
__---
1 996 International Conference on Parallel Processing

______ ~

An Efficient Hybrid Cache Coherence Protocol for
Shared Memory Multiprocessors *

Yeimkuan Chang and Lasimi N. Bliuyan
Depart~meiit of Compu k r Science

Texas A k M Tlniversity
College Station, Texas 77843-3112

E-mail: {ychang, bhuyari }iQcs.tamu.edu

Abstract - This paper presents a new tree-based
cache coherence protocol which is a hybrid of the lim-
ited directory and the linked list schemes. By utilizing
a limited number of pointers in the directory, the pro-
posed protocol connects the nodes caching a shared
block in a tree fashion. In addition to the low coinmu-
nication overhead, the proposed scheme also cont#ains
the advantages of the existing bit-map and tree-ljased
linked list protocols, namely, scalable memory require-
ment and logarithmic invalidation latency. We evalu-
ate the performance of our protocol by running four
applications on an execution-driven simulat,or. Our
simulation results show that the performance of the
proposed protocol is very close to that of the full-map
directory protocol.

1 Introduction
Several cache coherence schemes have Leen pro-

posed to solve the cache consistency problem in sltared
memory multiprocessors[l]. Most of the popular cache
coherence protocols are based on snooping on the bus
that connects the processing elements to the mem-
ory modules [2 . But the obvious limitation to such

be supported by a single bus. The single bus be-
comes the bottleneck in the system. To maze sliared
memory multiprocessors scalable with respect to a
large number of processors, non-bus-based networks
such as point-to-point networks and rnult,istage inter-
connection networks are normally employed. Since
the broadcast procedure generates a lot of traffic
on networks, non-broadcast based directory proto-
cols are used to impleniknt cache coherence Full-map
and linked list schemes are two categories of directory
protoc.ols[3, 41.

The full-map diredory scheme maintains a bit map
which contains the informat.ion about which node in
the system ha.s a shared copy of an associated tllock.
When a read or write inks occurs, a request is sent,
to the home memory module as dct,erinined bv t#he
address of the requested data. Upon receiving tlLe re-
quest, the home memory module sends a reply .dong
with the data to the requesting node. Thus, it takes
two messages to serve a read miss request. However,

schemes is the 1 imited number of processors that ca.n

*This research has been partly supported by NSF grant MIP-
9301959.

the storage overhead necessary to maintain the direc-
tory is large, and becomes prohibitive as the size of
the system grows. Also, the latenc) of cache t.rans-
actions is Usuiilly larger since these systenis do not
have a broadcasting medium like a shared bus to send
invalidation signals. The limited directory approach
[3, *5] limits tlie number of pointers associated with
each block in order to keep the directxy size manage-
able. However, t.his approach also limits the number
of processors that can share a block. The exist,ing
schemes are discussed in more detail in Section 2 of
this paper.

One way to reduce the storage overhead in the
directory scheme is to use linked lists instead of a
sparsely filled table to keep track of riultiple copies of
a block. The IEEE Scalable Coherenr, Interface (X I)
standard project [4, 61 applies t8his approach to define
a scalable cache coherence protocol. In this approach
the storage overhead is minimal, but maintaining the
linked list is complex and time consuming. The proto-
col is oblivious of the underlying interconnection net-
work and theiefore, a request may be forwarded to
a distant node although it could have been satisfied
by a neighboring node. The major disadvantage is
the sequential nature of the invalidation process for
wrile misses. The scalable tree protocol (STP) [7]
and the SCI tree extension protocol [3] were proposed
to reduce t,he latency of wrht: misses. The low la-
tency of read misses is sacrificed in order to construct,
a bitlanced tree connecting all the shared copies of a
cache block. The large number of nicssages generated
for read misses, however, makes these protocols pro-
hibit,ive for an application with a smaller degree of
data sharing.

