
1994 International Conference on Parallel Processing

A Distributed Cache Coherence Protocol for Hypercube
Multiprocessors*

Yeimkuan Chang, Laxmi N. Bhuyan and Akhilesh Kumar
Department of Computer Science, Texas A&M University

College Station, Texas 77843-3112
E-mail: {ychang, bhuyan, akhil}@cs.tamu.edu

A b s t r a c t - This paper proposes a distributed
directory cache coherence protocol and compares
the performance of the proposed protocol with fully
mapped and single linked list protocols for the hyper­
cube multiprocessors. The directories of shared blocks
are maintained as a tree structure which is motivated
by the similarity of the indirect binary n-cube to the
direct binary n-cube. The proposed protocol also
takes advantage of the wormhole routing technique.
Compared to the fully mapped and single linked list
schemes, the proposed protocol reduces the memory
reference latency and the network traffic.

1 Introduct ion
Shared memory multiprocessors have become pop­

ular because of their simple programming model. The
large scale multiprocessors are built with distributed
memory, on scalable interconnection network. Hyper­
cube structure has received at tention due to its reg­
ularity, fault tolerance, multi tasking capability, and
also due to the availability of commercial hypercube
multiprocessors [1, 2]. Many structures such as mesh,
tree, ring, etc. can be mapped to a hypercube. All the
commercial hypercube systems are based on message-
passing model. Shared memory hypercube multipro­
cessors have also been proposed recently in [3, 4].

In distributed shared memory multiprocessor sys­
tems, local caches greatly improve the system perfor­
mance. However, cache consistency must be main­
tained if many copies are allowed to exist in the sys­
tem. Several cache coherence schemes have been pro­
posed in the li terature [5]. Most of the popular cache
coherence protocols are based on snooping on the bus.
But the obvious limitation to such schemes is the lim­
ited number of processors tha t can be supported by
a single bus. Some snooping cache coherence proto­
cols for large scale systems have also been proposed.
Wilson [6] proposed a cache coherence protocol for
hierarchical buses. Yang, et al. [7] improved on Wil­
son's protocol by limiting the coherence traffic to a
subset of the system through an adaptive coherence
protocol. A similar approach has been proposed by
Nanda and Bhuyan [8] for multistage interconnection
networks (MINs) by introducing directories or buses
in the switches.

Most of the protocols for non-bus architectures are
based on a directory scheme which contains the infor­
mation about copies of a particular block in the system
[4, 10]. However, these protocols have large memory
overhead to maintain the directory. Also, the latency
of cache transactions is usually large since there is no
broadcasting medium like a shared bus to send inval­
idation signals. One way to reduce the storage over­
head in the directory scheme is to use linked lists to
keep track of multiple copies of a block [9, 11]. How­
ever, maintenance of the linked list is complex and
time consuming. Also, the protocol is oblivious of the
underlying network and therefore a request may be
forwarded to a distant node though it could have been
satisfied by a neighboring node. The invalidations are
done sequentially and take a long t ime.

In this paper, we present a new directory-based
cache coherence scheme for hypercube multiproces­
sors. The main idea is to limit the coherence mes­
sages to a smaller region in the system by satisfying
the requests as soon as possible. The directory is or­
ganized such that as a coherence message travels from
the originating node to the home node of a block, the
cache controllers at the intermediate nodes in the path
try to satisfy the request. This reduces the number of
hops a request traverses and also reduces the network
traffic compared to the conventional directory based
schemes where the directory is only at the home node
of a block and all the messages need to go to the home.

The rest of this paper is organized as follows. In Sec­
tion 2, we describe the design of the proposed protocol.
The detailed operations of the protocol are described
in Section 3. In Section 4, a simple performance anal­
ysis is given for comparison. Finally, the concluding
remarks are presented in the last section.

2 The N e w Cache Coherence Protocol
In this section, we present the new cache coherence

protocol on hypercube multiprocessors. The design of
the protocol is motivated by the equivalence between
the multistage interconnection networks (indirect net­
works) and the generalized hypercube networks (direct
network), as shown in [12].
A. S y s t e m Organizat ion
Many cache coherence protocols have been proposed
for the multiprocessors with tree structures [6, 13].
Yang et al. [7] has shown tha t the tree structure can

I - 1 5 0

Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

1994 International Conference on Parallel Processing

Figure 1: Binomial spanning and binary trees in a
3-cube.

be exploited to limit the coherence traffic to a sub­
tree. Since a binary tree can be embedded onto a
hypercube, a tree-based cache coherence protocol can
be developed for the shared memory hypercube mul­
tiprocessors.

