
Routing Table Partitioning for Speedy Packet
Lookups in Scalable Routers

Nian-Feng Tzeng, Senior Member, IEEE

Abstract—Most of the high-performance routers available commercially these days equip each of their line cards (LCs) with a

forwarding engine (FE) to perform table lookups locally. This work introduces and evaluates a technique for speedy packet lookups,

called SPAL, in such routers. The BGP routing table under SPAL is fragmented into subsets which constitute forwarding tables for

different FEs so that the number of table entries in each FE drops as the router grows. This reduction in the forwarding table size

drastically lowers the amount of SRAM (e.g., L3 data cache) required in each LC to hold the trie constructed according to the prefix

matching algorithm. SPAL calls for caching the lookup result of a given IP address at its home LC (denoted by LCho, using the LR-

cache), such that the result can satisfy the lookup requests for the same address from not only LCho, but also other LCs quickly. Our

trace-driven simulation reveals that SPAL leads to improved mean lookup performance by a factor of at least 2.5 (or 4.3) for a router

with three (or 16) LCs, if the LR-cache contains 4K blocks. SPAL achieves this significant improvement, while greatly lowering the

SRAM (i.e., the L3 data cache plus the LR-cache combined) requirement in each LC and possibly shortening the worst-case lookup

time (thanks to fewer memory accesses during longest-prefix matching search) when compared with a current router without

partitioning the routing table. It promises good scalability (with respect to routing table growth) and exhibits a small mean lookup time

per packet. With its ability to speed up packet lookup performance while lowering overall SRAM substantially, SPAL is ideally

applicable to the new generation of scalable high-performance routers.

Index Terms—Caches, forwarding engines, interconnects, line cards, prefix matching search, routers, routing table lookups, tries.

�

1 INTRODUCTION

RAPID expansion of the Internet leads to sustained growth
in the BGP routing tables held at backbone routers, and

the table growth rate has expedited radically for the past three
years [4], with certain routing tables now involving more than
140K prefixes (see AS1221, AS4637, and AS6447 in [4]). In fact,
some backbone routers available commercially have provi-
sions to accommodate 1 million or more prefixes, e.g., a Cisco
12000 Series Internet router may hold up to 1 million prefixes
[10], while a Hitachi GR2000 Gigabit router supports up to
1.6 million prefixes [18]. As search in a routing/forwarding
table is complex, usually based on longest prefix matching
search to arrive at the most specific search result for a given IP
address, it is common to organize prefixes as a tree-like
structure called a trie, with its nodes either corresponding to
prefixes or forming paths to prefixes [34], for effective search.
The trie built under a chosen matching algorithm for a set of
prefixes is highly desirable to fit within static RAM (SRAM)
for good search performance. A rather large amount of SRAM
is thus required for the forwarding engine (FE) at each line
card (LC), in the form of an L3 data cache, increasing the LC
cost markedly. Additionally, when IPv6 addressing is dealt
with, the SRAM amount needed is likely to be several times
higher, further in need of strategies for effectively containing
the SRAM size.

Most commercial backbone routers carry out table lookups
independently and concurrently at multiple FEs situated in
different LCs, each of which houses one or multiple ports for
external links to terminate. Examples of such routers include
Cisco’s 12000 Series routers [10], Juniper’s T-Series backbone
routers [22], and the Hitachi GR2000 Gigabit Router Series
[18]. A full forwarding table with all prefixes is maintained in
each LC of such a router, and a crossbar is adopted as the
switching fabric for interconnecting its LCs (except for a small
Hitachi GR2000 router with no more than four LCs, where a
bus is used as the switching fabric). Every LC is equipped
with one FE for conducting table lookups based on the
longest-prefix matching algorithm implemented therein. To
improve forwarding performance required by high-speed
links operating up to the OC-768 (40 Gbps) rate in a router,
one may employ a variety of approaches like enhanced
routing/forwarding table lookup algorithms [11], [24], [35],
[38], hardware-based lookup designs [17], [25], and hard-
ware-assisted forwarding lookups [7], [16], [37]. This work
deals with a technique for accelerating packet lookups in a
scalable high-performance router with multiple LCs [6], as
shown in Fig. 1.

The latency of a small crossbar switch has fallen consider-
ably, resulting from a steady decline in the switching time of
crossbars over the past decade due to the aggressive adoption
of application specific Integrated Circuit to switch design and
fabrication. Compared with then leading switches employed
in the Mercury’s RACE multicomputer system, known as the
RACEway full crossbar with six ports and a switching time of
125 ns [29], later crossbars enjoy consistently lowered
latencies, as evidenced by the Spider chip, which employs a
fully multiplexed 6� 6 crossbar and operates at a clock rate of
100 MHz [15], and by the Pericom’s P15X1018 crossbar

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 5, MAY 2006 481

. The author is with the Center for Advanced Computer Studies, University
of Louisiana at Lafayette, Lafayette, LA 70504.
E-mail: tzeng@cacs.louisiana.edu.

Manuscript received 20 Oct. 2004; revised 18 May 2005; accepted 30 May
2005; published online 24 Mar. 2006.
Recommended for acceptance by J. Wu.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0256-1004.

1045-9219/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

switch, which features 10 ports (of 18-bit width each) running
at 133 MHz [27]. This latency reduction trend is likely to
continue and one may expect to see a future crossbar with its
switching time down to a few ns. With such crossbar switches,
one may build a multistage-based switching fabric (according
to a structure like, say, the Omega network) for interconnect-
ing a moderate number of LCs in a router, with packet latency
over the fabric being in the order of 10 ns or less.