In this paper, we propose a iiew tree-based cache
coherence scheme for shared memory multiprocessors.
The proposed scheme aims at reduiing the 1at;ency
of both rea,d and write misses. The main idea is to
utilize the sharing information available from the lim-
ited number of point,ers in the directory in forming an
appropriate nwnber of trees. It is a hybrid of t8he lim-
ited directory and the linked list protocols with only
forward pointers. The Froposed protocol has the ad-
vantages of the bit-map protocol and the tree-based
linked list protocol, naraely, small read miss latency
(two messages), logaritlimic write latency, and seal-
able directory rnernory requirement.

1-172
0190-3918/96 $5.00 0 1996 IEEE

http://iQcs.tamu.edu

1996 International Conference on Parallel Processing
-

The rest of this paper is organized as follows. In
Section 2, existing schemes are discussed. The detailed
design of the proposed tree-based directory protocol is
provided in Section 3. Performance comparisons be-
tween different protocols are given in Section 4, by
using an execution driven simulation. Finally, con-
cluding remarks are presented in Section 5.

2 Discussion on Existing Schemes
Existing directory schemes fall into two categories.

namely bit-map and linked list protocols. A nomeis-
clature, DiriX, was introduced in [3] for bit-map co-
herence protocols. The index i in DiriX represents the
number of pointers for recording the owners of shared
copies, and X is either B or NB depending on whether
a broadcast is issued when the pointers overflow. We
introduce a new notation DiriTreek for the linked
list protocols that will cover all the existing linked
list protocols. The subscript i in Diri represents the
number of pointers in the directory and subscript k
in Trec'k represents the number of pointers in the tree
structure. For example, Stanford's singly linked list
protocol [GI and SCI [4] belong to DirlTreel because
they have a single pointer in the directory pointing to
the head of the list. Note that DiriTreek does not dis-
tinguish between sin ly linked list protocol (i.e., with
only fclrward pointer? and double linked list protocol
(i.e., with both forward and backward pointers). The
index i of DiriTreek represents the number of nodes
having shared copies in their local caches. STP [7] be-
longs to DirzTreek because it maintains a $-ary tree
and keeps pointers to the root of the tree and the latest
node joining the tree. Similarly, the SCI tree extension
(P159f1.2 [SI) belongs to DirzTreea because it main-
tains a balanced binary tree and keeps two pointers,
one to the root of the tree and the other to the head
(latest node joining the tree). Our tree-based protocol
is a DiriTreek scheme with only forward pointers.
2.1 Bit-map Schemes
A. FuU-Map (Dir,NB)
In this scheme, R bits are associa.ted with each memory
block, one bit per node. If a copy of the shared block
is contained in the local cache of a node, the presence
bit corresponding to that node is set. The directory
also haLs a dirty bit. If the dirty bit is set, only one
node in the system has a copy of the corresponding
shared block.

The advantage of t*his scheme lies in that only the
nodes (caching t,l IC: block receive the invalidation mes-
sages. The disadvantage is the large directory size.
The amount, of the directory memory in the n-node
system is B . n2 bits, where B is the number of shared
blocks in each node.
B. Limited Directory Schemes
The main idea behind these schemes is based on the
empirical results that in most of the applications, only
a small number of processors share a memory block
most of the time. Thus, a limited number of pointers
in the directory will perform as well as the full-map
scheme: most of the !,ime. The advantages of having
a limit4ed number of pointers are the scalable mem-
ory requirement and faster hardware support. If the
pointers are not sufficient to record all the nodes hav-
ing shared copies (i.e., pointer overflow), a mechanism

must be employed to deal with it. The memory re-
quirement in a limited directoi y scheine is B + i s R log n
in an n-node system, where each node has B blocks of
shared memory and i is the number of pointers in the
dirw t v y .

'0 limited directory schemes, DiriB and DiriNB,
hnl" been proposed in the literature[3]. The broad-
CZ-- scheme DiriB employs a,n overflow bit t80 han-
dl6, ;:'tinter overflow. If there is no pointer in the
di I I "tory available for subsequent requests, the over-
f l i 1": bit is set. Then, invalidation messages will be
br')adcast to all the processors in the system to main-
tain cache coherence when a write miss occurs. This
scheme performs poorly if the number of shared copies
is just greater than the number of pointers. The
non-broadcast scheme DiriNB avoids the broadcast
designed for solving the pointer overflow problem in
DiriB by invalidating one OC the processors pointed by
the pointers and replacing it with the current request.
This scheme does not perform well when the number
of shared copies is much greater than the number of
the pointers.

