first time, and there is an empty pointer
available. The third and forth parts consider the cases
when there is no pointer available in the directory for
the next incoming read request. If there are two point-
ers pointing to two trees with the same height, these
two pointers will be sent to the requesting processor
and the processors pointed to by these two pointers
become the children of the requesting processor. Fi-
nally, one of these two pointers is set to point to the
requesting processor and the other is set to null. The
last situation considers the case when there are no two
pointers which point to the trees with the same height.
The pointer with the smallest level will be selected
and sent to the requesting processor. The processor
pointed to by the selected pointer becomes the only

Memory

VTLIU

e
i RM_Reply (data, 11, 13)

v(?@

RM

K |
®

'
' T

L
I
v

| N

\

Toin

® @O@O

Figure H: Message movements for a read miss.

s |

o=

for (1=0. 3)

if (pfi} = requester) {
(data, null null) — requester; return; }

for %i - 0..3) ‘
i (p (1 == null) {
ata, null, null) --— requester
pli] = requester return
if(p('i]::p i1), where i,]E{O 3}and1763 {
ata, p[i}, plj]) — requester;
pli] = requester level[ij++;
plj] = null; level[_]] = 0; return; }
if (level[i] < level% for aHJ #1 {
(data, p[i], — requester;

pli] = requester; level[i]++; return; }

Figure 6: Cache coherence operations for a read miss.

child of the requesting processor. Then the selected
pointer 18 set to point to requesting processor and the
level of the pointer is incremented by one.

Note that Figure 6 only shows the high level algo-
rithm for dealing with a read miss. It 1s possible to
implement an efficient hardware design for this opera-
tion. Unlike the limited directory, Dir;Tree; does not
rely on broadcast, or generate any unnecessary inval-
idation messages. Dir;Tree; does not have the high
overhead caused by a software trap used by the Lim-
itLESS schemes.

Since there are only limited number of pointers in
the directory, trees generated by Dir;Tree, are not
balanced. Subsequently, we base on a fixed num-
ber of processors sharing a memory block and discuss
how balanced are the trees generated by the proposed
scheme.

Consider the DiryTree; scheme first. Two point-
ers, PO and P1, are in the directory. Let Ni(7) and
N2 j) be the number of processors in the j-level tree
pomted to by PO and P1, respectively. Table 3 shows
the expressions of Nl(]) and No(j) derived from Fig-
ure 6. The expressions of Nl(] and Nz(yg can be
simplified as j and j(j + 1)/2, respectively. Similarly,
the expression of N;(j) for Dlr ;Treey can be derived

as 28 — 1+ Y471 (N;_1(k) -+ 1). Table 4 lists the max-
imum number of processors caching a memory block
versus the level of the trees for the proposed schemes,

I-176

1996 International Conference on Parallel Processing

Level 2 3 J
P0 | MDD =1 N(2) =2 M(3) =3 MG =7
Pl [Ny(l)=1| Na(2) =3 | N3(3) =3+ Ny(2) +! No(j) =3+ 39 _o(Nu(k) + 1)
Table 3: Ny(k) and Na(k) i DiryTrees.
Level [DirsTrees | DirgTrees binary tree
(SCI or STP)
3 9 16 7
! 14 43 15
5 20 75 31 & s 15
6 27 99 63 (7 R
7 35 163 197 m,(é) @, i @)
8 7 256 255 : %) e
9 54 386 511
10 55 562 1023 é ©anes
11 77 794 2047
19 90 10993 095 Figure 7: Message movements for a write miss. (For

Table 4. Maximum number of nodes constructed in
DirsTrezy and DirgTrees as a function of level.

Diry'Tres,, DiryTree;, and SCI or STP with binary
trees. We can easily check from the first row of the ta-
ble that when there are 16 processors caching a mem-
ory block using the DiryTree; scheme, pointers 0 and
1 point to a tree with 7 nodes and pointers 2 and 3
point to a singly node. If a 1024-node system is built,
the biggest tree maintained by the DiryTrees scheme
is of 12 levels which is only one level more than the
balanced binary tree.

