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A b s t r a c t - This paper proposes a distributed 
directory cache coherence protocol and compares 
the performance of the proposed protocol with fully 
mapped and single linked list protocols for the hyper­
cube multiprocessors. The directories of shared blocks 
are maintained as a tree structure which is motivated 
by the similarity of the indirect binary n-cube to the 
direct binary n-cube. The proposed protocol also 
takes advantage of the wormhole routing technique. 
Compared to the fully mapped and single linked list 
schemes, the proposed protocol reduces the memory 
reference latency and the network traffic. 

1 Introduct ion 
Shared memory multiprocessors have become pop­

ular because of their simple programming model. The 
large scale multiprocessors are built with distributed 
memory, on scalable interconnection network. Hyper­
cube structure has received at tention due to its reg­
ularity, fault tolerance, multi tasking capability, and 
also due to the availability of commercial hypercube 
multiprocessors [1, 2]. Many structures such as mesh, 
tree, ring, etc. can be mapped to a hypercube. All the 
commercial hypercube systems are based on message-
passing model. Shared memory hypercube multipro­
cessors have also been proposed recently in [3, 4]. 

In distributed shared memory multiprocessor sys­
tems, local caches greatly improve the system perfor­
mance. However, cache consistency must be main­
tained if many copies are allowed to exist in the sys­
tem. Several cache coherence schemes have been pro­
posed in the li terature [5]. Most of the popular cache 
coherence protocols are based on snooping on the bus. 
But the obvious limitation to such schemes is the lim­
ited number of processors tha t can be supported by 
a single bus. Some snooping cache coherence proto­
cols for large scale systems have also been proposed. 
Wilson [6] proposed a cache coherence protocol for 
hierarchical buses. Yang, et al. [7] improved on Wil­
son's protocol by limiting the coherence traffic to a 
subset of the system through an adaptive coherence 
protocol. A similar approach has been proposed by 
Nanda and Bhuyan [8] for multistage interconnection 
networks (MINs) by introducing directories or buses 
in the switches. 

Most of the protocols for non-bus architectures are 
based on a directory scheme which contains the infor­
mation about copies of a particular block in the system 
[4, 10]. However, these protocols have large memory 
overhead to maintain the directory. Also, the latency 
of cache transactions is usually large since there is no 
broadcasting medium like a shared bus to send inval­
idation signals. One way to reduce the storage over­
head in the directory scheme is to use linked lists to 
keep track of multiple copies of a block [9, 11]. How­
ever, maintenance of the linked list is complex and 
time consuming. Also, the protocol is oblivious of the 
underlying network and therefore a request may be 
forwarded to a distant node though it could have been 
satisfied by a neighboring node. The invalidations are 
done sequentially and take a long t ime. 

In this paper, we present a new directory-based 
cache coherence scheme for hypercube multiproces­
sors. The main idea is to limit the coherence mes­
sages to a smaller region in the system by satisfying 
the requests as soon as possible. The directory is or­
ganized such that as a coherence message travels from 
the originating node to the home node of a block, the 
cache controllers at the intermediate nodes in the path 
try to satisfy the request. This reduces the number of 
hops a request traverses and also reduces the network 
traffic compared to the conventional directory based 
schemes where the directory is only at the home node 
of a block and all the messages need to go to the home. 

The rest of this paper is organized as follows. In Sec­
tion 2, we describe the design of the proposed protocol. 
The detailed operations of the protocol are described 
in Section 3. In Section 4, a simple performance anal­
ysis is given for comparison. Finally, the concluding 
remarks are presented in the last section. 

2 The N e w Cache Coherence Protocol 
In this section, we present the new cache coherence 

protocol on hypercube multiprocessors. The design of 
the protocol is motivated by the equivalence between 
the multistage interconnection networks (indirect net­
works) and the generalized hypercube networks (direct 
network), as shown in [12]. 
A. S y s t e m Organizat ion 
Many cache coherence protocols have been proposed 
for the multiprocessors with tree structures [6, 13]. 
Yang et al. [7] has shown tha t the tree structure can 
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Figure 1: Binomial spanning and binary trees in a 
3-cube. 

be exploited to limit the coherence traffic to a sub­
tree. Since a binary tree can be embedded onto a 
hypercube, a tree-based cache coherence protocol can 
be developed for the shared memory hypercube mul­
tiprocessors. 