In LimitLESSi [5] and DirlSW [9], the pointer over-
flow problem is solved by software. All the pointers
that can not fit into the liiniirt:d hardware-supported
directory space are stored in traditional memory by
the software handler. The delay in calling the soft-
ware handler is their major disadvantage.
2.2 Linked List Schemes
Singly Linked List Protocol
In this protocol [6], a list of pointers is kept in the pro-
cessors caches instead of main memory. Each shared
block only keeps a pointer to a node which contains
a valid copy of the block. The node called the head,
pointed to by the home niernctry module, is the last one
which accesses the Corresponding shared block. The
head in turn uses its pointer to point to another node
which also has a valid copy. Continuing the above
pointing process, a singly linked list is formed. The
last node in the list, called the t ad , points back to the
home memory module.

On a read miss, a request is first sent to the home
memory module. The memory module informs the
head to supply the requested block to the requester.
Tn the meantime, the memory updates its pointer to
point to the requester. Upon receiving the block, the
requester points to the supplier. The requester now
becomes the head of the list.

On a write, the request is again sent to the home
meinory module. The memory module then follows
the pointers on the linked list to invalidate all the valid
copies in the system. Upon receiving the invalidation
message, the head supplies the requested block to the
requester. The tail sends an acknowledgment to the
requester to indicate the completion of the invalidation
process. The directory memory requirement for this
protocol is (C+B).n log n bits. where B and C are the
numbers of memory and cache blocks in each node.
Scalable Coherent Interface
Scalable Coherent Interface (SCI) is a n IEEE standard
(P159G) [4]. It, is based on it doubly linked list. On
a read miss, the reading cache sends a request to the
memory. If the list is empty, t,he memory points to
the requester and supplies the data. Otherwise, i.he

1-173

--
1996 International Conference on Parallel Processing

_ _ _ ________

old head of the list is returned to the requester. After
receiving the reply from home memory, the read re-
quester sends a new request to the old head of the list.
The old head returns the requested data and updates
its predecessor pointer to the requester. The requester
sets its successor pointer to the old head and becomes
the new head of the list.

On a write miss, the requester puts itself as the new
head of the list as in the read miss situation. Then
it sends an invalidation message to its successor and
waits for for an acknowledgment. After its successor
is invalidated and taken out of the list, the requester
updates its successor pointer to the successor of its
old head and continues the same invalidation process.
It takes 2 P messages to invalidate a list of P cached
copies. Adding the four messages for inserting itself
as a new head, the requester takes 2 P + 4 messages to
get the write permission.
Scalable Tree Protocol
The scalable Tree Protocol (STP [7] uses a top-down

tree as an example. The first node issuing a read re-
quest t o a specific memory block will be the root of the
tree. The 211d and 3rd nodes issuing read requests will
be the children of the first one. Similarly, the 4th and
5th nodes making a read request will be the children
of the 2nd node. Continuing the same procedure, a
balanced tree is formed. The invalidation process fol-
lows the tree structure and can be done in logarithmic
time.

This protocol attains a logarithmic invalidation
process by constructing a balanced tree, but paying
the price of generating too many messages for read
misses. Since most of the requests in an application
are read misses, the protocol performs poorly when
the degree of data sharing or write misses is low.
SCI Tree Extension
This scheme is proposed as an IEEE standard exten-
sion (P1596.2) of SCI [8]. It constructs a balanced
tree by using AVL tree algorithm. This scheme has a
read miss overhead similar to STP. Thus, it does not
perform well for the applications with a low degree of
data sharing and less frequent write misses.