Write miss: When a write miss occurs, the write
request is first sent to the home memory module. In-
validation messages are then sent out to the root nodes
of the trees by following the pointers in the direc-
tory. The other nodes caching the data are invali-
dated by the messages originating from their corre-
sponding roots. In order to speed up the invalidation
process further, the nodes pointed to by odd num-
bered pointers receive invalidation message from the
nodes pointed to by even numbered pointers. The
home memory module only receives at most half the
number of acknowledgments and thus, the possibility
of the home node becoming a bottleneck reduces. An
example of a write miss operation is shown in Fig-
ure 7, where 15 shared copies are in the system be-
fore a write miss occurs. The invalidation messages to
node 15 originate from nodes 9. The acknowledgments
which are omitted from the figure to preserve clarity
follow the reverse direction of the invalidation paths.
It can be seen that DiryTree, has a 3-level tree which
is shorter than the 4-level binary tree with ten nodes
maintained by an STP protocol with binary trees or
the SCI tree extension.

Replacement Operation: When a miss occurs, a
cache block must be selected for storing the requested
data before a request is sent to the home memory

clarity, acknowledgments are omitted.)

module for service. If the selected cache block cur-
rently holds a valid or exclusive copy of data with
a different address, a replacement operation needs to
be performed. We propose that when a valid or ex-
clusive cached block is being replaced, the subtree
rooted at the replaced cache block be invalidated with-
out informing the home directory. The message type
Replace INV is used for replacement operation to dis-
tinguish 7NV generated by write misses because no
acknowledgment is needed for replacement. The ra-
tionale of doing this is as follows. First, as noted in
[10], most of the time, the mumber of shared copies of a
memory block is less than four. Thus, our replacement
operations will perform as well as the bit-map scheme
because the replaced cache block does not have any
child most of the time. Second, even when the trees
grow bigger, most of the replaced cache blocks are
positioned as the leaf nodes of the trees. Third, the
replacements are not frequent if the set size of an asso-
ciative cache memory increases. It is possible that one
of the roots may be replaced and causes some commu-
nication traffic if one of its children issues a request
later. However, the proposed replacement action is
simple and easy to implement. It is worthwhile to
note that the only possible communication overhead
of the proposed scheme comes from the replacements.

4 Performance Evaluation

We use four real applications to compare the per-
formance of the proposed Dir; Tree; coherence scheme
with that of the full-map and the limited directory
schemes. The applications comprise MP3D, LU de-
composition, the Floyd Washall algorithm, and a Fast
Fourier Transformation program (FFT). We give a
brief description of each programi mdicating its pur-
pose and the data structure employed as follows.

1-177

1996 International Conference on Parallel Processing

112.0

ata cache

Tock Size
Cache Associativity
Network type

6 k bytes
8 bytes 1100
Tully Associative
binary n-cube

g
=]

Network Size 8, 16, 32 processors 1050
etwork bandwidth 8 bits 1040
Switch/Wire Delay 1 cycle

Memory Access Latency | b cycles
Cache Access Latency T cycle

g
S

°
3
=}

Table 5: Simulation Model.

Normalized Execution Time (%)
8
&

&
5

fml4L2L1 4 2 1 frld4l2L14 2 | fmE4L2L14 2 1
et e’ e

D No. of Processors 8 16 32

1200 7 fm: full map

18: DigNB
14: Dir,NB
4: DirTrees
2 Dinjl‘reez
1: Digy Tree,

150 Figure 9: Normalized execution time for LU.

=3
=S

]
2

g
g

b3
o

8
&

Normalized Execution Time (%)

]
8

fml44 2 1 fml814 4 2 | fmL8L4 4 2 1
No. of Processors 8 16 32

Figure 8: Normalized execution time for MP3D.