The opportunity offered by fast switched crossbars
(likely to facilitate a very low latency over a fabric built
out of such crossbars) plus ever expanding BGP routing
tables at backbone routers with a push to handle IPv6
addressing motivates this study on fragmenting a routing
table into subsets of roughly equal sizes for LCs, so that the
number of prefixes maintained in each forwarding table is a
small fraction of the number of total prefixes kept in the
routing table. Fragmentation is based on selected bit
positions of prefixes in the routing table, and most prefixes
are in single partitions after fragmentation. Each partition
constitutes a forwarding table housed at one LC. The
number of partitions (i.e., LCs) can be of any integer, not
necessarily a power of 2. A small on-chip cache is
introduced to each LC for holding the lookup results of
destination addresses of the packets arriving at the LC.
Caching lookup results permits subsequent lookup requests
for same addresses to be satisfied immediately without
resorting to (time-consuming) prefix matching by FEs
(situated at either local LCs or remote ones). This caching
takes merely 4K blocks at each LC to effectively reduce both
traffic over the switching fabric and the load of requests for
address lookups at each FE. Together, a hardware-assisted
design for speedy packet lookups, called SPAL, in scalable
high-performance routers is accomplished, with four salient
features. First, SPAL drastically lowers the size of the trie
(due to fewer prefixes) at each LC, making it possible to
hold the whole trie (or a large portion of it) in the L3 data
cache of the network processor at the LC for much faster
matching algorithm execution. Second, the lookup result of
an IP address cached at its home LC not only can satisfy
forthcoming lookup requests from the home LC swiftly, but
also can reply to the lookup requests from other LCs more
quickly over a low-latency switching fabric than those LCs
would otherwise have carried out prefix matching search
themselves individually (taking hundreds of ns). Third, the
cache introduced to an LC may also keep the lookup results
obtained from other LCs (called remote LCs), so that
requests for looking up same destination addresses of
subsequent packets arriving at the LC can be satisfied
locally more quickly, cutting down traffic over the switch-
ing fabric and reducing the request loads of those remote
LCs. Finally, SPAL not only makes a router exhibit quicker

mean lookups than its compatible router, but also enjoys
good scalability (with FEs receiving relatively balanced load
no matter how many LCs are involved), while possibly
shortening the worst-case lookup time as well.

Lookup results obtained from remote LCs are held in the
LR-cache of a local LC as well to 1) expedite subsequent
lookup requests generated by the local LC for same
addresses, 2) reduce traffic over the switching fabric, and
3) lessen request loads at remote LR-caches. The LR-cache
equipped in each LC is on the same chip as the FIL (fabric
interface logics, see Fig. 1), but it need not be very large to
harvest almost full potential gains in performance: Our
extensive simulation studies have indicated that a cache with
some 4K blocks is usually adequate. Given 6 bytes in a block
for IPv4 addressing, the amount of cache in each LC equals
24 Kbytes. (Note that IPv6 addressing requires 18 bytes per
block.) On the other hand, the savings of SRAM resulting
from a smaller trie in each LC after routing table partitioning
typically amounts to hundreds of Kbytes, as will be detailed
in Section 4, and the saving amount is expected to be far larger
under IPv6. SPAL is an effective hardware-assisted design for
fast packet lookups in a router, usually reducing its overall
SRAM at each LC (including the off-chip L3 data cache plus
the cache introduced to hold lookup results, called the LR-
cache) tremendously.

When compared with its existing counterpart, a router
under SPAL exhibits far quicker lookups. Our trace-driven
simulation indicates that a SPAL-based router with three (or
16) LCs can forward, on an average, over 38 (or 347) million
of packets per second, if each LR-cache involves 4K blocks,
when the Lulea trie [11] is adopted for longest prefix
matching. This average forwarding ability is 2.5 (or 4.3)
times faster than that of an existing router, which keeps all
prefixes of the routing table in each LC and has no LR-
caches. Additionally, a SPAL-based router may shorten the
worst-case lookup time, in comparison with a conventional
router under the same longest prefix matching algorithm, as
explained in Section 4.

While IP lookup traffic streams present different char-
acteristics than the data streams of typical computing
applications [26], recent work has demonstrated that a
network processor with caches (of 4K blocks each and 4-
way set associativity) has hit rates higher than 0.93 under
traces collected via ESnet over the link (at the T3 rate)
connecting the Brookhaven National Lab during 3-6 March
1998, leading to significant improvement in packet forward-
ing performance [7], [8]. Our extensive simulation studies
using various recent traces collected over high-speed ports
(including OC48c of Cisco GSR 12015 backbone routers
during 14-27 August 2002 and also OC192c of the Internet
backbone router at Indianapolis on 1 June 2004) available at
the NLANR’s PMA trace archive [28] confirmed the effec-
tiveness of caches with respect to table lookups of IP traffic,
requiring 4K blocks in each LR-cache to attain satisfactorily
high performance under SPAL for all traces examined. These
results contemn an earlier projection [38] that access locality
in packet streams seemed to decrease and larger caches were
required to achieve similar hit rates as time progressed. The
projection is made according to simply a study in 1996 [26]
that called for the cache of 5,000 entries to achieve the hit rate

482 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 5, MAY 2006

Fig. 1. A SPAL-based router, where FIL refers to fabric interface logics.

of 0.9, as opposed to nine entries for traffic observed in 1987.
Fortunately, an independent investigation based on 1998
traces [7], [8] indicated the adequacy of 4K blocks in each
cache to reach hit rates higher than 0.93. Our extensive
simulation making use of publicly available 2002 and 2004
traces also concluded that the cache of 4K blocks is sufficient
to enjoy high performance under SPAL. While the Internet
has grown by more than 10 times from January 1996 (with
14 million hosts) to January 2003 (with 171.6 million hosts)
[41], the locality of IP traffic over the Internet does not drop
based on three separate, independent trace-driven simulation
studies using 1998 traces, 2002 traces, and 2004 traces,
perhaps due to the observed fact that a small percentage of
flows between AS pairs (say, 9 percent) in the Internet
accounts for a large percentage of total traffic (say, 90 percent)
[13], [14]. This SPAL-based solution is believed to be equally
effective in greatly quickening packet lookups for future
Internet traffic as it is for past 1998 WorldCup traffic [39] as
well as 2002 and 2004 backbone traffic [28] employed for our
simulation.