Before we describe the proposed protocol, we will 
present some notat ions tha t will be used later to ex­
press the ideas succinctly. A hypercube of dimension 
n, or an n-cube, consists of N = 2™ nodes. Each of 
the N nodes is addressed by a distinct binary string, 
/ n _ i / n _ 2 ∙ . ∙ / o , with bit /j■ corresponding to dimension i 
and /,∙ E {0, 1}. Two nodes are connected by a link if 
and only if their addresses differ in exactly one bit. A 
subcube in the hypercube can be uniquely represented 
as a ternary string over the set -{0, 1, * } , called its ad­
dress, where * is a Don't Care symbol. Specifically, 
a d dimensional subcube, called d-cube, has exactly d 
*'s in its address, as it consists of 2d nodes. 

Now, consider an 8-node distributed shared memory 
hypercube, shown in Fig. 1(a). Let the home memory 
module of a shared block be 7. When other nodes gen­
erate cache misses for the block, the movements of the 
coherence messages from node 7 to all other nodes can 
be described in the form of a binomial spanning tree 
shown in Fig. 1(b). Since we a t tempt to use a tree-
based protocol, we embed a complete binary tree onto 
a binomial spanning tree. The binomial spanning tree 
associated with node 7 is extended to a 4-stage com­
plete binary tree by introducing extra pseudo-nodes 
as shown in Fig. 1(c) by empty circles. The nodes 
or pseudo-nodes labeled with the same number in the 
figure are located at the same node in the hypercube. 
We will use this tree structure to organize the direc­
tories of shared blocks. 

In general, for a shared block in a memory module 
of an n-cube, the directory can be constructed as fol­
lows. Consider a (n + l)-stage binary tree with the 
root at stage n and the leaves al stage 0. For a shared 
block, a directory can be put on stage 1 if there are 
valid copies of the block in the two caches covered by 
the stage 1 nodes. In general, a directory at stage k 
keeps the sharing information on the caches below it. 
The directory organization will be similar to tha t of 
the cache coherence protocol on the tree-based multi­
processors. 

The relationship between a direct binary n-cube and 
an indirect binary n-cube was discussed in [12]. Con­
sider an indirect binary (n + l)-cube. There are 2" 
2 x 2 switch elements in each stage. The switch el­
ements at stages n and 0 correspond to the memory 
modules and the local caches, respectively. The switch 
elements at other stages correspond to the directories 
in all the 2" binary trees of an n-cube. The binary 
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tree rooted at a shared block can be embedded onto 
the binary tree rooted at the corresponding memory 
module through the interconnections of the indirect 
binary ( n + l)-cube. We put all the directories at one 
level in the corresponding node. 

The directory tree structure of a 3-cube is illustrated 
as an indirect binary 4-cube in Fig. 2. The directories 
and local caches are shown as boxes. The directory 
of level j at stage i is denoted as DTRij. The boxes 
at stage 0 represent the local caches. The other boxes 
represent the directories for keeping 1 he shared blocks 
consistent. The directory DIR{j covers the nodes in 
the d-cube 6n_i.. .6;*!, where j = 6n_i...6o∙ 6„_i...6,∙*' 
is called the current d-cube of a node j . The d-cube, 
&n_i...&i*!, is called the adjacent d-cube of node j . The 
entry of DIRij corresponding to a particular shared 
block keeps the sharing status of the cached blocks in 
the nodes covered by DIRij. 

Figure 2: Organization of the directories in a 3-cube. 

The tree connections with respect to the memory 
module associated with node 7 of a 3-cube is shown 
in Fig. 2 with solid lines. It must be noted tha t the 
communications across different levels in the binary 
tree of the indirect binary n-cube incur communica­
tion overheads. The communication inside a level of 
the indirect binary n-cube do not involve any commu­
nication overheads. 