4.1 Simulation Methodology

We ported the proposed coherence scheme to
Proteus|[11] which is an execution driven simulator for
shared memory multiprocessors. The simulator can
be configured to either bus-based or k-ary n-cube net-
works. The networks use a wormhole routing tech-
nique. The specification of the simulated network
and the cache memory is given in Table 5. We com-
pare the normalized execution time for each applica-
tion running with the various schemes as mentioned
above, where the normalized execution time is defined
as the relative execution time to that of the full-map
scheme. The examined schemes are Dir,, NB, Dir; NB
and Dir;Trees for i = 1,2,4,8. The results are plot-
ted in Figs. 8 through 11 for various applications.
The full map scheme is denoted by fm, the limited di-
rectory schemes by L8, L4 L2, L1 and the Dir;Tree,
scheme is represented by 8, 4, 2 and 1.

MP3D: The MP3D application is taken from the
SPLASH parallel benchmark suite [12]. 1t is a 3-
dimensional particle simulation program used in the
study of rarefied fluid flow problems. MP3D is no-
torious for its low speedups. For our simulation, we
used 3000 particles and ran the application in 10 steps.
The results are given in Figure 8§ for 8, 16, and 32 pro-
cessors. Comparing the full-map and limited directory
schemes in the 8 and 16-node system, the performance
of the full-map scheme is the best. It is shown that
DiryTree, is only less than 5% slower than the full-
map scheme and much faster than the limited direc-

tory schemes DiryNB and DirsNB. In a 32-node sys-
tem, the performance of DiroTrees and DiryTrees are
better than all other schemes.

LU Decomposition: The LU application is also
taken from the SPLASH parallel benchmark suite [12].
It 15 a parallel version of dense blocked LU factoriza-
tion without pivoting. The data structure includes two
dimensional arrays in which the first dimension is the
block to be operated on, and the second contains all
the data points in that block. We use a 128x128 ma-
trix in our simulation study. Figure 9 shows the per-
formance results for LU. It can be seen that Dir;NB
performs worst in all the cases. In a 8-node system,
Dir, Treep performs better than all other schemes. In
the 16-node system, DiryNB, Dir;Tree;, DiryTrees,
and DiryTree; perform as well as the full-map scheme.
In the 32-node system, surprisingly, Dir4NB has the
best performance. DirgTree; and DiryTree, also per-
forru better than the full-map scherne.

Floyd Washall: Floyd Washall is a program that
computes the shortest distance between every pair of
nodes in a network. The network employed 1s a ran-
dom graph of 32 nodes. The basic data structures in
the Floyd Washall algorithm are 2-dimensional arrays
for representing the predecessor matrix and the dis-
tance matrix. An additional 2-dimensional array is
also used for recording the computed path. Each pro-
cessor is responsible for updating a few rows of the dis-
tance matrix. The entire matrix is declared as a shared
array. Updating the distance matrix requires reading
the entire shared array, which incurs a large degree
of data sharing. Figure 10 shows the performance
plot for the Floyd Washall program. DirgTrees; and
DirsTreey perform very closely to the full-map scheme.
The performance difference between DirgTrees and the
full-map scheme is less than 2%.

FFT: Figure 11 gives the results for the FFT applica-
tion. Except Dir;Treey, all the other schemes perform
very well. However, the proposed schemes DiryTrees
and DirgTree; perform better than the full-map and
the limited directory schemes. The improvement in
case of the proposed schemes increases when the sys-
tem becomes bigger. The improvement stems from the
fact that not much communication overhead is caused

1-178

Floyd Warshall
1250 T T T T L a— T T T
§ 1200 fm: full map
; 8: Dirs'I‘ree2
E 50t 4: DigTree ,
] .
g 1 D1r1Tree2
k=
1104
§ 0.0
LE 05
9 1050
8
s
E 1000
]
b4

No. of Processors § 16 32

Figure 10: Normalized execution time for Floyd

Washall.