For agiven cache size, the larger a SPAL-based router is, the
higher lookup performance it attains; this results mainly from
fragmenting the set of prefixes (and, thus, the IP addresses)
into more partitions based on SPAL, yielding better address
space coverage (thanks to fewer prefixes) by each LR-cache.
Due to its improved lookup performance and significant drop
in the overall SRAM requirement particularly attractive for
IPv6 addressing, our proposed SPAL technique is ideally
applicable to future scalable high-performance routers.

2 PERTINENT WORK

This section first reviews earlier work related to packet
lookups in routers, followed by a brief description of
caching lookup results treated previously. A prior techni-
que for table partitioning to enable parallel table search is
then highlighted.

2.1 Packet Lookups

Packet lookups in routers can be expedited by various
approaches, generally classified as software-based or hard-
ware-based ones (depending upon if specific lookup
hardware logics are required). A software-based approach
often intends to either lower the memory requirement of a
routing/forwarding table (so as to fit the table into fast
SRAM, in the form of L3 data cache of the FE processor) or
reduce the number of memory accesses during each lookup
[11], [24], [35], [38]. As a variation of the (binary) trie
obtained by compressing paths and with some modifica-
tions to support longest prefix matching, the BSD trie [34]
was adopted in Berkeley Unix. Later, an enhanced trie
implementation, called a DP trie (dynamic prefix trie), was
considered to lower the average number of memory
accesses upon search [12]. This DP trie yields a small code
size and low storage requirements, confining the effects of
random insertion and deletion operations to be local for
rapid updates. Various algorithms resort to multiple-bit
inspection at each search step (as opposed to single-bit
inspection for the BSD trie and the DP trie), and the number
of bits inspected at each time (called the stride) affects the
search speed and the memory amount needed for keeping

the trie [32]. If the stride is of 32 bits, for example, every
search under IPv4 addressing takes just one memory access
(being the fastest possible speed), but it requires a huge
memory to store 232 entries (being the largest possible size).
Typically, a smaller stride leads to more memory accesses
during search, but needs less memory.

It is simple to have a fixed stride for all the nodes at a
given trie level. For more efficient memory utilization,
however, variable strides can be adopted at the expense of
more complicated implementation. For a given set of
prefixes, the optimal strides which minimize the memory
requirement and guarantee the worst-case number of
memory accesses, can be derived using dynamic program-
ming [35] for both fixed-stride and variable-stride cases.
Separately, the Lulea algorithm constructs a 3-level com-
pressed data structure, with the strides of 16, 8, and 8,
respectively, for the first, second, and third levels [11]. The
algorithm employs leaf pushing to avoid storing any prefix
at an internal node of the resulting multiple-bit trie, so as to
save memory. Another method replaces the largest full
binary subtrie of a binary trie with a corresponding one-
level multiple-bit subtrie recursively, starting with the root
level, to produce an LC-trie (level-compressed trie) [24].
Search in an LC-trie requires an explicit comparison when
arriving at a leaf to ensure a search match. A data structure
for the routing table to quicken table updates has been
considered recently [33]. While software-based approaches
can be applied to 128-bit IPv6 prefixes, they often lead to far
longer lookup times and bigger storage for the trie.

Hardware lookup designs have been proposed for high-
speed routers under IPv4. In particular, a 2-level multibit
trie with fixed strides was implemented in hardware to
support IP lookups at the speed of memory accesses [17],
with the first level realized by a table with 224 entries
addressed by the first 24 IP bits. Each table entry contains
either forwarding information (for an IP prefix with length
� 24) or a pointer to the corresponding subtrie at the second
level. Each subtrie in the second level contains 28 entries,
and the total number of such subtries depends on the set of
prefixes at hand. The access logic for this hardware design
is simple, and the lookup time equals one memory access
time (if pipelined properly). However, its memory require-
ment is huge (> 32 Mbytes). Distinct implementation
schemes have been attempted later to lower the memory
requirements, with proper hardware pipelines included to
get one lookup per memory access [25].

Separately, network search engines using a combination of
SRAM and RLDRAM II (reduced latency DRAM, with about
one half of the cycle time of standard DDR SDRAMs) have
been offered commercially by Xelerated Inc. [40] to act as
coprocessors for IPv4 and IPv6 forwarding table lookups.
Those search engines intend to free up computing resources
provided by the network processors for running the router
system and application codes, and they are an alternative to
other search engines based on TCAMs (ternary content-
addressable memories). While more expensive and consum-
ing more power than their Xelerated counterparts, TCAM
search engines (noticeably by NetLogic Microsystems [23]
and Cypress Semiconductor Corp. [9]) usually deliver higher
lookup rates. To make TCAM-based hardware design more

TZENG: ROUTING TABLE PARTITIONING FOR SPEEDY PACKET LOOKUPS IN SCALABLE ROUTERS 483

attractive, different attempts have been made lately to lower
its power consumption [30] and the storage requirements
[31], or to achieve high throughput [42].

