

Cache aware design for PHP-NUKE
以快取導向設計的 PHP-Nuke

Y. K. Chang and M. H. Hong

Dept. of CSIE,

National Cheng Kung University

{ykchang,p7691106}@mail.ncku.edu.tw

K. L. Chiang

Dept. of Information Management,

Chung Hua University

klchiang@mi.chu.edu.tw

摘要

近年來，隨著動態網頁的興起，許多棘
手的問題也隨之衍生，如伺服器之處理能力被
迫下降、網路之傳輸更加壅塞等等。雖然動態
網頁的內容不一定會每分每秒改變，但是為了
得到最新的資訊，快取機制會被關閉。

本研究提出讓動態網頁存成靜態檔案的
方法來讓快取機制更有效率。我們使用了
Apache URL重導方法與快取管理機制來增進
我們的效能。我們把這套機制使用在
PHP-Nuke 中，然後比較原始的 PHP-Nuke 與
使用我們方法的 PHP-Nuke 的表現。根據實驗
的結果，修改過的 PHP-Nuke的效能要比原始
的 PHP-Nuke好。

關鍵詞：動態網頁、快取、一致性、PHP-Nuke

 Abstract

Over the past few years, dynamic web
pages become popular[13]. This increases server
load and makes cache ineffective. For dynamic
generated pages, cache mechanism is disabled
for obtaining newest data. But these pages may
not change every time it is accessed or only a
part of the page is changed.

In this paper, we propose an approach for
writing cache-effective web applications to
cache dynamic pages . Our proposed design
improves the caching systems by using rewrite
engine supported by apache web server and a
novel cache management. We implement our
concepts on PHP-Nuke, an popular news
automated system, and compare the performance
of original PHP-Nuke from our modified
PHP- Nuke. Based on the resul ts of the
experiments, the modified PHP-Nuke performs
b e t t e r t h a n t h e o r i g i n a l P H P- N u k e .

Keywords： dynamic web pages, caching,
consistency, PHP-Nuke.

1. Introduction

HTTP is used to transfer the Web
documents. It was originally designed for
browsing static documents. An important
mechanism used for saving bandwidth, response
time, and server load is to cache the documents.
Using the orig inal HTTP protocol, a static
document that rarely changes can be attached
with an “expiration time”. This tells the proxies
and browsers that they do not need to reload the
document from the server before expiration time.
Additional validators, such as the content length,
last modification time, entity tags, and cache
control [7, 3, 18], are also needed in order to
make them cacheable in the proxy servers.

However, during the last decade, the

development of World Wild Web is gradually
changing from static to dynamic. CGI、ASP、or
PHP together with HTML forms allows dynamic
creation of documents. These dynamic contents
are constructed based on personalized service
and request parameters at the time the document
is requested. For those dynamically generated
documents that may change on every request,
cache mechanism is disabled— the expiration
time is always set to “now”, sacrificing the
benefits of caching.

Although the web pages generated by
server-side scripts are called "dynamic", they
may not change in every second. A lot of
dynamic web pages are intrinsically static, not
changed in a period of time. So we can see that
the same pages have been transmitted over the
same network links again and again to thousands
of different users. Caching can be very effective
at reducing network bandwidth consumption as
well as balancing servers’ load [9, 6, 2, 14].

In addition to the uncacheability of
dynamic web pages, each request for dynamic
page invokes a program, script or database
access, which typically performs significant
operators to generate the requested pages. It is
the main reason why web server can be
overloaded by only a small number of requests.
If server’s service rate can’t keep up with

increasing requests, the server’s throughput will
decrease and users will experience long response
time or request timeout. So, there are some
techniques proposed to tackle these drawback.

Delta encoding [12] observes that most
dynamically generated documents have many
fragments in common with their earlier versions.
Instead of transferring the complete document, it
updates cache entries by transferring only the
differences, or ‘‘delta,’’ between the cached
entry and the current new value. But the
drawback of delta-encoding is that it requires
protocols for management of past versions.

Active Cache [16] attach cache applet to
each document which is a piece of code that can
be executed by the proxy. The scheme needs
proxies to invoke cache applets upon cache hits
to execute the necessary processing without
contacting the server. It saves network
bandwidth but it also have drawback. It need to
modify proxy server which is not practical to
wide-spread use.