A directory (D) is below another directory (Q) with 
respect to a particular memory module ( M ) if D is a 
descendent of Q in the tree rooted at M . In other 
words, Q is above D with respect to M. A request to 
a directory is said to come from below (above) if the 
request is sent from a directory below (above). While 
describing the movements of cache coherence control 
messages for a block, we will follow the above terms 
that pertain to the tree with the node containing the 
block at the root. 
B . D i r e c t o r y Organ iza t ion 
We follow the same directory organization as in [8]. 
Since only the references to the shared blocks require 
cache coherence, the directory contains entries only 
for the shared blocks. Let AT,j, be the total number 
of shared blocks in the system. We need s = /o<^A'jj 
bits to distinguish among the shared blocks. In the 
system with N = 2" nodes, each node contains 2"~ n 
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shared blocks. Assume the memory modules are lower 
order interleaved. Therefore, the directory of level j = 
jn-i■■■jo at stage i denoted as DIRij for 1 < i < n can 
be organized as in Table 1. In DIRij, there are 2S~* 
entries which keep records of the state information of 
shared blocks from 2n~l nodes in *n~*ji-i...jo■ The 
two presence bits, left and right, for each entry store 
the information about the existence of copies of the 
shared block in the left and right subtrees. 

Since we use the complete directory scheme which 
facilitates fast access to an entry, each shared block is 
associated with 2" — 1 entries in a tree fashion. Each 
entry needs 4 bits. Thus, totally 4(2" — l)■Nsi bits are 
required for all the shared blocks in the system. The 
memory requirement is higher than the fully mapped 
and single linked list protocols. To reduce the memory 
requirement, we can go for an associative directory 
with limited number of entries. 
C. The Protocol 
An entry of DIRij associated to a shared block can 
be in state exclusive, valid-below, exclusive-below, or 
invalid. Exclusive means there are many valid copies 
of the block in the local caches of the nodes and the 
least common ancestor of all the nodes with a valid 
copy is DIRij. No copy of the shared block exists 
in caches of other nodes that are not in the subtree 
rooted at DIRij ■ If an entry is in exclusive state, 
both of the presence bits must be set to l's. Valid-
below means one or more valid cached blocks are in 
the local caches of the nodes of the subtree rooted at 
DIRij ■ If an entry is in valid-below state, at least one 
of the presence bits is set to 1. Exclusive-below means 
that there is a directory below DIRij whose associ­
ated entry is in exclusive state. Exclusive-below serves 
as a pointer from the memory module containing the 
associated shared block to the directory in which the 
associated entry is in exclusive r.tate. If an entry is in 
exclusive-below state, only one of the presence bits is 
set to 1. Invalid means there is no cached block in the 
local caches of nodes in the subtree rooted at DIRij. 
If an entry is invalid, none of the presence bits is set 
to 1. 

The cache block states are exclusive, valid, or in­
valid. Exclusive means that the block is the only copy 
in the system. Valid means that there may exist other 
copies in the system. If a cached block is exclusive, 
none of the directories above it can have an associ­
ated entry with exclusive state. If a cached block is 
valid, normally there is a directory above it contain­
ing an associated entry with exclusive state. However, 
it is possible that no exclusive entry above the valid 
cached block is in the system. For example, when the 
first access of a program to a shared block is a read re-

Table 1: Directory organization of DIRij. 

Figure 3: State transition diagram for a local cache. 

Figure 4: State transition diagram for a directory en­
try. 

quest, the state of the cached block is set to valid and 
the state of the associated entries of the directories 
above it is set to valid-below, up to the home memory 
module. The state transition diagrams for the local 
cache and the directory entry (DIR,j) of the shared 
block are shown in Fig. 3 and 4, respectively. 

3 Coherence Protocol Operat ions 
Our protocol allows multiple copies of shared blocks 

and is based on write invalidation. 
Read hit: When the cache controller finds the re­

quested data in a valid or exclusive cached block, the 
read operation is carried out locally in the cache. The 
states of the cache block and the directories remain 
unchanged. 