2.2 Caching Lookup Results

Caches are proven very effective in lowering memory
access latencies and in avoiding repeated computation or
transmission of identical information. A network processor
equipped with hardware caches for capturing table lookup
results has shown to improve overall packet forwarding
performance significantly [7], [8], [16]. The caching algo-
rithm described in [7] mapped IP addresses carefully to
virtual addresses so as to make use of CPU caches (both L1
and L2) for fast lookups, reaching more than 80 million
lookups per second according to detailed simulation on a
500 MHz Alpha processor with 16 Kbytes of L1 cache and
1 Mbytes of L2 cache (off-chip SRAM). Separately, a
technique for improving the effective coverage of the
IP address space has been considered by caching a range
of contiguous IP addresses in each entry [8], [16]. It yields
better performance when the address range cached in an
entry is larger, since the address space covered by a given
cache structure is then bigger. To this end, address range
merging is adopted to get a large range. Two steps of
address range merging were considered [8], [16]. The first
step attempts to merge adjacent address ranges that share
the same output interface in the prefix table into larger
ranges, and then the ranges are aligned (to make them
powers of two) before the minimum range size can be
decided. This minimum range size dictates the effective
address coverage improvement. The second step of range
merging uses a properly chosen set of bits for indexing the
prefixes so as to map originally nonadjacent prefixes to
contiguous logical addresses for merging. A greedy bit
selection algorithm was considered to minimize the total
number of address ranges and the size differences among
address ranges after mapping [8], [16]. Simulation results
have confirmed that address range merging after proper
mapping may improve caching efficiency (in terms of mean
lookup time) markedly.

While some routing tables might give rise to the
minimum range sizes larger than 20 ¼ 1, a backbone router
tends to contain a growing number of prefix exceptions in
its routing/forwarding table [19], [32], making the mini-
mum range size equal to 1 and, thus, nullifying the
potential benefit of the first step of range merging.
According to prefix length distribution results [2], [32], a
number of prefixes in the routing table of a typical backbone
router is of length 32, rendering the minimum range
granularity equal to 1. (Our two sets of prefixes used for
this work both contain many prefixes of length 32 as well.)
Thus, cache hit rates using the network processor cache
after address range merging may not be as high as those
presented earlier [8], [16].

2.3 Partitioning for Parallel Search

A different technique has been considered recently [1] for
partitioning the routing table into subsets, which can then
be searched in parallel. In the partitioning technique
considered, all prefixes of a given length in the routing
table are grouped into one partition. Clearly, the size of each

partitioned subset varies considerably, e.g., the length of
size 24 typically accounts for about 50 percent of all prefixes
and many of the subsets (say, 10 or more subsets) each
contain less than 1 percent of total prefixes in the routing
table [2]. Unlike SPAL, the design in [1] keeps all partitioned
subsets at each FE for search in parallel; table lookups of all
packets arriving at an LC are performed locally in the LC,
and no lookup result obtained by one LC may be shared by
any other LC. In addition, the sizes of forwarding tables in
LCs are not reduced when the number of LCs grows. No
cache was introduced to LCs in the earlier design [1].

3 SPAL-BASED ROUTERS

Each LC in any currently existing router maintains the
entire set of prefixes, whose size grows steadily over time,
no matter how many LCs are within the router. As the trie
size typically is proportional to the number of prefixes, this
certainly calls for large SRAM (in the form of an L3 data
cache of the FE processor, for example) in order to hold the
trie for fast lookups, in particular, when IPv6 is concerned.
The proposed SPAL aims to reduce the SRAM requirement
while accelerating table lookups through fragmenting the
BGP routing table into � subsets (of roughly equal sizes),
one for each LC (as its forwarding table) in a router with
� LCs. As depicted in Fig. 1, a low-latency switching fabric
is employed to interconnect all LCs through fabric interface
logics (FIL’s), and the fabric can be a shared-bus (for a small
�), a crossbar, or a multistage-based structure (like the
Omega network), among others. In this study, no emphasis
on the fabric details will be placed, but the fabric latency (in
terms of system cycles) is assumed to depend on the fabric
size. Each LC also includes one small fast SRAM housed
inside the FIL chip, referred to as the LR-cache, for holding
the lookup results obtained by the local FE and by other
remote FEs. Further discussion about the LR-cache will be
given in Section 3.2.

3.1 Table Partitioning

Partitioning is done using appropriately chosen bits in
IP prefixes, and a subset of routing table prefixes is referred
to as an ROT-partition. For a router with � LCs, the key
decision on partitioning its routing table is to choose
appropriate bits for yielding � ROT-partitions in the most
desirable way, namely, 1) each ROT-partition involving as few
prefixes as possible and 2) the size difference between the
largest ROT-partition and the smallest one being minimum.
Any partitioning which satisfies these two criteria is deemed
optimum. Let � ¼ dlog2 �e, then the number of bits chosen for
partitioning is �, where dxe is the smallest integer � x. Note
that � does not have to be a power of 2 and can be any integer, say,
3, 5, 6, 7, etc. The partitioning results of � ¼ 3 will be shown in
Section 5. For easy explanation in the following, we consider
simplified prefixes of up to 8 bits only, with the leftmost bit in
a prefix denoted by b0, the next bit by b1, etc., despite that IP
prefixes are actually sequences of up to 32 bits. The case of �
being a power of 2 is explained first, followed by a general-
ization to any arbitrary �.