HPP [8] has extended HTML to allow the

explicit separation of static and dynamic portions
of a resource. It is also observes that
dynamically constructed documents usually
contain common constant fragments. The static
portion contains instructions for inserting
dynamic information. The static portion together
with these instructions (the template) can be
cached freely and dynamic part, binding file, are
accessed every time.

 In this paper, we will introduce PHP-Nuke
6.0 and improve its cacheability by using our
mechanism. We observe that on PHP-Nuke only
a small part of page is changed on every access.
So The static portion of a page is separated from
the dynamic portion where the static portions
can then be cached, with (presumably small)
dynamic portions obtained on each access. We
propose a caching system to store the static part
of dynamic generated web pages on disks and
use rewrite engine supported by apache web
server.

In section 2, we propose our cache
mechanism. In section 3 we give brief
description of PHP-Nuke. In section 4, we are
going to introduce the way we use to modify the
PHP-Nuke to be cacheable. In section 5, we
show performance of original PHP-Nuke and
modified PHP-Nuke with cache mechanism. In
section 6, we show conclusions.

2. Proposed caching system
As we know the process of accessing a

static file is much faster than that of accessing a
dynamic web page. Therefore, our basic idea is

to store the dynamic pages as static files in
cache[10, 4]. The concept and dataflow is shown
in Figure 1.

We put all cached files in a directory named
Cache Directory. If the requested file is in the
Cache Directory, we response the request with
file in it. Otherwise, we first trigger
WebApplication to generate requested files and
attach with HTTP Cache-Control Header on
reply. Then, we store the reply in Cache
Directory as a static file. To implement our
concept, components in the system are
developed and shown in Figure 2.

2.1 Type B URL

In this paper, the format of URLs is

HTML Page

Request

Response

No

Yes
Output

Save

With HTTP Cache-Control Header

Web App

Cache Directory

If have cached
 dynamic
 web page

Web server

Figure 1.concept of process a request

http://host/abs_path/page?k1=v1&k2=v2
(Type A URL)

http://host/abs_path/page!k1=v1&k2=v2.html
 (Type B URL)

Table 1：URL formats

Figure 2. The structure of Dynamic Web page system

Static

Web Server

Cache
 Directory

Web Apps
（WADC）

WebSwitch

Dynamic

Client

Save

Type B

Cache Manager

Type A

Save as cmr file

Compare

Update

Notify

Response Response

classified into two types as shown in Table 1.
Type A is the traditional URL format with the
query string when the client requests a dynamic
web page using the GET method. Since type A
URL contains a question mark (?), the client side
cache usually does not cache this page[19]. In
order to remove the question mark in URL and
allow the client-side caches the dynamic page,
we define the corresponding type B format. The
format of URLs released to the public from the
proposed caching system is the type B. Type A
format is only used internally in the system.

As we can see, embedding the pairs of
keyword and value in URL using GET method
loses the flexibility of users’ inputs. This is
where POST method comes from. To imitate the
actions of POST method, we allow users input
the keywords and values but still using type B
format. This is done by a simple javascript code.
Figure 3 shows the code of a sample program
with two pairs of keywords and values.

2.2 Web Switch

We use URL Pre -processing to process
request URL before Web Switch begins to work
in Figure 4(put in the end of paper). In the
beginning, URL Pre-processing checks if the
request is for javascript file or not. If it is not to
request javascript file, URL Pre -processing first
checks if the requested URL exists. The
requested URL could be for dynamic page or for
static page or a cached file. So if the requested
URL exists, URL Pre-processing passes it to
Web Switch. If the request is for cached file, the
format must be Type B. If file doesn’t exist, URL
Pre-processing converts URL into Type A, then
passes it to Web Switch. Web Switch executes
the normal process for dynamic page as follows:
execute the corresponding program, generate
dynamic page, and store the dynamic into cache
file for later use. If file exists, Web Switch
replies with the cached file in Cache Directory.

2.3 Web Application Design for Caching
(WADC)

When the dynamic page is generated by

dynamic page program, it will be dropped by the
web server after it returns the response to the
client. Also the dynamic page generated by
dynamic page program will not contain any
HTTP Cache-Control Header. So, it will not be
cached by proxy. In this section we are going to
propose how to make dynamic generate page
cacheable.