Read miss: When a read miss occurs, a local 
cache block is first selected for replacement. The 
request is then passed over the network toward the 
home memory module until (1) it reaches a directory, 
DIRij, which contains the associated entry with ei­
ther exclusive-below or valid-below state or otherwise 
until (2) it reaches a directory which is located in the 
same node as the home memory module. 

We first consider the case (1). Along the path to 
DIR{j, the corresponding presence bits of the direc­
tories encountered by the request (including DIRij) 
are set. If the state of the associated entry in DIR, j 
shows a valid-below state, the read request is passed 
downward to select a node which owns a valid copy of 
the requested block. The read request that is passed 
downward corresponds to the read fiom above in the 
state transition diagrams. If both presence bits of the 
associated entry in a directory encountered by the read 
from above message are set, the read from above mes-

Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00  © 1994



1994 International Conference on Parallel Processing 

sage is passed to the right child directory it the r " 
bit of requesting node's ID is 1, otherwise it is passed 
to the left child directory. The presence bit selection 
rule ensures that if a neighboring node of the requester 
owns a valid copy, then that node will be selected for 
supplying the requested block. However, it does not 
guarantee to find the nearest node if no neighboring 
node of the requester has a copy. Upon receiving the 
read request, the selected node sends the requested 
block to the requester and sets the corresponding block 
to valid state. 

As mentioned earlier, the communication inside a 
level does not incur any communication overhead on 
the network. One optimization method can be im­
plemented to reduce the traffic due to a read miss 
as follows. Let DIR^j be one of the directories en­
countered by the read from above message. We can 
determine if there is a valid copy in the local caches 
of node I by checking the corresponding presence bit 
of the associated entry in DIRij. If there is a valid 
copy in node /, then the requested block is passed to 
the requester. Otherwise, the presence bit selection 
rule is applied and the read from above message goes 
down one stage. The above optimization is applied 
again until a valid copy is found. Although this opti­
mization method fails to find the nearest node to the 
requester, we save time on searching the nearest node. 
It should be noted that the maximum number of steps 
that the read request takes to reach a valid copy in the 
subtree rooted at DIRij is i. The states of the associ­
ated entries in the directories encountered by the read 
request are unchanged. 

If the associated entry of DIRij is in exclusive-
below state, it is changed to exclusive state. The state 
of exclusive-below serves as a pointer to the direc­
tory with exclusive state. There exists a linear pointer 
chain from DIRij downward to a directory containing 
an exclusive entry with respect to the requested block. 
The linear chain going left or right in each stage de­
pends on the corresponding presence bit. All the as­
sociated entries of the directories on the linear pointer 
chain are set to valid-below state. The remaining pro­
cess to select a node for supplying the requested block 
to the requester is the same as above. 

Now we consider the case (2). The state modifi­
cation process for each entry encountered by the read 
miss up to the associated entry with either valid-below 
or exclusive-below state is the same as above. How­
ever, the process to select a node to supply the re­
quested block is different. If the dirty bit of the re­
quested block is reset, the requested block is supplied 
by the home memory module instead of looking for a 
node containing a valid copy of the requested block. 
If the dirty bit is set, the only copy of the requested 
block is in exclusive state. The node with the dirty 
copy changes the state of the requested block to valid, 
sends requested block to the corresponding memory 
module with dirty bit reset, and then sends another 
copy to the requesting node. 

Now we give an example to illustrate how the pro­
posed coherence protocol works when a read miss oc­
curs. Consider a read miss on a shared variable located 
in memory module 7 in a 8-node hypercube. Suppose 
that the status of the cached block having the shared 