Before we describe the proposed protocol, we will
present some notat ions tha t will be used later to ex­
press the ideas succinctly. A hypercube of dimension
n, or an n-cube, consists of N = 2™ nodes. Each of
the N nodes is addressed by a distinct binary string,
/ n _ i / n _ 2 ∙ . ∙ / o , with bit /j■ corresponding to dimension i
and /,∙ E {0, 1}. Two nodes are connected by a link if
and only if their addresses differ in exactly one bit. A
subcube in the hypercube can be uniquely represented
as a ternary string over the set -{0, 1, * } , called its ad­
dress, where * is a Don't Care symbol. Specifically,
a d dimensional subcube, called d-cube, has exactly d
*'s in its address, as it consists of 2d nodes.

Now, consider an 8-node distributed shared memory
hypercube, shown in Fig. 1(a). Let the home memory
module of a shared block be 7. When other nodes gen­
erate cache misses for the block, the movements of the
coherence messages from node 7 to all other nodes can
be described in the form of a binomial spanning tree
shown in Fig. 1(b). Since we a t tempt to use a tree-
based protocol, we embed a complete binary tree onto
a binomial spanning tree. The binomial spanning tree
associated with node 7 is extended to a 4-stage com­
plete binary tree by introducing extra pseudo-nodes
as shown in Fig. 1(c) by empty circles. The nodes
or pseudo-nodes labeled with the same number in the
figure are located at the same node in the hypercube.
We will use this tree structure to organize the direc­
tories of shared blocks.

In general, for a shared block in a memory module
of an n-cube, the directory can be constructed as fol­
lows. Consider a (n + l)-stage binary tree with the
root at stage n and the leaves al stage 0. For a shared
block, a directory can be put on stage 1 if there are
valid copies of the block in the two caches covered by
the stage 1 nodes. In general, a directory at stage k
keeps the sharing information on the caches below it.
The directory organization will be similar to tha t of
the cache coherence protocol on the tree-based multi­
processors.

The relationship between a direct binary n-cube and
an indirect binary n-cube was discussed in [12]. Con­
sider an indirect binary (n + l)-cube. There are 2"
2 x 2 switch elements in each stage. The switch el­
ements at stages n and 0 correspond to the memory
modules and the local caches, respectively. The switch
elements at other stages correspond to the directories
in all the 2" binary trees of an n-cube. The binary

I - 1 5 1

tree rooted at a shared block can be embedded onto
the binary tree rooted at the corresponding memory
module through the interconnections of the indirect
binary (n + l)-cube. We put all the directories at one
level in the corresponding node.

The directory tree structure of a 3-cube is illustrated
as an indirect binary 4-cube in Fig. 2. The directories
and local caches are shown as boxes. The directory
of level j at stage i is denoted as DTRij. The boxes
at stage 0 represent the local caches. The other boxes
represent the directories for keeping 1 he shared blocks
consistent. The directory DIR{j covers the nodes in
the d-cube 6n_i.. .6;*!, where j = 6n_i...6o∙ 6„_i...6,∙*'
is called the current d-cube of a node j . The d-cube,
&n_i...&i*!, is called the adjacent d-cube of node j . The
entry of DIRij corresponding to a particular shared
block keeps the sharing status of the cached blocks in
the nodes covered by DIRij.

Figure 2: Organization of the directories in a 3-cube.

The tree connections with respect to the memory
module associated with node 7 of a 3-cube is shown
in Fig. 2 with solid lines. It must be noted tha t the
communications across different levels in the binary
tree of the indirect binary n-cube incur communica­
tion overheads. The communication inside a level of
the indirect binary n-cube do not involve any commu­
nication overheads.