We summarize the number of messages generated
by a read or a write miss for the various protocols in
Table 1. The pros and cons of each protocol are also
given in Table 2 . The Dir4Treez is an example of the
new protocol, proposed in the next section.

approach to construct a balance d tree. Take a binary

3 The New Cache Coherence Protocol
We propose a DirLTreeA cache coherence protocol

that combines a limited directory scheme with a tree-
based scheme. The design of the protocol aims at min-
imizing the conimunication overhead for constructing
the tree structure when a read miss occurs, and for in-
validating the copies of the shared memory block when
a write miss occurs. We begin by discussing the direc-
tory structures for cache and memory blocks. Then,
coherence actions are described for read misses, write
misses, and block replacements.
A. Directory Structure
The proposed scheme maintains many optimal or
near-optimal trees for all shared cache blocks. We
call it a DiraTreek scheme because i k-ary trees are

maint.ained. The indices i and k of DiriTreek indi-
cate the number of pointers in each memory block and
cache block, respectively. Thus, DiriTreek employs i
point,crs in a. memory block a,nd constructs k-ary trees
poinivl to by these i pointers. As an example, the
org :;ization of the trees with 14 shared copies con-
sti .,ted for the Dir4Tree2 scheme is shown in Figure 1,
wli- .(> the numbers in the circles denote the arriving
s c ~ : rice of the read requests. The construction of the
t r , ; is explained in detail later under read miss. The
i i 'iiiory requirement is B . li 2i log n + C . k log n in
a i ; n-node system, where I3 and C are the numbers of
mc,mory and cache blocks per node, respectively.

Memory _ _ _ _ ~

Figure I: The organization of trees constructed for
DireTreez.

The empirical results in [IO] suggest that in many
applications, the number of shared copies of a cache
block is lower t,han four, regardless of the system size.
Thus, we feel comfortabe in :jsirig i = 4 and k = 2
to construct binary trees in {,his study. The write op-
eration can be implemented by employing either an
invalidation or an update protocol. We use an inval-
idation protocol with a starong consistency model in
this paper. Figure 2 shows the structures of cache
and memory blocks. The va.riable level in the mem-
ory block is used to record t~he height of the trees, and
facilitates constructing riear-apt,imal trees.

(a) (b)

Figure 2: The structures of cache arid inemoiy blocks.

B. The Protocol and its Coherence Operations
The states of cache blocks are E (ezcbuszve), V (u a l z d) ,
and IV (mvabad) , R M l P (Read Miss In Process),
W M I P (Write Miss In Procers), and INV-IP (Inval-
tdation In Process) The d a t e transition diagram of
cache blocks is shown in Figure 3. R M I P , W M I P ,
and I N V l P are transient stales. In general, the co-
herence operations are similar to those in the full-map
protocol

1-174

1996 International Conference on Parallel Processing

Protocol
Full Map

Uzri N B

LimitLFSSd,

Table 1: Number of messages generated by a read or write iiiiss for various schemes, where Y is the number of
processors that access the memory block under consideration.

Pro Con
Simple to implement
No replacement overhead
Low read miss overhead
Simple to implement
Low memory overhead Sequential invalidation
Low read miss overhead
Low memory requirement Sequential invalidatioo
(hardware)

High memory overhead
Sequential invalidation process

High invalidation overhead

Hinh read miss o v e r t - i e r t d

slow software handler
Single Link Chain Moderate memory overhead Sequential invalidatiofi-
Double Link Chain Moderate memory overhead Sequential invalidatGiT-
SCI extension Logarithmic invalidation -

High replacement overhead

DiriTreek Low read miss overhead
Logarithmic invalidation
Low memorv overhead

Table 2: Pros and Cons for various protocols.

Since we use a strong consistency model, the state
of a cache block which sends invalidation messages to
its children is changed to W M J l P and waits for the
acknowledgments. The transient state W M l l P for
cache blocks does not exist in the full-niap protocol.
Two kinds of invalidation messages are shown in Fig-
ure 3. [N V is used for the regular invalidation mes-
sages, its in the full-map protocol. Replace-INV is
used for the coherence operations for cache replace-
ments and will be explained in detail later.

The states of the memory blocks are the same as
those in the full-map directory protocol. Figure 4
shows i,he state transition diagram of the memory
blocks. The memory transient states are RM-WW
(Read Miss Waiting for Writeback), WM-WW Write
Miss Waiting for Writeback), and W M l l P I Write
Miss’s Invalidation In Process).