variable and the entries associated with the cached 
block is as shown in Fig. 2 where both nodes 0 and 1 
hold valid copies. According to the protocol, the com­
mon ancestor, DIR\t\, of these two local caches is in 
exclusive state. The directories, DIR2Z and DIRi 3, 
are located in the same node. The directories above 
DIR\t\ are DIRi^ and DIR3 7 in which the associ­
ated entries are in exclusive-below state. Other asso­
ciated entries in the system are in invalid state. Now 
node 3 issues a read request to a shared variable in 
the block. The read miss as shown in Fig. 5, is routed 
along the corresponding binary tree toward the as­
sociated entry with exclusive state. The path from 
the local cache to D/i?2,3 is marked as dashed bold 
lines since only internal communication to node 3 is 
involved. The state changes as a result of the read 
miss request and the movements of the messages go­
ing through the network is given in Fig. 5. A read miss 
from above (r.m.a) message is generated from DIR23 
to DIR\ti. We know that there is a valid copy in 
the local cache of node 1 since the right presence bit 
of the associated entry in DIRyti is set. Therefore, 
the requested block denoted as r.m.r is finally passed 
from node 1 to node 3. Note that the number associ­
ated with each message in Fig. 5 indicates the timing 
sequence of the message. 

Write hit: If a node issues a write request and the 
requested block is in exclusive state in the local cache, 
then the write is performed locally since it is the only 
copy in the system. However, if the requested block is 
in valid state, an exclusive copy must be obtained by 
invalidating all the other copies in the system. There­
fore, an invalidation signal is sent to the home mem­
ory module, where the dirty bit of the block is set 
and the invalidation process is initiated. All the asso­
ciated entries with valid-below, excbisive-below, and 
exclusive state are changed to invalid state except; the 
entries above the requester along the tree to the home 
memory module which are set to exclusive-below state. 
Upon receiving the invalidation signal from the mem­
ory module, the requester simply performs the write 
and sets its state to exclusive. 
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Figure 6: Message movements for a write miss. 

Write miss: When a write miss occurs, the write 
request is sent to the home memory module directly. 
From the memory module, the invalidation process is 
the same as a write hit except that an acknowledg­
ment must be sent back to the memory module along 
the reverse path of the invalidation signal. All the 
nodes having a valid copy of the requested block are 
reached and the acknowledgments are collected at the 
home memory module. Upon receiving the acknowl­
edgments, the memory module sends a copy of the 
block to the requester. On the way, the exclusive-
below states are setup in the intermediate directories. 

Now consider the example when the read miss of 
Fig. 5 is followed by a write request on the same 
shared variable by node 6. Fig. 6 shows the state 
changes and the write miss request movements. Basi­
cally, a write miss message is first generated by node 
6 and sent to the home memory module which is node 
7. Secondly, the invalidation messages are initiated 
at node 7 and passed downward to all the nodes with 
valid copies. These invalidation messages are marked 
as w.m.a messages. The acknowledgments, marked as 
w.m.ack are then passed back to the memory mod­
ule. The nearest node to the requester now can be 
determined to be node 3. Thus, node 3 is informed to 
supply the requested block to the requester. The tim­
ings are marked with the requests in Fig. 6. Note that 
the message marked as 2'.w.m.p indicates that this is 
the message initiated as the same time as 2.w.m.a and 
is used to build up the exclusive ■below pointers to the 
requester. 

4 Performance Analysis and Results 
The latency and traffic defined below are used as the 

performance metrics for comparisons. The latency is 
the time taken to complete a read or write operation. 
The traffic is defined as the total messages per links 
that have to be passed over the network links due to a 
read or write operation. The traffic is used to reflect 
the interference factor on the network. If the traffic is 
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high, the probability that a message is interfered by 
other messages is also high. 

We assume that all the valid copies of a shared block 
are uniformly distributed in the system. The switch­
ing technique is assumed to be wormhole routing which 
is distance insensitive as long as no interference is in­
troduced by other messages on the network. Only 
two kinds of messages are considered: control mes­
sage and data message. The control messages include 
the read/write request, invalidation/update, and re­
sponse/acknowledgment messages. Normally, a con­
trol message contains the source processor ID and the 
memory address plus some bits for command and sta­
tus information. We assume that the control message 
is 128 bits (16 bytes) long. The data messages basi­
cally are the cache blocks which are multiples of 16-
bytes. For the purpose of comparison, we assume that 
a 16-byte message takes one time unit to pass over a 
link to a neighboring node. In addition, other vari­
ables are defined as follows. 

h: the hit ratio of accesses to the shared blocks, 
r: the probability that a shared request is a read. 
p: the read-run, defined as the average number of 

consecutive read requests to a particular shared 
block issued between two write requests, p reflects 
the average number of valid copies of a particular 
shared block in the system. Thus, j ^ represents 
the probability that a write request hits a shared 
block. The probability that no node has a valid 
copy of a shared block is equal to $ = (1 — ^■)'v. 
It is also the probability that there is only one 
exclusive copy of the shared block in the system. 