A directory (D) is below another directory (Q) with
respect to a particular memory module (M) if D is a
descendent of Q in the tree rooted at M . In other
words, Q is above D with respect to M. A request to
a directory is said to come from below (above) if the
request is sent from a directory below (above). While
describing the movements of cache coherence control
messages for a block, we will follow the above terms
that pertain to the tree with the node containing the
block at the root.
B . D i r e c t o r y Organ iza t ion
We follow the same directory organization as in [8].
Since only the references to the shared blocks require
cache coherence, the directory contains entries only
for the shared blocks. Let AT,j, be the total number
of shared blocks in the system. We need s = /o<^A'jj
bits to distinguish among the shared blocks. In the
system with N = 2" nodes, each node contains 2"~ n

Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

1-152

shared blocks. Assume the memory modules are lower
order interleaved. Therefore, the directory of level j =
jn-i■■■jo at stage i denoted as DIRij for 1 < i < n can
be organized as in Table 1. In DIRij, there are 2S~*
entries which keep records of the state information of
shared blocks from 2n~l nodes in *n~*ji-i...jo■ The
two presence bits, left and right, for each entry store
the information about the existence of copies of the
shared block in the left and right subtrees.

Since we use the complete directory scheme which
facilitates fast access to an entry, each shared block is
associated with 2" — 1 entries in a tree fashion. Each
entry needs 4 bits. Thus, totally 4(2" — l)■Nsi bits are
required for all the shared blocks in the system. The
memory requirement is higher than the fully mapped
and single linked list protocols. To reduce the memory
requirement, we can go for an associative directory
with limited number of entries.
C. The Protocol
An entry of DIRij associated to a shared block can
be in state exclusive, valid-below, exclusive-below, or
invalid. Exclusive means there are many valid copies
of the block in the local caches of the nodes and the
least common ancestor of all the nodes with a valid
copy is DIRij. No copy of the shared block exists
in caches of other nodes that are not in the subtree
rooted at DIRij ■ If an entry is in exclusive state,
both of the presence bits must be set to l's. Valid-
below means one or more valid cached blocks are in
the local caches of the nodes of the subtree rooted at
DIRij ■ If an entry is in valid-below state, at least one
of the presence bits is set to 1. Exclusive-below means
that there is a directory below DIRij whose associ­
ated entry is in exclusive state. Exclusive-below serves
as a pointer from the memory module containing the
associated shared block to the directory in which the
associated entry is in exclusive r.tate. If an entry is in
exclusive-below state, only one of the presence bits is
set to 1. Invalid means there is no cached block in the
local caches of nodes in the subtree rooted at DIRij.
If an entry is invalid, none of the presence bits is set
to 1.

The cache block states are exclusive, valid, or in­
valid. Exclusive means that the block is the only copy
in the system. Valid means that there may exist other
copies in the system. If a cached block is exclusive,
none of the directories above it can have an associ­
ated entry with exclusive state. If a cached block is
valid, normally there is a directory above it contain­
ing an associated entry with exclusive state. However,
it is possible that no exclusive entry above the valid
cached block is in the system. For example, when the
first access of a program to a shared block is a read re-

Table 1: Directory organization of DIRij.

Figure 3: State transition diagram for a local cache.

Figure 4: State transition diagram for a directory en­
try.

quest, the state of the cached block is set to valid and
the state of the associated entries of the directories
above it is set to valid-below, up to the home memory
module. The state transition diagrams for the local
cache and the directory entry (DIR,j) of the shared
block are shown in Fig. 3 and 4, respectively.

3 Coherence Protocol Operat ions
Our protocol allows multiple copies of shared blocks

and is based on write invalidation.
Read hit: When the cache controller finds the re­

quested data in a valid or exclusive cached block, the
read operation is carried out locally in the cache. The
states of the cache block and the directories remain
unchanged.

Read miss: When a read miss occurs, a local
cache block is first selected for replacement. The
request is then passed over the network toward the
home memory module until (1) it reaches a directory,
DIRij, which contains the associated entry with ei­
ther exclusive-below or valid-below state or otherwise
until (2) it reaches a directory which is located in the
same node as the home memory module.

We first consider the case (1). Along the path to
DIR{j, the corresponding presence bits of the direc­
tories encountered by the request (including DIRij)
are set. If the state of the associated entry in DIR, j
shows a valid-below state, the read request is passed
downward to select a node which owns a valid copy of
the requested block. The read request that is passed
downward corresponds to the read fiom above in the
state transition diagrams. If both presence bits of the
associated entry in a directory encountered by the read
from above message are set, the read from above mes-

Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

1994 International Conference on Parallel Processing

sage is passed to the right child directory it the r "
bit of requesting node's ID is 1, otherwise it is passed
to the left child directory. The presence bit selection
rule ensures that if a neighboring node of the requester
owns a valid copy, then that node will be selected for
supplying the requested block. However, it does not
guarantee to find the nearest node if no neighboring
node of the requester has a copy. Upon receiving the
read request, the selected node sends the requested
block to the requester and sets the corresponding block
to valid state.