FFT

R0 T T T T T T T T T T T T

1015 (fm: full map

L4: DigNB

~ L2:DirNB

1010 8: Dir&"lﬁ_reeg
4: Dirgl'ree,

1005 - 1: DirTree,

Normalized Execution Time (%)

No. of Processors 8 16 32

Figure 11: Normalized execution time for FFT.

by replacements.

5 Conclusion

In this paper, we proposed a new tree-based di-
rectory cache coherence protocol for shared memory
multiprocessors. The proposed protocol combines the
features of the limited directory schemes with tree pro-
tocols. Tt utilizes a limited number of pointers to con-
struct trees to reduce the directory size and invali-
dation latency. Compared to the STP and the SCI
tree extension scheme, the proposed scheme has lower
read miss overhead, which is just two messages. At
the same time, it retains the low invalidation proper-
ties of a tree protocol for large degree of sharing. The
trees constructed by the proposed scheme are nearly
balanced. Execution driven simulation shows that the
proposed scheme is very close in performance to the
full-map scheme. When the number of processors is
large, the new scheme even performs better than the
full-map scheme in some cases. At the same time, our
scheme requires less directory space than the full map
scheme.

I-179

o L
fml4Ll2 8 4 | mI412 8 4 1 mlsl2 8 4 1
N N Y

References

[1] D. J. Lilja, “Cache coherence in large-scale
shared-memory multiprocessors: Issues and com-
parisons,” ACM Compuling Surveys, pp. 303—
238, Sept. 1993.

[27 Q. Yang and L.N. Bhuyan, “Analysis and Com-
narison of Cache Coherence Protocols for a
Packet-Switched Multiprocessor” In IEEE Trans-

tions on Computers, vol. 38, no. 8, pp. 1143-
1183, August 1989.

;. D. Chaiken et.al., “Directory-Based Cache Co-
Licrence in Large-scale Multiprocessors,” Com-
puter, vol. 23, no. 6, pp. 49-58, June 1990.

[4] IEEE, IEEE Std 1596-1992: IEEE Standard for

Scalable Coherent Interface, IEEE, Inc., 345 East
47th Street, New York, NY 10017, USA., Aug.
1993.

[6] D. Chaiken, J. Kubiatowicz, and A. Agarwal,

“LimitLESS Directories: A Scalable Cache Co-
herence Scheme,” ASPLOS-IV Proceedings, pp.
994934, April 1991.

M. Thapar, B. Delagi, and M. J. Flynn, “Linked
List Cache Coherence for Scalable Shared Mem-
ory Multiprocessors,” In Proc. International Par-
allel Processing Symposium (IPPS), pp. 34-43,
April 1993.

H. Nilsson and P. Stenstrom, “The Scalable Tree
Protocol - A Cache Coherence Approach for
Large-Scale Multiprocessors,” In Proc. Interna-
tional Symposium on Parallel and Distribuled
Processing, pp. 498-506, December 1992.

[8] R. E. Johnson, Eztending the Scalable Coherent

Interface for Large-Scale Shared-Memory Multi-
processors, PhD thesis, University of Wisconsin-
Madison, 1993.

[9] M. Hill and et al., “Cooperative Shared Memory:

Software and Hardware for Scalable Multiproces-
sors,” ASPLOS-V Proceedings, pp. 262-273, Oc-
tober 1992.

[1g] W.-D. Weber and A. Gupta, “Analysis of

Cache Invalidation patterns in Multiprocesors,”
ASPLOS-IIT Proceedings, pp. 243~256, 1989.

[11] E. A. Brewer, C. N. Dellarocas. A. Colbrook, and

W. E. Weihl, “PROTEUS: A High-Performance
Parallel Architecture Simulator,” Technical Re-
port MIT/ICS/TR516, MIT, 1991.

112] J. P. Singh, W. D. Weber, and A. Gupta,

“SPLASH: Stanford Parallel Applications for
Shared Memory,” Technical Report CSL-TR-92-
526, Stanford University, 1992.