2.3.1 Generate appropriate HTTP
Cache-Control Header

WADC must generate appropriate HTTP
Cache-Control headers according to changing
frequency of dynamic page. These headers are
attached to dynamic page before it is replied to
the client.

2.3.2 Storing dynamic generated page into
cache file

WADC must store the dynamic generate
page as cache file in Cache Directory. The name
for cache file is in Type B URL format. For
example, if client request for
/cachedir/calculate.php!v1=2&v2=3.html and
this doesn’t in Cache Directory. Then URL
Pre-Processing will translate the URL into
/calculate.php?v1=2&v2=3. Calculate.php first
generates dynamic page, attaches it with
appropriate Cache-Control headers, and stores
the dynamic page into Cache Directory with the
name calculate.php!v1=2&v2=3.html.

2.3.3 Informing Cache Manager
WADC must inform Cache Manager that the
dynamic page is stored as cache file in
Cache Directory and when to refresh that
cache file. Cache Manager send Type A
URL request to WADC to regenerate a cache
file when the predefined time is expire. And
regenerated cache file must save in TYPE B
URL with .cmr in the end of the file name.
Cache Manager then check if the original
cache file and regenerated cache file are the
same. If they are the same, delete the
regenerated cache file, otherwise replace the
original cache file with new generated cache
file. The reason is if original and newly
generated cache file are the same, we must
keep the original cache file’s last modified
time unchanged to make it still cached by
proxy when proxy send If-Modified-Since to
check the consistency.

Cache Manager is in charge of the
cache files in Cache Directory. It is behind the
web server. Only WADC can inform it about
how to manage the cache files. And Cache
Manager will not response to WADC. The
attributes of cache files maintained by the cache
manager is as follows.

<Script Language=JavaScript> function Location() {
var UrlStr;
UrlStr = "http://host /abs_path,page! k1=" +
document.LocationBody.k1.value+"&k2=" +
document.LocationBody.k2.value + ".html";
window. location.href = UrlStr; } </Script>
<Form Name=LocationBody>
Key 1: <Input Type=Text Name=k1>

Key 2: <Input Type=Text Name=k2>

<Input Type=Button Value=Submit
onClick="Location();">
</Form>

Figure 3: A javascript code to imitate the action of
POST method.

Ø ID: The name of cache file in the form of TYPE B
URL.

Ø File size: in Byte.
Ø MD5 value[17]: used to determine the

consistency.
Ø Last Modified Time: The last time the cache file is

modified.
Ø Last Access Time: The last time the cache file is

accessed.
Ø Expiration Time: The expiration time of cache

file.
Ø Consistency Check Method: The method Cache

Manager used to maintain cache files.

WADC tells Cache Manager that ID,
Consistency Check Method and Interval Check
Time of a cache file. Cache Manager will active
get the File Size, MD5 value, Last Modified
Time, Last Access Time and will use system
time of web server and Interval Check time to
calculate Expiration Time.

Database will change with time, so we
will get different result on different time if we
query with the same input arguments. Our Cache
Manager offers three ways to maintain the
consistency:
(1) Method for Regularly Changed Objects:

This method is designed for the web page
that is changed in a fixed period of time. For
example, the web version of the daily news
paper is changed roughly every 24 hours.
Hardware based sensor combined with a CGI
script probing the field data in a fixed period of
time is another example. Thus, the cached file
will change regularly. So WADC will informs
Cache Manager like this:
”calculate.php!v1=2.html:T1800”. This means
that the cached file calculate.php!v1=2.html is
regularly changed object and the change interval
is 1800 seconds. Cache Manager will send Type
A URL request to web server every 1800
seconds, store the newly generated file
as ”calculate.php!v1=2.html.cmr”, check the
MD5 of the new and original cache file. If they
are the same, delete the new one, otherwise
replace the original one with new one with the
name “calculate.php!v1=2.html”.