The major differences between Dir,Treer, and the
full-map protocol lic i n how the tree is constructed by
using the limited number of pointers arid in the ac-
tions taken for block replacements. As in the full-map
directoIy protocol, the requested block is always pro-
vided by the home node. We discuss the read miss,

wi:e miss and the coherence operations for cache re-
placwnents in detail below.

Read miss: A read request is said to be a miss
if the cache controller find:; that the requested data is
not in any cache block, a the cache block containing
Ihe requested data is in invalid state. When a read
miss occurs, a local cache is first selected for replace-
ment. The request is then passed over the network to
the hoine memory modulc. The operations to serve
a read miss are the same as in the limited directory
bchcme if a null pointer in the directory is available for
the request. Otherwise, two pointers are selected and
sent, to the requesting node along with the requested
data. The processors which were pointed to by the
selected pointers will become the children of the re-
questing processor. One of these two pointers is set
to point to the requesting processor and the other is
set to null. Figure 5 shows how a trree is constructed
while the fifteenth request arrives at the home mem-
ory module in Figure 1. It can be seen that after the
read miss is completed, processors 11 and 13 become
the chiltlreri of processor 15.

l’igure 6 lists in detail the cohvrence operations for

1-175

1996 International Conference on Parallel Processing

N - O K if not eartplete

Figure 3: %ate transition diagram of the cache blocks.

\d
WY OK

Figure 4: State transition diagram of the memory
blocks.

serving a read miss at the home memory module. Four
different situations are considered in Figure 6. First,
it checks whether or not the processor has been al-
ready recorded. This situation might occur when the
cached block in a processor was replaced and later on
that processor issues a read request again. The second
situation considers the case when a processor has a
read miss the first time, and there is an empty pointer
available. The third and forth parts consider the cases
when there is no pointer available in the directory for
the next incoming read request. If there are two point-
ers point.ing to two trees with the same height, these
two pointers will be sent to the requesting processor
and the processors pointed to by these two pointers
become the children of the requesting processor. Fi-
nally, one of these two pointers is set to point to the
requesting processor and the other is set to null. The
last situation considers the case when there are no two
pointers which point to the trees with the same height.
The pointer with the smallest level will be selected
and sent to the requesting processor. The processor
pointed to by the selected pointer becomes the only

Figure 5: Message movements for a read miss.

for (i = 0..3)
if (p[i] == requester) {

(data, null, null) -+ requester; return; }

Figure 6: Cache coherence operat,ions for a read miss.

child of the requesting processor. Then the selected
point,er is set to point to requesting processor and the
level of the pointer is incremented by one.

Notme that Figure 6 only- shl>ws the high level algo-
rit2hm for dealing with a read miss. It' is possible to
implement an efficient hardware design for this opera-
t,ion. Unlike the limited directory, DiriTreek does not
rely on broadcast, or generate any unnecessary inval-
idation messages. DiriTreek does not have the high
overhead caused by a software trap iised by the Lim-
itLESS schemes.

Since there are only limited number of pointers in
the directory, trees generated by DiriTreek are not
balanced. Subsequently, we base on a fixed num-
ber of processors sharing a memory block and discuss
how balanced are the trees generated by the proposed
scheme.

Consider the DirzTreez scheme first. Two point-
ers, PO and P1, are in the directory. Let N l (j) and
N Z (j) be the number of processors in the j-level tree
pointed to by PO and P1, respectively. Table 3 shows
the expressions of N l (j) and iV2 j) derived from Fig-
nre 6. The expressions of ,Vl(j \ and N z (j) can be
simplified a.s j and j (j + 1)/2,. respectively. Similarly,
the expression of Ni(j) for DiriTreea can be derived
as 2j - I. + ~ j k ~ ~ (N i - l (/ e) -t I) . Table 4 lists the max-
imum nuniber of processors caching a memory block
versus the level of the trees for the proposed schemes,

1-176

1996 International Conference on Parallel Processing
~ - ~~~ _ _ _ - ~ _ _ _ ~ ~ - _ _ ~ ~ ~

Table 4 : Maximum number of nodes constructed in
Dir2Trel.a and Dir4TPee2 as a function of level.