As mentioned earlier, the communication inside a
level does not incur any communication overhead on
the network. One optimization method can be im­
plemented to reduce the traffic due to a read miss
as follows. Let DIR^j be one of the directories en­
countered by the read from above message. We can
determine if there is a valid copy in the local caches
of node I by checking the corresponding presence bit
of the associated entry in DIRij. If there is a valid
copy in node /, then the requested block is passed to
the requester. Otherwise, the presence bit selection
rule is applied and the read from above message goes
down one stage. The above optimization is applied
again until a valid copy is found. Although this opti­
mization method fails to find the nearest node to the
requester, we save time on searching the nearest node.
It should be noted that the maximum number of steps
that the read request takes to reach a valid copy in the
subtree rooted at DIRij is i. The states of the associ­
ated entries in the directories encountered by the read
request are unchanged.

If the associated entry of DIRij is in exclusive-
below state, it is changed to exclusive state. The state
of exclusive-below serves as a pointer to the direc­
tory with exclusive state. There exists a linear pointer
chain from DIRij downward to a directory containing
an exclusive entry with respect to the requested block.
The linear chain going left or right in each stage de­
pends on the corresponding presence bit. All the as­
sociated entries of the directories on the linear pointer
chain are set to valid-below state. The remaining pro­
cess to select a node for supplying the requested block
to the requester is the same as above.

Now we consider the case (2). The state modifi­
cation process for each entry encountered by the read
miss up to the associated entry with either valid-below
or exclusive-below state is the same as above. How­
ever, the process to select a node to supply the re­
quested block is different. If the dirty bit of the re­
quested block is reset, the requested block is supplied
by the home memory module instead of looking for a
node containing a valid copy of the requested block.
If the dirty bit is set, the only copy of the requested
block is in exclusive state. The node with the dirty
copy changes the state of the requested block to valid,
sends requested block to the corresponding memory
module with dirty bit reset, and then sends another
copy to the requesting node.

Now we give an example to illustrate how the pro­
posed coherence protocol works when a read miss oc­
curs. Consider a read miss on a shared variable located
in memory module 7 in a 8-node hypercube. Suppose
that the status of the cached block having the shared

variable and the entries associated with the cached
block is as shown in Fig. 2 where both nodes 0 and 1
hold valid copies. According to the protocol, the com­
mon ancestor, DIR\t\, of these two local caches is in
exclusive state. The directories, DIR2Z and DIRi 3,
are located in the same node. The directories above
DIR\t\ are DIRi^ and DIR3 7 in which the associ­
ated entries are in exclusive-below state. Other asso­
ciated entries in the system are in invalid state. Now
node 3 issues a read request to a shared variable in
the block. The read miss as shown in Fig. 5, is routed
along the corresponding binary tree toward the as­
sociated entry with exclusive state. The path from
the local cache to D/i?2,3 is marked as dashed bold
lines since only internal communication to node 3 is
involved. The state changes as a result of the read
miss request and the movements of the messages go­
ing through the network is given in Fig. 5. A read miss
from above (r.m.a) message is generated from DIR23
to DIR\ti. We know that there is a valid copy in
the local cache of node 1 since the right presence bit
of the associated entry in DIRyti is set. Therefore,
the requested block denoted as r.m.r is finally passed
from node 1 to node 3. Note that the number associ­
ated with each message in Fig. 5 indicates the timing
sequence of the message.

Write hit: If a node issues a write request and the
requested block is in exclusive state in the local cache,
then the write is performed locally since it is the only
copy in the system. However, if the requested block is
in valid state, an exclusive copy must be obtained by
invalidating all the other copies in the system. There­
fore, an invalidation signal is sent to the home mem­
ory module, where the dirty bit of the block is set
and the invalidation process is initiated. All the asso­
ciated entries with valid-below, excbisive-below, and
exclusive state are changed to invalid state except; the
entries above the requester along the tree to the home
memory module which are set to exclusive-below state.
Upon receiving the invalidation signal from the mem­
ory module, the requester simply performs the write
and sets its state to exclusive.

1-153
Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

Figure 6: Message movements for a write miss.