Given seven simplified prefixes in a routing table:
P1¼101�, P2¼1011�, P3¼01�, P4¼001110�, P5¼10010011,
P6 ¼ 10011� , P7 ¼ 011001� , if b2 and b4 are used for
partitioning, we arrive at four ROT-partitions: fP3;P5g,

484 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 5, MAY 2006

fP3;P6g, fP1;P2;P3;P7g, fP1;P2;P3;P4g, where the first
partition corresponds to b2b4 ¼ 00, the second one corre-
sponds to b2b4 ¼ 01, and the third (or fourth) one, to
b2b4 ¼ 10 (or 11). With this partitioning, �th ROT-partition
resides in LC�, where � ¼ 0; 1; 2; 3. Any packet arriving at
LC� is called a local packet, if b2b4 of its destination address
equals � since its lookup will be done by the local
(accompanying) FE; otherwise, the packet is a remote one,
with its home being LChðh ¼ b2b4Þ. Each packet has one and
only one home LC, which can be determined immediately
upon arrival by examining the appropriate bit positions of the
packet destination address. When missing in the LR-caches of
their arrival LCs, nonlocal packets are delivered from their
arrival LCs through the switching fabric to their respective
home LCs for longest-prefix matching. Each such a packet is
routed across the switching fabric using b2 and b4 of its
destination address. Note that P3 belongs to every partition,
because both b2 and b4 of P3 are “*” (which would match any
IP address whose b2 is 0 or 1 and whose b4 is 0 or 1, requiring
that P3 should exist in each partition since a matched IP may
arrive at any FE). Similarly, P1 belongs to the third and the
fourth partitions, as b4 of P1 is “*.” On the other hand, if b0 and
b4 are used for partitioning, we obtain the partitions of
fP3;P7g, fP3;P4g, fP1;P2;P5g, fP1;P2;P6g, where each
partition involves two or three prefixes. It is obvious that
the latter partitioning is superior to the former one, based on
the two criteria listed above.

For a given set of prefixes, a chosen bit (say bv) separates
prefixes into two subsets with ð�0 þ ��Þ and ð�1 þ ��Þ
prefixes, respectively, where �0 (or �1) is the number of
prefixes whose bv bits equal “0” (or “1”) and �� is the number
of prefixes with bv bits being “*” (since these prefixes have to
appear in both subsets). According to Criterion 1 above, we
need to find out the bit bv such that ð�0 þ �1 þ �� þ ��Þ ¼
�þ �� is smallest among all 0 � v � 31, where � is the set
size. This criterion is thus equivalent to locating the bit bv
which leads to a minimum ��, ruling out a large v (say> 24),
since the vast majority of prefixes in a routing table (e.g., more
than 83 percent for the set of prefixes obtained from [2]) have
length no more than 24, and bv in a prefix is “*” for any v larger
than the prefix length. Criterion 2 requires the search of bit bv
such that jð�0 þ ��Þ � ð�1 þ ��Þj ¼ j�0 � �1j is minimum for
all 0 � v � 31. When examining bit bv, this criterion calls for
ignoring prefixes with bit bv = “*,” counting only those with
bit bv being “0” or “1.” Notice that for a single position bit,
Criterion 1 considers only �� of the position bit whereas
Criterion 2 deals with �0 and �1 of the bit. Given � and a
prefix table, our partitioning algorithm searches exhaustively
for � ð¼ dlog2 �eÞ control bits (out of 32 bits for IPv4) to get the
optimum result following the aforementioned two criteria.

3.1.1 Generalization and Other Issues

Given an arbitrary integer �, let �L equal d�=2e and �R be
���L. The above partitioning approach is still applicable
under such an integer value, with a modification to
Criterion (2) needed: bit bv chosen for partitioning satisfies
that �0=�1 (or �1=�0) is as close to �L=�R as possible, if
j�0j � j�1j (or j�0j < j�1j), for all 0 � v � 31. Each of those
� nodes is labeled by � ¼ dlog2 �e bits, determined
according to the modified criterion shown by a binary tree

given in Fig. 2. For � ¼ 6, �L is 3 and �R is also 3, as
denoted by the two nodes in tree Level 1. Both �L and �R

are further partitioned into two fragments each, as depicted
by Level 2. A fragment with only 1 node becomes a tree leaf,
whose label is determined by the path from the root to the
leaf. For example, the rightmost leaf is labeled by 11*,
meaning that every prefix with its 3 (¼ � partitioning bits
being 110 or 111 is homed at this LC. According to Fig. 2,
those 6 (¼ �) LCs are labeled, respectively, by 000, 001, 01*,
100, 101, and 11*. Note that if � is a power of 2, �L=�R

always equals 1.0 in each tree level, signifying Criterion 2
before generalization.

It should be noted that the partitioning mechanism
devised for SPAL intends to minimize and equilibrate the
number of prefixes held in each LC, according to the
routing table of a router: The partitioning is irrespective of
traffic over the router and is not meant to balance the load
on LCs nor to optimize mean lookup performance. For a
given routing table and a �, a desirable partition is obtained
according to the aforementioned method, and such a
partition often gives rise to reasonably balanced load at
LCs for all traces examined, regardless of the router size �
(as will be demonstrated in Fig. 9). Since the load of LCs is
traffic dependent and changes dynamically, to realize a
routing table partition that yields truly balanced load needs
traffic profiling, which is not attempted in this work since it
is expensive and difficult. Note also that while the routing
table contents change over times as table updates take place,
it is not necessary to carry out partitioning repeatedly. In
practice, one may follow the partitioning method only once
when a router gets its routing table established at the onset
of its operation; the same partitioning should work almost
equally well until any �-partition grows excessively (and
cannot be held in the SRAM of the associated LC effectively)
due to table updates. This was confirmed by examining
several routing tables to select the desired control bit
positions according to our partitioning method before and
after their entries being added or removed (reflecting table
updates). For example, if the AS1221 routing table with
175,853 prefixes taken on 4 September 2004 [2] is partition-
ing into four fragments, the preferred partitioning bits
determined by our partitioning method are at positions 14
and 25, giving rise to the fragments of sizes: 51,095, 50,886,
51,029, and 49,977 (see Section 4 for details). When the
routing table at AS1221 was examined on 5 September 2004,
the number of table entries became 176,043 (due to
additions and withdrawals of entries, plus modifications
to some entries in their next hop fields) [2], but the most
desirable partitioning bit positions obtained by our parti-
tioning method remain to be 14 and 25, yielding the
fragments of sizes: 51,185, 50,996, 51,172, and 50,078. This