Dir2Tre32, DireTreez, and SCI or STP with binary
trees. We can easily check from the first row of the ta-
ble that when there are 16 processors caching a mem-
ory blotk using the Dir4Treea scheme, pointers 0 and
1 point to a tree with 7 nodes and pointers 2 and 3
point to a singly node. If a 1024-node system is built,
the biggest tree maintained by the Dir4Treea scheme
is of 12 levels which is only one level more than the
balanced binary tree.

Write miss: When a write miss occurs, the write
request is first sent to the home memory module. In-
validatim messages are then sent out to the root nodes
of the uees by following the pointers in the direc-
tory. The other nodes caching the data are invali-
dated Ey the messages originating from their corre-
sponding roots. In order to speed up the invalidation
process further, the nodes pointed to by odd num-
bered pointers receive invalidation message from the
nodes pointzed to by even numbered pointers. The
home memory module only receives at most half the
number of ackiiuwledgments and thus, the possibility
of the home node becoming a bottleneck reduces. An
example of a write miss operation is shown in Fig-
ure 7, where 15 shared copies are in the system be-
fore a urite miss occurs. The invalidation messages to
node 15 originate from nodes 9. The acknowledgments
which are omitted from the figure to preserve clarity
follow the reverse direction of the invalidation paths.
It can he seen that Dir4Tree2 has a 3-level tree which
is shorter than the 4-level binary tree with ten nodes
maintained by an STP protocol with binary trees or
the SCI tree extension.

Replacement Operation: When a miss occurs, a
cache block must be selected for storing the requested
data before a request is sent to the home memory

Figure 7: Messagc movement:; for a write miss. (For
clarity, acknowledgments are omitted.)

module for service. If the selected cache block cur-
rently holds a valid or exclusive copy of data with
a different address, a replacement operation needs to
be performed. We propose that when a valid or ex-
clusive cached block is being replaced, the subtree
rooted at the replaced cache block be invalidated with-
out informing the home directory. The message t,ype
Replace-INV is used for replacement operation to tlis-
linguish I N V generated by write misses because no
acknowledgment is needed for replacement. The ra-
tionale of doing this is as follows. First, as noted in
[lo], most of the time, the ruimber of shared copies of a
memory block is less than four Thus. our replacement
operations will perform as well as the bit-map scheme
because the replaced cache block does not have any
child most of the time. Second, even when the trees
grow bigger, most of the replaced cache blocks are
positioned as the leaf nodes of the trees. Third, the
replacements are not frequeni, if the set size of an asso-
ciat,ive cache memory increases. It is possible that one
of the roots may be replaced and causes some commu-
nication traffic if one of it,s children issues a request
later. However, the proposed replacement action is
simple and easy to implement. It is worthwhile to
noti. that the only possible communication overhead
of the proposed scheme comes from the replacements.

4 Performance Evaluation
We use four real applications to compare the per-

formance of the proposed DirJreek coherence scheme
with that of the full-map a.nd the limited directory
schcmes. The app1ic;itions comprise MPSD, LU de-
composition, the Floyd Washall algorithm, and a Fast
Fourier Transformation program (FFT). We give a
brief description of each prograni indicating its pur-
pose and the data structure employed a,s follows.

1-177

1996 International Conference on Parallel Processing

Network bandwidth

Data cache
Block Size

8 bits

Cache Associativity I Fully Associative
Network tvDe I binarv n-cube

' Switch/Wire Delay
Memory Access Latency
Cache Access Latencv

1

1 cycle
5 cycles
1 cvcle

Table 5: Simulation Model.

LU I -135.0
112.0

1l0.0
h 5 108.0

$106.0

8 104.0 .* c
8 102.0

8
5 ima

5 98.0

f m L 4 4 2 1 fmLSL4 4 2 1 fmL8L4 4 2 1
L+

16 32 No. of Processors 8

Figure 8: Normalized execution time for MPSD.