Write miss: When a write miss occurs, the write
request is sent to the home memory module directly.
From the memory module, the invalidation process is
the same as a write hit except that an acknowledg­
ment must be sent back to the memory module along
the reverse path of the invalidation signal. All the
nodes having a valid copy of the requested block are
reached and the acknowledgments are collected at the
home memory module. Upon receiving the acknowl­
edgments, the memory module sends a copy of the
block to the requester. On the way, the exclusive-
below states are setup in the intermediate directories.

Now consider the example when the read miss of
Fig. 5 is followed by a write request on the same
shared variable by node 6. Fig. 6 shows the state
changes and the write miss request movements. Basi­
cally, a write miss message is first generated by node
6 and sent to the home memory module which is node
7. Secondly, the invalidation messages are initiated
at node 7 and passed downward to all the nodes with
valid copies. These invalidation messages are marked
as w.m.a messages. The acknowledgments, marked as
w.m.ack are then passed back to the memory mod­
ule. The nearest node to the requester now can be
determined to be node 3. Thus, node 3 is informed to
supply the requested block to the requester. The tim­
ings are marked with the requests in Fig. 6. Note that
the message marked as 2'.w.m.p indicates that this is
the message initiated as the same time as 2.w.m.a and
is used to build up the exclusive ■below pointers to the
requester.

4 Performance Analysis and Results
The latency and traffic defined below are used as the

performance metrics for comparisons. The latency is
the time taken to complete a read or write operation.
The traffic is defined as the total messages per links
that have to be passed over the network links due to a
read or write operation. The traffic is used to reflect
the interference factor on the network. If the traffic is

I-154

high, the probability that a message is interfered by
other messages is also high.

We assume that all the valid copies of a shared block
are uniformly distributed in the system. The switch­
ing technique is assumed to be wormhole routing which
is distance insensitive as long as no interference is in­
troduced by other messages on the network. Only
two kinds of messages are considered: control mes­
sage and data message. The control messages include
the read/write request, invalidation/update, and re­
sponse/acknowledgment messages. Normally, a con­
trol message contains the source processor ID and the
memory address plus some bits for command and sta­
tus information. We assume that the control message
is 128 bits (16 bytes) long. The data messages basi­
cally are the cache blocks which are multiples of 16-
bytes. For the purpose of comparison, we assume that
a 16-byte message takes one time unit to pass over a
link to a neighboring node. In addition, other vari­
ables are defined as follows.

h: the hit ratio of accesses to the shared blocks,
r: the probability that a shared request is a read.
p: the read-run, defined as the average number of

consecutive read requests to a particular shared
block issued between two write requests, p reflects
the average number of valid copies of a particular
shared block in the system. Thus, j ^ represents
the probability that a write request hits a shared
block. The probability that no node has a valid
copy of a shared block is equal to $ = (1 — ^■)'v.
It is also the probability that there is only one
exclusive copy of the shared block in the system.

B: the cache block size.
The correlation of the above variables is very com­

plex. The metrics used here are simple and valid
mostly for comparison purposes. We also ignore the
cache block replacement overhead in the analysis. We
use LRMXXX, LWMXXX, and LWHXXX to denote the
latency due to a read miss, a write miss, and a write
hit, where xxx can be fully mapped, single linked list,
or proposed directory scheme. Similarly, TRMX.VX,
TWMXXX, and TWHXXX are used for traffic. If the
latency due to a read and write is known, the overall
latency can be calculated by incorporating h and r as

The overall network traffic, Trafficxxx, can also be
calculated similarly.
Fully Mapped (FM) Directory Scheme
Consider a read miss first. If there are p valid copies in
the system, (l + B) units of time are lequired. if there
is only one copy of the requested block in the system,
(3 + B) units of time are needed, where we assume
that the two data messages from the node having the
dirty copy of the requested block are sent simultane­
ously to the memory module and the requester. For
a write miss, all the valid copies in the system must
be invalidated before a requested block can be sent
to requester and then the write operation can be per­
formed. If the dirty bit of the requested block is not

Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

I - 1 5 5

set, i.e. there are p copies in the system, the memory
module needs p time units to send out all the invali­
dation messages one by one. For the last message sent
out by the memory module, it takes n time units on
an average to reach the destination nodes and come
back with an acknowledgment. After receiving the ac­
knowledgment of the invalidation, B time units are
required to send the requested block to the requester.
If the dirty bit is set, i.e. there is only one dirty copy
in the system, (3 + B) time units are required. For
a write hit, the invalidation process is the same as
write miss except no data message is sent. Note that
the probability that a write request hits the requested
block is jf. The average latency formulas of a read
miss, write miss, and a write hit are listed as follows.