B: the cache block size. 
The correlation of the above variables is very com­

plex. The metrics used here are simple and valid 
mostly for comparison purposes. We also ignore the 
cache block replacement overhead in the analysis. We 
use LRMXXX, LWMXXX, and LWHXXX to denote the 
latency due to a read miss, a write miss, and a write 
hit, where xxx can be fully mapped, single linked list, 
or proposed directory scheme. Similarly, TRMX.VX, 
TWMXXX, and TWHXXX are used for traffic. If the 
latency due to a read and write is known, the overall 
latency can be calculated by incorporating h and r as 

The overall network traffic, Trafficxxx, can also be 
calculated similarly. 
Fully Mapped (FM) Directory Scheme 
Consider a read miss first. If there are p valid copies in 
the system, (l + B) units of time are lequired. if there 
is only one copy of the requested block in the system, 
(3 + B) units of time are needed, where we assume 
that the two data messages from the node having the 
dirty copy of the requested block are sent simultane­
ously to the memory module and the requester. For 
a write miss, all the valid copies in the system must 
be invalidated before a requested block can be sent 
to requester and then the write operation can be per­
formed. If the dirty bit of the requested block is not 
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set, i.e. there are p copies in the system, the memory 
module needs p time units to send out all the invali­
dation messages one by one. For the last message sent 
out by the memory module, it takes n time units on 
an average to reach the destination nodes and come 
back with an acknowledgment. After receiving the ac­
knowledgment of the invalidation, B time units are 
required to send the requested block to the requester. 
If the dirty bit is set, i.e. there is only one dirty copy 
in the system, (3 + B) time units are required. For 
a write hit, the invalidation process is the same as 
write miss except no data message is sent. Note that 
the probability that a write request hits the requested 
block is jf. The average latency formulas of a read 
miss, write miss, and a write hit are listed as follows. 

1994 International Conference on Parallel Processing 

The network traffic due to a read miss, a write miss, 
and a write hit can be obtained as follows. 

Single Linked List (SLL) directory scheme 
According to the messages generated by a read or a 
write, the latency and traffic are as follows. 

Proposed distributed directory scheme 
Unlike the fully mapped directory scheme, the pro­
posed protocol attempts to find the nearest node with 
a valid copy to supply the requested block. Given that 
there are p valid copies of the block in the system and 
the distance between requester and the home memory 
module is d, the following variables are required to 
evaluate the performance of the proposed protocol. 

AaVg{p,d)'■ the average distance between the requester 
and the node supplying the block to the requester, 
according to the operations of a read miss, 

Bavg{p>d): the average number of steps that a read re­
quest needs to build up the connection from di­
rectory tree structure to requester and find the 
node with a valid copy for supplying the block to 
the requester. 

Gavg(p): the average distance from the memory mod­
ule to the farthest node, given that there are p 
nodes having valid copies of requested block in 
the system. 

Fig. 7 plots the latency of FM , SLL, and the pro­
posed distributed directory protocols for a 6-cube with 
h = 0.9, r = 0.7, and B = 4. We can see that if the 
read-run is more than 7, the proposed protocol per­
forms better than the other two protocols. The reason 
is that in the proposed protocol, the invalidation mes­
sages traverse the network hop by hop in a store-and-
forward fashion. However, the messages traverse the 
network in a wormhole fashion for the fully mapped 
and single linked list protocols. Therefore, when the 
read-run is small, the linked list protocol or the fully 
mapped protocol performs better than the proposed 
protocol. The latency improvement of the proposed 
protocol basically comes from the fact that the paral­
lel invalidation process is employed through the tree 
structure, where both FM and SLL protocols employ 
a sequential version of the invalidation process. 