4.1 Siniulat ion Methodology
We ported the proposed coherence scheme to

Proteus[ll] which is an execution driven simulator for
shared memory multiprocessors. The simulator can
be configured to either bus-based or k-ary n-cube net-
works. The networks use a wormhole routing tech-
nique. The specification of the simulated network
and the cache memory is given in Table 5. We com-
pare the normalized execution time for each applica-
tion running with the various schemes as mentioned
above, where the normalized execution time is defined
as the relative execution time to that of the full-map
scheme. The examined schemes are Dir,NB, DiriNB
and DiriTreez for i = 1 ,2 ,4 ,8 . The results are plot-
ted in Figs. 8 through 11 for various applications.
The full map scheme is denoted by fm, the limited di-
rectory schemes by L8, L4 L2, L1 and the DiriTree2
scheme is represented by 8, 4, 2 and 1.
MP3D: The MP3D application is taken from the
SPLASH parallel benchmark suite [la]. It is a 3-
dimensional particle simulation program used in the
study of rarefied fluid flow problems. MP3D is no-
torious for its low speedups. For our simulation, we
used 3000 particles and ran the application in 10 steps.
The results are given in Figure 8 for 8, 16, and 32 pro-
cessors. Comparing the full-map and limited directory
schemes in the 8 and 16-node system, the performance
of the full-map scheme is the best. It is shown that
DirqTreez is only less than 5% slower than the full-
map scheme and much faster than the limited direc-

jrVu fmL4L21.14 2 1 fraIAL2LI 4 2 1 fmL4LZLI 4 2 1

LvJ \--J ,~.--"2

16 32 N o . d h w e s s m 8
fm fullmap
B. Dir*Nl?

yhqE2 Figure 9: Normalized execution time for LU
2: Di$rcsz
1: ol\Tre%

tory schemes Dir4NB and DirsNB. In a 32-node sys-
tem, the performance of DirzTreez and Dir4Tkeez are
betier than all other schemes.
LU Decomposition: The LU application is also
taken from the SPLASH parallel benchmark suite [la].
It is a parallel version of dense blocked LU factoriza-
tion without pivoting. The data st,ructure includes two
dimensional arrays in which the first dimension is the
block to be operated on, and f8he second contains all
the data points in that block. We use a 128x128 nia-
trix in our simulation study. Figure 9 shows the per-
formance results for LU. Jt can be seen that DirlNB
performs worst in all the cases. In a 8-node system,
DirlTree2 performs better than all other schemes. In
the l6-node system, Dir4NU, DirlDee2, DirzTreea,
and Dir4Tree2 perform as well as the full-map scheme.
In the 32-node system, surprisingly, Dir4NB has the
best performance. DirzTreea and Dir4Treez also per-
form better than the full-map scheme.
Floyd Washall: Floyd Washall is a program that
c,orriputes the shortest, distance between every pair of
nodes in a, network. The network employed is a rnn-
doni graph of 32 nodes. The hasic data structures in
the Floyd Washall algorithm are 2-dimensional arrays
for representing the predecessor matrix and the dis-
tance matrix. An additional 2-dimensional array is
also used for recording the computed path. Each pro-
cessor is responsible for updating a few rows of the dis-
tance matrix. The entire matrix is dedared as a shared
array. Updating the dist,ance matrix requires reading
the entire shared array, which incurs a large degree
of data sharing. Figure 10 shows the performance
plol. for the Floyd Washall program. DiraTree2 and
Dir4Treez perform very closely to the full-map scheme.
The performance difference bet.ween Dir4Tree~ and the
full-map scheme is less than 2%.
FFT: Figure 11 gives the results for t,he FFT applica-
tion. Except DirlTreez, all the other schemes perform
very well. However, the proposed schemes Dir4Tree2
and Dir,Treez perform better than t.he full-map and
the limited directory schemes. The improvement in
case oC 1,hc proposed schemes. increases when the sys--
tein becomes bigger. The irnprovement stems from the
fact that, not much cornniunication overhead is caused

1-178

1 996 International Conference on Parallel Processing

Floyd Warshall Refer en ce s 125.0
[l] D. J . Lilja, “Cache ccherence in large-scale

shared-memory multiprocessors: Issues and com-
parisons,” ACM Coniputing Surveys, pp. 303-

0 338, Sept. 1993. E

[2 - Q. Yang and L.N. Bhuyaii, “Analysis and Com-
c;
8 3 110.0 -3rison of Cache Coherence Protocols for a

’;)rket,-Switched Multiprocessor” In IEEE Trans-
lions o n Computers, vol. 38, no. 8, pp. 1143-

.3 - w u 153, August 1989.