(2) Method for Irregularly Changed Objects
with Notification:

This method is designed for the situation
that the database manager and web master are
the same person. Therefore, it is possible that the
update process of the database can be designed
in such as way that every time the database is
changed, the cache manager will be informed.
We use the method like Signal and Message
Queue in UNIX system to let the database
manager or program that will change data in
database to notify Cache Manager to regenerate
the corresponding cache file. For example, when
WADC notify Cache Manager with
”calculate.php!v1=2.html:N”, Cache Manager

with set the Consistency Check Method of that
file as Method for Irregularly Changed Objects
with Notification and when it receives
”calculate.php!v1=2.html:N” again, it use the
same procedure as mention before to send Type
A URL request and check difference between
original and new cache files.

(3) Method for Irregularly Changed Objects
without Notification:

This method is designed for the situation
that the database manager and web master are
the different persons and it is not possible to
force the database programmers to write the
program in such a way that when the database is
changed, the cache manager is informed. One
reason is that the database manager may not
know who is using the database.

The basic mechanism to obtain the change
frequency is to adaptively probe the concerned
data. Since this part is not related to the
PHPNUKE in which all the web programs and
databases are maintained by the same person,
we will ignore the details in this paper.

Other than the consistency problem, the
space constraint is also addressed in the design.
If the free space is less than 10%, Cache
Manager will start the swap procedure. The
policy we use is LRU (Least-Recently-Used).
When swapping, Cache Manger will retrieve the
Last Access Time of all cache files, find the one
with longest time without access and delete it
until the free space is more than 10%.

2.5 Separate static part from dynamic
part

We will modify PHP-Nuke and put the
static part and dynamic part into javascript
files[11]. When Web Switch receives a request
like “xxx.js ”, if it exists, Web Switch replies
with javascript file in Cache Directory.
Otherwise, Web Switch executes the
corresponding dynamic program to generate
javascript file. We know which javascript file
will change by writing corresponding code in
PHP-Nuke to notify Cache Manager to refresh
javascript file. Cache Manager can manage these
javascript files by “Method for Irregularly
Changed Objects with Notification” as we
mentioned before.

Figure 6: URL rewrite Rule

RewriteEngine on
RewriteLog logs/rewrite.log
RewriteLogLevel 9
RewriteMap
urlparse prg:/usr/local/apache2/cgi-bin/urlparse.pl
RewriteCond
/usr/local/apache2/htdocs%{REQUEST_FILENAME} ! -s
RewriteRule ^/cache_dir(.*)\.html$ ${urlparse:$1} [L]

2.6 Implementation

Web Switch:We use Apache mod_rewrite [1]
to implement our URL Pre-processing. Apache
mod_rewrite gets the requested URL before
Apache services the request. Mod_rewrite uses
Condition and Rule to rewrite URL and Apache
will use this rewritten URL as client ‘s request
URL and start to process it. Figure 6 and 7 are
our implementations.
 WADC: General speaking, HTTP
Header must send to client before other
content. We use ob_start() function in PHP
to buffer the generated page and calculate
page size. Then, attach HTTP Header with
Cache Control Information and send HTTP
Header to client before sending the page
content.

3 .PHP-Nuke

3.1What is PHP-Nuke
 We can say that PHP-Nuke is a Content
Management System, Web Portal System, News
automated system. The main objective of
PHP-Nuke is to have an automated web site to
distribute news and articles. It is designed for
people to arrange their web sites in a flexible
way. With PHP-Nuke, a web master can easily
manage his web site through administrator pages.
PHP-Nuke is totally written in PHP and requires
Apache Web server, PHP and MySQL.

3.2 Features and Functions
 The main features for users include:
surveys, Topics, Web Links, Recommend web
master, submit News, upload download links,
and themes manager for registered users.
 For administrator, PHP-Nuke has a
friendly administration GUI with graphic topic
manager. Graphic topic manager contains: option
to edit or delete stories, option to delete
comments, Refers page to know who link us,
sections manager, and many
friendly functions.

3.3 Directory structure

html / admin /
 blocks /

includes /
 language /
 modules /
 themes /

3.4 Framework and structure
We introduce the structure of PHP-Nuke

in two views: user view, and administrator view.
User View:

PHP-Nuke is composed of 3 column portals,
the two lateral ones including the blocks, the
central one displaying the functional modules.
Beyond these 3 columns it also has a header (top
of page) and a footer (bottom of page) that
appear in all pages.