Traffic is defined as the average number of messages 
per link over the network generated by a transaction. 
It can be seen that the proposed protocol performs al­
ways better than FM and SLL protocols. Fig. 8 shows 

The following expressions are derived for the net­
work traffic due to read miss, write miss and write 
hit. The details of the derivations are given in [14]. 

Havg{p): the average distance from the requester to the 
nearest node which supplies the block to the re­
quester with a write miss, given that there are 
p nodes having valid copies of requested block in 
the system. 

IaVg(p)'■ the average number of messages generated by 
the invalidation process on a write operation, 
given that there are p valid copies in the system. 

AaVg(p,d) and Havg(p) are used to calculate the traf­
fic due to moving the block to the requester for a 
read miss and a write miss, respectively. Aavq(p, d) 
and HavJp) are different since the process for search­
ing a valid block for a read and write miss is differ­
ent. Bavg{p, d) basically represents the time taken for 
building up the pointer from the original directory tree 
to the requester by setting appropriate entries to valid-
below state. Gavg{p) represents the time taken for the 
invalidation process on a write operation. Iavg(p) is 
used to compute the traffic due to invalidation process 
[14]. 

The following expressions are derived for the laten­
cies due to read miss, write miss and write hit. The 
details of the derivations are given in [14]. 
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the results for network traffic. The network traffic im­
provement of the proposed protocol over FM and SLL 
is due to the following reasons. In FM, all the inval­
idation messages are from the memory module. The 
links near the memory module are used heavily by 
the invalidation messages. In SLL, the invalidation 
process follows the pointers on the linked list. The 
nodes which are close to each other on the list are not 
necessarily close to each other on the network. How­
ever, the proposed protocol fully utilizes the nodes in 
the neighborhood to complete the invalidation pro­
cess. No extra traffic is incurred. We can see that 
the larger the read-run is, the larger the performance 
improvement we can get. Figs. 9 and 10 plot the la­
tency and network traffic as a function of size of the 
hypercubes which ranges from 6 to 10. The read-run 
is taken as ^ and other parameters are the same as 
above. It is shown that our protocol performs bet­
ter than the others. The fully mapped protocol and 
the single linked list protocol are 5 times worse than 
the proposed protocol for a 10-cube, respectively. The 
improvement of network traffic over the fully mapped 
protocol and the single linked list protocol are 110% 
and 48% for a 10-cube, respectively. In general, the 
performance improvement of our protocol increases as 
the size of the system. 

Figs. 11 and 12 show the results against hit ratio 
for a 6-cube. The performance improvement of la­
tency increases with increase in hit ratio. However, 
the improvement in network traffic decreases with the 
hit ratio. From all the above results, we can see that 
the proposed protocol generally performs much better 
than the others. It also should be noted that the per­
formance improvement of the SLL protocol over the 
FM protocol matches the results given in [11]. 

5 Conclusion 
In this paper, we proposed a new distributed direc­

tory cache coherence protocol for hypercube multipro­
cessors. The proposed protocol uses a tree structure 
to store the directories. Our protocol achieves lower 
latency and network traffic over other protocols due to 
(1) a smaller distance between the node supplying the 
requested block and the requester and (2) less num­
ber of messages generated by a cache miss. As a read 
miss request traverses toward the home memory mod­
ule, the intermediate nodes try to satisfy the request. 
For a write miss, the exclusive copy of the requested 
block is responsible to handle the conflicts and invali­
date all the valid copies in the .system. Therefore, all 
the requests do not have to be serviced at the home 
nodes, thus cutting down the latency and network 
traffic. The wormhole routing switching technique is 
considered in the analysis. The proposed protocol can 
be generalized to other architecture as long as a binary 
tree can be embedded with any node as the root. 
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Figure 7: Latency for a 6-cube. Figure 8: Network traffic for a 6-cube. 

Figure 10: Network traffic against system size. Figure 9: Latency against system size. 

Figure 11: Latency against hit ratio. Figure 12: Network traffic against hit ratio. 
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