[J. D. Chaiken et.al., “Direct,ory-Based Cache Co-
lierence in Large-scale Multiprocessors,” Com-
puter, vol. 23, no. 6, pp. 49-58, June 1990.

No.ofPrwessors 8 16 32 [4] IEEE, IEEE Std 1596-1992: IEEE Standard for
Sca.lable Coherent Interface, IEEE, Inc., 345 East
47th Street, New York, NY 10017, USA., Aug.

[5] D. Chaiken, J . Kubiatowicz, and A. Agarwal,
“LimitLESS Directories: A Scalable Cache Co-
herence Scheme,” ASPLOS-IV Proceedings, pp.
224-234, April 1991.

[6] M . Thapar, B. Delagi, and hf. J . Flynn, “Linked
List Cache Coherence for Scalable Shared Mem-
ory Multiprocessors,” In Proc. r v f c m a t i o n a l Par-
allel Processing Symposium (IPPS), pp. 34-43,
April 1993.

[7] €1. Nilsson and P. Stenst8rorn, “The Scalable Tree
Protocol - A Cache Coherence Approach for
Large-scale Mult~iprocessors,” In Proc. Ixterna-
tional Symposium on Parallel and Distribuied
Processing, pp. 498-506, December 1992.

[8] R. E. Johnson, Eatending t h e Scalable Coherent
Interface for Large-Scale Shared-Memory Multi-
processors, PhD th::sis, University of Wisconsin-
Madison, 1993.

- 120.0

E 115.0

.*

8
-0 105.0

g 100.0
2

95.0

Figure 10: Normalized execution time for Floyd
Wash all. 1993.

\--7/-J \-“---
32

f m L A L 2 8 4 1 f m L 4 L 2 8 4 1 L 4 L 2 8 4 1

No. of Processors 8 16

Figure 11: Normalized execution time for FFT.

by replacements.

5 Conclusion
In this paper, we proposed a new tree-based di-

rect,ory cache coherence protocol for shared memory
multiprocessors. The proposed protocol combines the
features of the limited directory schemes with tree pro-
tocols. It utilizes a limited number of pointers to con-
struct i,rees to reduce the directory size and invali-
dation latency. Compared to the STP and the SCI
tree extension scheme, the proposed scheme has lower
read miss overhead, which is just two messages. At
the same time, it retains the low invalidation proper-
ties of ii tree protocol for large degree of sharing. The
trees constructed hy the proposed scheme are nearly
balanced. Execution driven simulation shows that the
proposcd scheme is very close in performance to the
full-map scheme. When the number of processors is
large, the new scheme even performs bei8ter than the
full-map scheme in some cases. i l t the same time, our
scheme requires less directory space than the full map
scheme.

[9] M. Hill and et al., “Cooperative Shared Memory:
Software and Hardware for Scalable Multiproces-
sors,” ASPLOS- V Proceedzngs, pp. 262-273, Oc-
tober 1992.

[lo] W.-D. Weber and A Gupta, “Analysis of
Cache Invalidation patterns in Multiprocesors,”
ASPLUS-III Proceedzngs, pp. 243-256, 1989.

[L1] E. A. Brewer, C. N . Dellarocas. .4. Colbrook, and
W. E. Weihl, “PROTETJS: A High-Performance
Parallel Architecture Sinidator,” Technical Re-
port MIT/ICS/TR516, MIT, 1991.

[I21 J. P. Singh, W. D. Weber, and A . Gupta,
‘(SPLASH: Stanford Parallel -4pplications for
Shared Memory,” Technical Report CSL-TR-92-
526, Stanford University, 1992.

1-179