1994 International Conference on Parallel Processing

The network traffic due to a read miss, a write miss,
and a write hit can be obtained as follows.

Single Linked List (SLL) directory scheme
According to the messages generated by a read or a
write, the latency and traffic are as follows.

Proposed distributed directory scheme
Unlike the fully mapped directory scheme, the pro­
posed protocol attempts to find the nearest node with
a valid copy to supply the requested block. Given that
there are p valid copies of the block in the system and
the distance between requester and the home memory
module is d, the following variables are required to
evaluate the performance of the proposed protocol.

AaVg{p,d)'■ the average distance between the requester
and the node supplying the block to the requester,
according to the operations of a read miss,

Bavg{p>d): the average number of steps that a read re­
quest needs to build up the connection from di­
rectory tree structure to requester and find the
node with a valid copy for supplying the block to
the requester.

Gavg(p): the average distance from the memory mod­
ule to the farthest node, given that there are p
nodes having valid copies of requested block in
the system.

Fig. 7 plots the latency of FM , SLL, and the pro­
posed distributed directory protocols for a 6-cube with
h = 0.9, r = 0.7, and B = 4. We can see that if the
read-run is more than 7, the proposed protocol per­
forms better than the other two protocols. The reason
is that in the proposed protocol, the invalidation mes­
sages traverse the network hop by hop in a store-and-
forward fashion. However, the messages traverse the
network in a wormhole fashion for the fully mapped
and single linked list protocols. Therefore, when the
read-run is small, the linked list protocol or the fully
mapped protocol performs better than the proposed
protocol. The latency improvement of the proposed
protocol basically comes from the fact that the paral­
lel invalidation process is employed through the tree
structure, where both FM and SLL protocols employ
a sequential version of the invalidation process.

Traffic is defined as the average number of messages
per link over the network generated by a transaction.
It can be seen that the proposed protocol performs al­
ways better than FM and SLL protocols. Fig. 8 shows

The following expressions are derived for the net­
work traffic due to read miss, write miss and write
hit. The details of the derivations are given in [14].

Havg{p): the average distance from the requester to the
nearest node which supplies the block to the re­
quester with a write miss, given that there are
p nodes having valid copies of requested block in
the system.

IaVg(p)'■ the average number of messages generated by
the invalidation process on a write operation,
given that there are p valid copies in the system.

AaVg(p,d) and Havg(p) are used to calculate the traf­
fic due to moving the block to the requester for a
read miss and a write miss, respectively. Aavq(p, d)
and HavJp) are different since the process for search­
ing a valid block for a read and write miss is differ­
ent. Bavg{p, d) basically represents the time taken for
building up the pointer from the original directory tree
to the requester by setting appropriate entries to valid-
below state. Gavg{p) represents the time taken for the
invalidation process on a write operation. Iavg(p) is
used to compute the traffic due to invalidation process
[14].

The following expressions are derived for the laten­
cies due to read miss, write miss and write hit. The
details of the derivations are given in [14].

Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

1994 International Conference on Parallel Processing

the results for network traffic. The network traffic im­
provement of the proposed protocol over FM and SLL
is due to the following reasons. In FM, all the inval­
idation messages are from the memory module. The
links near the memory module are used heavily by
the invalidation messages. In SLL, the invalidation
process follows the pointers on the linked list. The
nodes which are close to each other on the list are not
necessarily close to each other on the network. How­
ever, the proposed protocol fully utilizes the nodes in
the neighborhood to complete the invalidation pro­
cess. No extra traffic is incurred. We can see that
the larger the read-run is, the larger the performance
improvement we can get. Figs. 9 and 10 plot the la­
tency and network traffic as a function of size of the
hypercubes which ranges from 6 to 10. The read-run
is taken as ^ and other parameters are the same as
above. It is shown that our protocol performs bet­
ter than the others. The fully mapped protocol and
the single linked list protocol are 5 times worse than
the proposed protocol for a 10-cube, respectively. The
improvement of network traffic over the fully mapped
protocol and the single linked list protocol are 110%
and 48% for a 10-cube, respectively. In general, the
performance improvement of our protocol increases as
the size of the system.