TZENG: ROUTING TABLE PARTITIONING FOR SPEEDY PACKET LOOKUPS IN SCALABLE ROUTERS 485

Fig. 2. The labels of LCs for � ¼ 6.

partitioning result exhibits the total number of prefixes in
the four fragments equal to 203,431 and the largest fragment
size difference being 1,107. Additionally, the routing table
AS1221 was found to have 176,424 entries on 6 September
2004 [2], and its preferred partitioning bits are still of
positions 14 and 25, with four fragments of sizes: 51,336,
51,122, 51,306, and 50,285. When the AS1221 routing table is
partitioned into 16 fragments, the same set of four
partitioning bit positions is derived using our partitioning
method for its table entries from 4 September to 6 September
2004. Consequently, the use of same partitioning bit
positions even after a large number of table updates (over
multiple days without recalculating a new set of bit
positions) is generally seen to yield the best partitioning
result.

An extra advantage resulting from routing table partition-
ing is that the address space coverage of each ROT-partition
increases by approximately a factor of the number of
partitions, since each ROT-partition is covered by one LR-
cache. Given an IP lookup stream toward one LC, fewer
prefixes in its forwarding table lead to better lookup
performance (thanks to a higher hit rate). Partitioning results
of two routing tables from different AS’s will be demon-
strated in Section 4.

3.1.2 Complexity Analysis

This complexity analysis considers partitioning the rout-
ing table into � fragments, requiring to select � ð¼
dlog2 �eÞ) control bits. Partitioning complexity involves
three components:

1. selecting � control bit positions (out of 32 under IPv4)
for partitioning, and under the selected � control bit
positions:

2. deciding to which partition(s) each prefix in the
routing table belongs, and

3. identifying the smallest and the largest partitions.

Clearly, there are totally Cð32; �Þ ¼ 32!=ð�!� ð32� �Þ!Þ
choices for those � bit positions, reflecting the complexity
component 1 above. For each of such choices, a prefix in the
routing table belongs to one of the 3� cases, determined by the
values of those � bit positions being 0, 1, or *. Let those � bit
positions be represented by s0s1 . . . si . . . s��1, and the
� partitions be denoted by ��, where 0 � � � �� 1. A prefix
belongs to �� (with � expressed by the binary string of
b0b1 . . . bi . . . b��1), if and only if si ¼ bi or si ¼ �; totally, its
s0s1 . . . si . . . s��1 can be in any of 2� possible forms:
b0b1 . . . bi . . . b��1; �b1 . . . bi . . . b��1; b0 � . . . bi . . . b��1, etc. For
� ¼ 3, as an example, �2 contains all prefixes with s0s1s2

being 010, �10, 0�0, 01� , ��0, 0��, �1� , or ���. On the other
hand, a prefix with s0s1s2 ¼ �10 belongs to �6 as well. It is
obvious that a prefix whose s0s1 . . . si . . . s��1 has d �0s belongs
to 2d partitions, which can be determined immediately by
s0s1 . . . si . . . s��1 through setting each �-bit to be 0 or 1
individually for all d �0s. As a result, the complexity
component (2) above isOð2dÞ, which incurs when each prefix
in the routing table is examined. Given N prefixes in the
routing table, it leads to a time complexity of Oð2dÞ �N to go
through all prefixes in the table.

The number of prefixes in each partition can be
recorded in one variable, requiring � variables totally.

From those � variables, one can get the total number of
prefixes in all the partitions, needed for Criterion 1, and
also the largest partition and the smallest one, needed for
Criterion 2, by passing through those variables once. The
time complexity component 3 thus is Oð�Þ, bringing the
time complexity for one set of � bit positions to be
Oðð2dÞ �NÞ þOð�Þ ¼ Oð�Þ �N, as Oð2dÞ � Oð�Þ, for a
routing table with N prefixes. Consequently, the overall
time complexity of our partitioning algorithm is given by
Cð32; �Þ �Oð�Þ �N. Since the same � variables can be
used repeatedly (after their values are reset to 0) for all
Cð32; �Þ choices of the � bit positions, the space complex-
ity equals Oð�Þ.

The derived time complexity expression indicates that
our optimal partitioning strategy becomes more expensive
as � grows. In reality, the factor Cð32; �Þ of the complexity
expression can be reduced substantially because all selected
control bit positions should be no larger than 24 according
to Criterion 1, since the vast majority of prefixes in a routing
table have length no more than 24, and should be no smaller
than 8 according to Criterion 2, as those bit positions of
prefixes in a routing table do not have similar numbers of 0
and 1. As a result, the time complexity in practice is reduced
to Cð16; �Þ �Oð�Þ �N. If � equals 16 (and, thus, � ¼ 4)
under N = 250K (which is larger than any existing routing
table size), for example, the expression gives rise to
7:28� 109. One may reduce the time complexity further
by applying the two optimization criteria recursively, first
to find one control bit bv among 8 � v � 23, and then to find
a bit in each of the two subsets separately before deciding
the bit for both subsets as the second control bit. Similarly,
the third control bit is decided using the two criteria on the
four subsets obtained using the two chosen control bits.
This method leads to suboptimal partitioning with drasti-
cally reduced time complexity.