Blocks: these are present in the left/right
columns of PHP-Nuke ’s portal and render
functions that are repeated in all pages of the site
(e.g. the Categories, search and login blocks).

Modules: They are the kernel part of the
page, they are placed in the center column and
each one has its own function. For example the
news module renders the articles, the Feedback
module let user to submit comments and
suggestions to the administrator. We can see
structure of whole web page in bold type and
corresponding files in italic type with underline
in Figure 8.

 Figure 8

Besides blocks and modules, there is another
function users can use is to change theme.
Theme is used to present the format output.
Users can change their theme which let them
to have their personalized graphical
interface.

PHP-Nuke separate the presentation from
database query. For example, when a client
request main page – /html/index.php, web
application first get user’s theme from cookie,
query database to get the data, and then output
the whole page by the user selected theme. So, if
the user only change theme and the data is not
change, we just need to reload the theme part.
Administrator View:

Once logged in, the administrator finds an
interface that lists all the areas on which can be
acted upon with GUI graphic topic manager. In
this paper, we focus on how to modify User view,
because administrator may contain few people
and it won’t bring about the server’s load very
much.

4 Modified PHP-Nuke

Dynamic generated pages may not change
every time it is access or just a part of page is
changed. So we are going to separate the static
portion of a web page from the dynamic portion.

Header Header.php

Header
Header.php
(Left Block)

Modules

Modules.php?name=xx

Header
Header.php
(Right Block)

Footer Footer.php

#!/usr/bin/perl -w
$|=1;
while(<STDIN>) {
chomp $_; s/,/\//g; s/!/?/g;
printf $_."\n"; }

Figure 7 : urlparse.pl

The static portions can then be cached for a
longer time , with (presumably small) dynamic
portions obtained on each access. In this section,
we are going to present how to modify
PHP-Nuke into static and dynamic part.

4.1 Basic concept

The language we use for combining static
part with dynamic part in client side is javascript.
That is to say, we convert the php code into
javascript and save them into javascript files.
Here we discuss the normal users, not the
registered login user. We will discuss registered
login user later. The concept we use is described
as follows:

As we mentioned before, a whole web
page contain (1)header(top page), (2)left/right
blocks, (3)central modules, and(4) footer(bottom
page). Header, left/right blocks, and footer
appear repeatedly in every web page. Also, the
output process contains two steps.

Firstly, when a user requests a page,
PHP-Nuke determine what theme(default or
login user selected theme in cookie) to use and
includes /html/theme/Selected_Theme
/theme.php.

Secondly, it includes corresponding php
file to present central part and finally composes
these two parts to output the whole page.

The following abstract structure is a php
script that phpnuke uses.

The following abstract structure is the static
html file we use.

We can see the corresponding javascript
files in Figure 9.

We separate function part from data
part because function changes less
frequently than data part . For some

xxx_data.js that may change frequently, we
pick out the corresponding database query
code in PHP-Nuke to write new PHP script.
So, we just execute data generation and
don’t need to generate the whole page
content like PHP-Nuke.

We translate the “judge part”, “function

part” in php language into our javascript form in
xxx_function.js. And then put the query data
from database into our xxx_data.js. For the
ThemeDefault_format.js, it contains functions
for header_function.js,
ModulesSelected_function.js, and
footer_function.js to call to format their theme
forms. For header_data.js and footer_data.js, it is
the same to all users except the online
information in left block. We will discuss this
later. For ThemeDefault_format.js, the
descriptions in this example are for the
anonymous non-login users. We will discuss
regis tered login user later.

4.2 Advanced implementation

In this section we will discuss hyperlinks,
registered login users and query strings that may
change every time user request.

4.2.1 Registered login users:

The difference between registered login
users and anonymous un-login user is that login
user has cookie. We use Example1-2 to explain
how to use the same html for different login
users.

We use a javascript function to get user’s
cookie, and combine cookie with the filename in
Example1-2 to form a new request filename.

GetCookie("name") is function we write in
javascript to get cookie and we put it in
GetCookie_function.js . We assume that the
value get from GetCookie(“name”) is
“Cookie_value”, then the Example 1-2 is change
to Example 2.