Figs. 11 and 12 show the results against hit ratio
for a 6-cube. The performance improvement of la­
tency increases with increase in hit ratio. However,
the improvement in network traffic decreases with the
hit ratio. From all the above results, we can see that
the proposed protocol generally performs much better
than the others. It also should be noted that the per­
formance improvement of the SLL protocol over the
FM protocol matches the results given in [11].

5 Conclusion
In this paper, we proposed a new distributed direc­

tory cache coherence protocol for hypercube multipro­
cessors. The proposed protocol uses a tree structure
to store the directories. Our protocol achieves lower
latency and network traffic over other protocols due to
(1) a smaller distance between the node supplying the
requested block and the requester and (2) less num­
ber of messages generated by a cache miss. As a read
miss request traverses toward the home memory mod­
ule, the intermediate nodes try to satisfy the request.
For a write miss, the exclusive copy of the requested
block is responsible to handle the conflicts and invali­
date all the valid copies in the .system. Therefore, all
the requests do not have to be serviced at the home
nodes, thus cutting down the latency and network
traffic. The wormhole routing switching technique is
considered in the analysis. The proposed protocol can
be generalized to other architecture as long as a binary
tree can be embedded with any node as the root.

References
[1] nCUBE Corporation, nCVBE 2 Processor Man­

ual, Dec. 1990.

[2] Intel iPSC/2, Intel Scientific Computers, 1988.

I - 1 5 6

[3] E. D. Brooks, "The Shared Memory Hypercube,"
Parallel Computing, pp. 235-245, June 1988.

[4] J. Ding and L. N. Bhuyan, "Cache Coher­
ent Shared Memory Hypercube Multiprocessors,"
Proc, of Int'I Symp, on Parallel and Dist. Proc,
pp. 515-520, 1992.

[5] D. J. Lilja, "Cache coherence in large-scale
shared-memory multiprocessors: Issues and com­
parisons," ACM Computing Surveys, pp. 303-
338, Sept. 1993.

[6] A. W. Wilson, "Hierarchical Cache/Bus Architec­
ture for Shared Memory Multiprocessors," Proc,
of International Symposium on Computer Archi­
tecture, pp.244-252, June 1987.

[7] Q. Yang, G. Thangadurai, and L. N. Bhuyan,
"Design of an Adaptive Cache Coherence Pro­
tocol for Large Scale Multiprocessors," IEEE
Trans, on Parallel and Dist. Svs., pp. 281-293,
May 1992.

[8] A. K. Nanda and L. N. Bhuyan, "Design and
Analysis of Cache Coherent Multistage Intercon­
nection Networks," IEEE Transactions on Com­
puters, pp. 458-470, April 1993.

[9] IEEE Std 1596-1992: IEEE Standard for Scalable
Coherent Interface, IEEE, Inc., 345 East 47th
Street, New York, NY 10017, USA., Aug. 1993.

[10] L. M. Censier and P. Feautriei, "A New Solu­
tion to Coherence Problems in Multicache Sys­
tems," IEEE Trans, on Comp., pp. 1112-1118,
Dec. 1978.

[11] M. Thapar, B. Delagi, and M. J. Flynn, "Linked
List Cache Coherence for Scalable Shared Mem­
ory Multiprocessors," In Proc, of Int'I Parallel
Processing Symposium, pp. 34-43, April 1993.

[12] L. N. Bhuyan and D. P. Agrawal, "Generalized
Hypercube and Hyperbus Structures for a Com­
puter Networks," IEEE Trans, on Comp., pp.
323-333, April 1984.

[13] Kendall Square Research Corporation, Kendall
Square Research: Technical Summary, 1992.

[14] Y. Chang, L. N. Bhuyan, and A. Kumar, "A
Distributed Cache Coherence Protocol for Hyper­
cube Multiprocessors," TR 94-037, Dept. of Com­
puter Science, Texas A&M University 1994.

Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

1994 International Conference on Parallel Processing

Figure 7: Latency for a 6-cube. Figure 8: Network traffic for a 6-cube.

Figure 10: Network traffic against system size. Figure 9: Latency against system size.

Figure 11: Latency against hit ratio. Figure 12: Network traffic against hit ratio.

I - 1 5 7
Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