3.2 LR-Cache Operation and Organization

3.2.1 Principle of Operation

Typically, the routing table of a backbone router gets
updated some 20 times per second on an average (and
possibly as many as 100 times), leading to one table update
in 50 - 10 ms [3], [32]. Once the routing table is updated,
those changes should be reflected in the forwarding tables
at all LCs. To ensure appropriate lookups, this study
assumes that all entries in every LR-cache are flushed after
each table update. (Note that while this simple flushing will
not work as effectively as what will be demonstrated in
Section 5.2, if the routing table is updated incrementally and
very frequently, our simulation results provided later will
unveil that the warm-up period for LR-caches to reach a
specified hit rate after flushing is usually a small fraction of
the total service time between two consecutive flushes.)
After flushing, the availability status bit of each cache entry
is set to the invalid state. Once an entry is chosen to hold a
lookup result, its availability status bit is set to the shared
state. Two types of lookup results may exist in LR-cache
entries: results homed locally (LOC, obtained by the local
FE) and results homed remotely (REM, obtained through
remote FEs). An entry uses one bit, called the M (short for
“mix”) status bit, to indicate its LOC/REM status. This bit is

486 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 5, MAY 2006

necessary for implementing an efficient cache replacement
mechanism, realizing a suitable “mix” of LOC entries and
REM entries within each set (of cache entries) under a given
cache organization (i.e., a given cache size, block size, and
degree of set associativity) to achieve good performance.

When a lookup result is obtained through prefix matching
by the FE in the home LC, the result is first placed in the LR-
cache of the LC. If the cache has no free entry in the set of
interest (decided by the destination IP address), one entry in
the set has to be chosen for replacement. It chooses an entry
with its M bit being REM (or LOC), if the total number of
entries with M = REM (or LOC) in the set exceeds the
predefined value, say 50 percent. The M status bit is
examined first to decide the candidate block(s) to replace.
(Note that hardware logics can be employed to make this
decision instantly, since the number of blocks in each set does
not have to be larger, say� 4, to get nearly best performance,
as revealed by our simulation results. Given four blocks in a
set, for example, the logic can load theM bits of the four blocks
to check them against 16 possible values: 00002; 00012; . . . ;
11112, in parallel via the “XOR” operation.) A conventional
replacement strategy (such as LRU, FIFO, or random) is then
applied to the candidate block(s) to choose the one for
eviction.

To lower the load of an FE and cut down traffic over the
switching fabric, the LR-cache records a packet immediately
when a miss occurs at the arrival LC. This early cache block
recording prevents subsequent packets with the same
destination from proceeding beyond the LR-cache, enhan-
cing SPAL performance. Since this recorded cache entry is not
complete until its corresponding reply is back, a status bit
(waiting bit, i.e., W-bit) is added to the cache entry, with the
bit set until its reply is back and fills the entry. When a
forthcoming packet hits an LR-cache entry whose W-bit is set,
the packet is stopped from proceeding forward and held in
the waiting list associated with the incomplete entry. The
packet is allowed to advance after the W-bit of the hit cache
entry is cleared (by a reply). Once a reply comes back and hits
the cache entry recorded earlier, the entry is completed with
the lookup result (i.e., filling its Next_hop_LC# field) and its
W-bit is cleared. The reply is then moved back to the arrival
LC of the packet, if it is not local.

3.2.2 Cache Organization

An LR-cache is of on-chip SRAM and organized as a set-
associative cache, with a block able to hold one lookup result
(i.e.,< IP address; Next hop LC# >). The reason for a small
block size is due to weak spatial locality of IP addresses in
practice since the devices with contiguous IP addresses
usually have little direct temporal correlation of network
activities; a larger block size leads to poorer lookup
performance because of decreased cache space utilization,
as found by earlier studies [7], [16]. The degree of set
associativity for LR-caches is chosen 4, and this choice leads to
nearly best performance, according to an earlier work [37] as
well as our simulation results. The cache size ranges from 2K
to 8K blocks. It takes 9 (or 11) bits to index entries of the LR-
cache with 2K (or 8K) blocks, since the degree of set
associativity is 4. The indexing bits used start from position
23 leftward of the IPv4 destination address (whose rightmost
bit is at position 31) of a packet. Given the LR-cache with

2K blocks, for example, the indexing bits are of bit 15 to bit 23
of destination addresses.

A victim cache is for keeping blocks which are evicted
from a cache due to conflict misses. It is well known that a
victim cache can be added to a cache to improve its
performance, in particular if the degree of set associativity is
small [21], as is the case of LR-caches. A victim cache is a
small fully associative cache, aiming to hold those blocks
which get replaced so that they are not lost. Entries in the
victim cache follow a conventional replacement mechanism
(e.g., LRU, FIFO, and random). When a packet is checked
against an LR-cache, its corresponding victim cache is also
examined simultaneously. A hit, if any, happens to either
the cache itself or its corresponding victim cache, but not
both. The victim cache usually contains a small number of
entries. In this study, each LR-cache is equipped with a
victim cache of eight blocks, which are found to be adequate
for effective lookup performance improvement by avoiding
most conflict misses.