We add <scriptsrc=‘GetCookie_function.js ’>
</script> to include our get cookie function.
Different login user will get different
Cookie_value and that looks like <script
src=’module_dataCookie_value.js’></script>.
The user theme may change with different user
<script src=’ThemeSelect_format.js ’></script>.

header_function.js
header_data.js

header_function.js
header_data.js

ThemeDefault_format.js
module_data.js

header_function.js
he header_data.js

footer_function.js
footer_data.js

<?php
$ThemeSel = get_theme(); //get the theme user choose
include(“header.php”); //output header
include(“ modules/ Selected_module /index.php”);
//output the central part
include(“footer.php”); //output the bottom of the page
?>

Example 1-1

<HTML> <HEAD> </HEAD> <BODY>
<script src=’ThemeDefault_format.js’></script>
<script src= ‘header_function.js’></script>
<script src= ‘header_data.js’></script>
<script src= ‘ModulesSelected_function.js’></script>
<script src=’module_data.js’></script>
<script src= ‘footer_function.js’></script>
<script src=’footer_data.js’></script>
</BODY> </HTML>

Example1-2

Figure 9

We also add <scriptsrc=‘login_function.js ’>
</script><scriptsrc=‘login_dataCookie_value.js’>
</script> to show login information in left
column of page. After user logout we delete all
the xxx_dataCookie_value.js for security
reasons.

4.2.2 Hyperlinks and query string:

In PHP-Nuke the first layer of hyperlinks
look like http://domain/modules.php?name=val.

So, its TYPE B form is
http://domain/modules.php!name=value.html.
First layer of hyper links presents the main
categories of web site. For the second layer it
may looks like
http://domain/modules.php?name=value1&op=v
alue2. So, its TYPE B form is
http://domain/modules.php!name=value1&op=v
alue2.html. Second layer means user has choose
a category and start to read the corresponding
articles.

4.2.3. Combine modified PHP-Nuke with
Cache mechanism

 For our modified PHP-Nuke we put
our output in html file and javascript file. We use
the same mechanism that we use in html file (in
section 2) for javascript file. So we need to add
rewrite rule for javascript files, see Figure 10.

Most part of PHP-Nuke web page can only
be modified by Administrator or Survey that
may change when a user submits a vote. For an
administrator, he can modify Post News, Add
Story, Change Configuration for web site, etc.
For those javascript files that may change
according to the Administrator’s action or user
submit a vote, they can classified into “Method
for Irregularly Changed Objects with
Notification“ as mentioned before in section 2.
That is to say, when the administrator updates
database, change some part of web site or user
submit a vote, we can write code in PHP-Nuke ’s
corresponding files to notify Cache Manager to
refresh the related javascript files.

5. Performance

 A number of experiments are conducted
to show the performance improvement of the
proposed system. The HTTPerf[5] performance
tool for web servers is used. We use PHP-Nuke
6.0 to test performance. We consider three pages.
The first one is the homepage of our PHP-Nuke
index.php and our modified PHP-Nuke with
cache mechanism. The second one is the first
layer links of PHP-Nuke, we use Feedback link
as our experiment. The last one is the pages with
query strings for articles in 2003 Aug.

The links are shown as follows.
A: http://domain/phpnuke/index.php and
http://domain/phpnuke/index.html
B:
http://domain/phpnuke/modules.php?name=Feed
back and
http://domain/phpnuke/modules,modules.php!na
me=feedback.html
C:http://domain/phpnuke/modules.php?name=St
ories_Archive&sa=show_month&year=2003&m
onth=08&month_l=_AUGUST and
http://domain/phpnuke,modules.php!name=Stori
es_Archive&sa=show_month&year=2003&mon
th=08&month_l=_AUGUST.html.

We first show the size of these three pages
in Figure 11. As we can see that without cache
(First Access), our modified page size is a little
bigger than original page in A and B links. That
is because we put some functions and decisions
that PHP-Nuke use into javascript files. And if it
contains more same form output, our page size is
a smaller than original. The reason is that we use
loop in function to output the same format data
to prevent redundant transfer. But with cache
(After First Access), only the small part need to
be transfer .

Second, we show the server load on
processing these three requests in Figure 12. We
show the server load when the request rate are
5、10、15and 20 connections per second. For the
three dynamic generated pages, the server load
increase when the request rate increase. But for
our modified PHP-Nuke, three html files, the
server load is much smaller. The server loads of
these three html files are almost the same. So
they are located in the same place in our figure
and can not be shown clearly.

Third we show the response time in Figure

<HTML> <HEAD></HEAD> <BODY>
<script src= ‘GetCookie_function.js’></script>
<script src= ‘header_function.js’></script>
<script src= ‘header_data.js’></script>
<script src= ‘login_function.js’></script>
<script src= ‘login_dataCookie_value.js’></script>
<script src=’ThemeSelect_format.js’></script>
<script src= ‘ModulesSelected_function.js’></script>
<script src=’module_data Cookie_value.js’></script>
<script src= ‘footer_function.js’></script>
<script src=’footer_data.js’></script>
</BODY> </HTML>

Example 2

RewriteMap
urlparse prg:/usr/local/apache2/cgi-bin/urlparse.pl
RewriteCond
/usr/local/apache2/htdocs%{REQUEST_FILENAME} ! - s
RewriteRule ^/cache_dir(.*)\.js$ ${urlparse:$1} [L]

Figure 10: a sample apache rewrite rule.

13. We can see that for all six pages we test, the
server loads do not increase when request rates
change from 5 to 20, and the response times of
our html pages are almost the same. But when
the request rate is more than 30 per second the
response time of the dynamic pages are greater
than 1000 ms. That is because the server is
overloaded, the response time will much longer
than normal situation. For our modified
PHP-Nuke, even the request rate is greater than
100 per second, the response time is smaller than
7 ms.

We also test the hit ratio of these three
categories. For these three categories, they both
use header.js (without login information) and
footer.js. These two javascript files are rarely
changed. So their hit ratio is almost 100%. But
for login_data.js, it may change with user login
or logout and different users use different
login_dada.js, so hit ratio is about 30%.
PHP-Nuke contains several themes.
ThemeSelect_format.js will look like
ThemeDeepBlue_format.js or Theme
ExtraLite_format.js and these js files will not
change until web administrator change them. So
during our test, hit ratio of these
ThemeSelect_format.js is 100%. For
module_data Cookie_value.js, the change rate
may depend on what module we test. For
example, when we test
modules.php!name=Feedback.html,
module_data Cookie_value.js in it did not
change, so hit ratio after first access is 100%.
But for mo dules.php!name= Top 10 the hit ratio
of module_data Cookie_value.js is about 80 %.

We can see that performance of our
modified PHP-Nuke is much better than the
original PHP-Nuke.

6. Conclusions
In this paper, we proposed a cache

mechanism for the dynamic web applications.
The basic system is to cache the dynamically
generated web pages as static files. The proposed
cache system has a cache manager behind the
web server for managing the cached static files.
If a dynamic web page changes very frequently,
we will try to separate it into a dynamic part and
a static part. The static part can be stored in a
static file and managed by the cache manager.
Only dynamic part is generated every time a
request is made.

The proposed idea is implemented in
PHP-NUKE to show its superiority. By using the
performance tools like HTTPerf, we show that
the modified PHP-NUKE performs much better
than the original PHP-NUKE in terms of
response time and server load, and transferred
file size.

0

10

20

30

40

A B C
Category

s
i
z
e
(
K
B
)

Original FA AFA

0

20

40

60

80

1 3 5 7 9 1113151719

request rate
c
p
u

u
t
i
l
i
z
a
t
i
o
n

index.php Feedback
query index.html
Feedback.htmlQuery.html

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 91011121314151617181920

request rate(s)

re
sp

on
se

 ti
m

e(
m

s)

index.php Feedback Query.php

index.htmlFeedback.htmlQuery.html

7. Reference

[1] Apache, "Apache HTTP Server Version 1.3:
Module mod_rewrite URLRewrite Engine .

[2] Abrams, M., Standridge C. R., etc., "Caching
Proxies: Limitations and Potentials", In
Proceedings of the Fourth International World
Wide Web Conference, December 1995,
http://ei.cs.vt.edu/~succeed/WWW4/WWW4.
html

[3]Balachander Krishnamurthy, Jeffrey C.
Mogul, David M. Kristol, "Key Differences
between HTTP/1.0 and HTTP/1.1", In Proc. of
the WWW-8 Conference, Toronto, May 1999.

[4] Ben Smith, Anurag Acharya, Tao Yang, and
Huican Zhu, “Exploiting Result Equivalence
in Caching Dynamic Web Content,” in
Proceedings of Second USENIX Symposium

Figure12 .The CPU Utilization of original and
modified PHP-Nuke

Figure13 .The Response time of original and modified
PHP-Nuke

Figure11 .The size of original and modified PHP-Nuke

on Internet Technologies and
Systems(USITS99), Oct. 1999.

[5] David Mosberger, Tai Jin, "httperf - A Tool
for Measuring Web Server Performance",
Workshop on Internet Server Performance,
Madison, WI USA, June 1998.

[6]Dingle, A. and Partl, T.,"Web Cache Coherence",
In Proceedings of the Fifth International
World Wide Web Conference, Paris, France,
May 6-10, 1996, http://www5conf.inria.fr/
fich_html /papers/P2/Overview.html.

[7] Fielding,R.et.al., [HTTP1.1]
"Hypertext Transfer Protocol - HTTP/1.1",
HTTP Working Group,Internet-Draft,
draft-ietf-http-v11-spec-rev-03, March 13,
1998.

[8] Fred Douglis, Antonio Haro, and Michael
Rabinovich.HPP:HTML macropreprocessing
to support dynamic document caching. In
Proceedings of the 1997 Usenix
Symposium on Internet Technologies and
Systems (USITS-97), December 1997.

[9] Gwertzman, J. and Seltzer, M., , "The case
for geographical pushing-caching",
Technical Report HU TR-34-94, Harvard
University, DAS, Cambridge, MA, 1994.

[10] Huican Zhu, Tao Yang, "Class-based Cache
Management for Dynamic Web Content",
IEEE Infocom, 2001.

[11] Huican Zhu, Ben Smith and Tao Yang,
"Hierarchical Resource Management for Web
Server Clusters with Dynamic Content", In
Proc. of the International Conference on
Measurement and Modeling of Computer

Systems (ACM SIGMETRICS'99), pp.
198-199, May 1999.

[12] Jeffrey C. Mogul et. al., "Potential benefits

of delta-encoding and data compression
for HTTP", In Proceedings of the ACM
SIGCOMM '97 Conference, September
1997.

[13] K. G. Coffman, A. M. Odlyzko, "Internet
growth: Is there a “Moore’s Law” for data
traffic?", AT&T Labs Research,
http://www.research.att.com/areas/transpor
t_evolution/internet.moore.pdf, Jun 2001.

[14] Liu, C. and Cao, P., "Maintaining Strong
Cache Consistency in the World-Wide Web",
In Proceedings of the 17th IEEE
International Conference on Distributed
Computing Systems, May 1997.

[15]Official PHP-Nuke http://www.phpnuke.org/
[16] P. Cao, Jin Zhang and Kevin Beach, "Active

Cache: Caching Dynamic Contents
(Objects) on the Web", In Proceedings of
the IFIP International Conference on
Distributed Systems Platforms and Open
Distributed Processing, The Lake District,
England , September 1998.

[17] R. Rivest, The MD5 Message-Digest
Algorithm,http://www.ietf.org/rfc/rfc1321.tx
t, Apr. 1992.

[18] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, T. Berners-Lee,
"Hypertext Transfer Protocol -- HTTP/1.1",

[19]Squid Web Proxy Cache,
http://www.squid-cache.org/

Figure 4. Processing flow of URL Pre-processing and web switch

Request

If the request is
for dynamic page

 If URL is
Type B

Executing the normal process
for dynamic page

Executing the
normal process
for static page

Convert Type B
URL into Type A

No

No

Yes

Yes

URL Pre-processing

Web Switch

No

Yes

If the requested
data exists

No

If request is
javascript

No

Yes

 If the requested
javascript exists

Yes No

Executing the normal
process for javascript
file

Executing dynamic page to
generate javascript files