3.3 Overall Lookup Flows

To explain overall lookup flows, let us consider a packet
arrival immediately after a table update (when all LR-cache
entries are in the invalid state). The packet terminates at one
LC (referred to as the arrival LC, denoted by LCar), where the
packet header is extracted and delivered to the LR-cache in
LCar. A cache miss will result, and a cache entry is created for
the lookup result of this packet header (referred to as the
packet hereinafter). Bits of appropriate positions in the
destination address of the packet are then examined (by
LR1, an LR detector composed of “XOR” logics, shown in
Fig. 3) to decide if the packet lookup is to be done locally or
remotely, and the bit positions used for examination are those
selected for table partitioning (mentioned above). If a local
lookup is to be carried out, the packet is moved to the FE of
LCar for longest-prefix matching (based on any software
matching algorithm devised earlier for this purpose, and a
more efficient algorithm yields a smaller time penalty when
there is no hit in the LR-cache). After the lookup result is
obtained, it is sent to the LR-cache to complete the
corresponding block, with its M bit set to LOC. This cached
result will satisfy later lookup requests for an identical
destination address much faster, no matter whether those
requests are originated from LCar or other LCs.

On the other hand, if a remote lookup is decided (by
detector LR1), the packet is moved to the Outgoing Queue
(see Fig. 3) ready for delivery over the switching fabric to its
home LC, denoted by LCho, where the lookup flow then
follows as if the packet had arrived there. Specifically, after
received by LCho and put in its Input Queue, the packet is
first searched over the (on-chip) LR-cache therein. If a cache
miss results, a block is reserved to hold the lookup result of
this packet. The packet is then forwarded (through LR1) to
the FE of LCho for longest-prefix matching, whose result
later finishes the reserved block, with its M bit set to LOC.
A reply is also produced (through LR2 at the upper left
corner depicted in Fig. 3) and put in the Outgoing Queue of
LCho for transmission through the fabric back to LCar. This
reply completes the cache block created previously in the
LR-cache of LCar, with the M bit of the block set to REM.
The block created in the LR-cache of LCho thereafter serves

TZENG: ROUTING TABLE PARTITIONING FOR SPEEDY PACKET LOOKUPS IN SCALABLE ROUTERS 487

to quickly reply upcoming lookup requests (of the same
address) originated from any LC, whereas the cache block
created in LCar takes care of forthcoming lookup requests
from LCar. While multiple copies of the same lookup result,
one in an LC, may be created in the router this way, those
copies not only serve multiple packets (from different LCs)
with the same destination address concurrently, but also
effectively cut down traffic over the switching fabric and
the load to the LR-cache in LCho. As a result, SPAL can yield
high lookup performance, partly due to the facts that
packets arriving at an LC closely together (in time) will have
good chances heading for the same destination, and that
parallelism in packet lookups exists.

As blocks with the LOC status and those with the REM
status compete in each LR-cache, a proper mix of LOC blocks
and REM blocks is necessary. Fortunately, the coverage of
IP address space by each LR-cache under SPAL is improved
substantially due to table partitioning, which leads to the
forwarding table in each LC involving only a small fraction of
the prefixes maintained in the routing table. The number of
LOC blocks required to achieve a given performance level
drops as � (the number of LCs) increases, whereas at the same
time, a bigger percentage of lookup requests at each LC will
be homed remotely, urging more cache blocks for remote
lookup results (i.e., more REM blocks). For a given �, fewer
blocks should be allocated for REM blocks when the size of
the LR-cache shrinks, in order to get the best lookup
performance, since the cost is far smaller over the fabric than
longest-prefix matching execution. These phenomena will be
uncovered by our simulation outcomes in Section 5.

4 RESULTS OF TABLE PARTITIONING

Two routing tables were obtained for our evaluation use,
one being the FUNET routing table with 41,709 prefixes
given in [24] (called RT_1) and the other in AS1221 with
175,853 prefixes obtained on 4 September 2004 [2] (called
RT_2). Unlike any existing router, a SPAL-based router calls
for partitioning the routing table in accordance with the
number of LCs (which can be of any integer, not necessary a

power of 2) in the router. The results of table partitioning
are exemplified by RT_1 and RT_2.

Following the two criteria for table partitioning stated in
Section 3.1, we arrived at the two desired bit positions for

fragmenting RT_1 (or RT_2) into four partitions: bits 17 and
18 (or 14 and 25), giving rise to subset sizes of 10,465, 10,523,
10,493, 10,889 (or 51,095, 50,886, 51,029, 49,977). If RT_1 (or

RT_2) is to be partitioned into 16 fragments, the preferred
partitioning bit positions are found to be 16, 18, 19, 20 (or 17,
18, 20, 23), producing subset sizes of 2,594, 2,851, 2,814,

2,899, 2,494, 2,831, 2,813, 2,517, 2,852, 2,976, 2,912, 2,899,
2,745, 2,523, 2,994, 2,425 (or 16,258, 16,420, 17,495, 18,879,
16,676, 16,240, 17,023, 15,176, 13,431, 16,973, 19,281, 14,959,

14,667, 14,145, 13,835, 14,058).

4.1 Storage Sizes

Three distinct tries (namely, the DP trie [12], the Lulea trie
[11], and the LC trie [24]) have been implemented to assess
the storage sizes needed for all ROT-partitions after

fragmenting RT_1 and RT_2. Under the DP trie for RT_1
(or RT_2) with � ¼ 4, the storage sizes of the four tries built
and held in LCs after partitioning are 209, 216, 217, and

220 Kbytes (or 917, 914, 917, and 898 Kbytes), respectively,
assuming that each node in the trie consists of one byte for
the index field plus four bytes for each of the five pointers.

Since the trie size before partitioning is 859 (or 3,441)
Kbytes, the DP trie sees the amount of SRAM reduction in
each LC caused by partitioning to exceed 638 (or 2,524)

Kbytes under RT_1 (or RT_2) with � ¼ 4. The DP trie after
partitioning for � ¼ 16 reduces its size down to the range of
50 and 62 Kbytes (or of 165 and 288 Kbytes) with respect to
RT_1 (or RT_2). As a result, storage reduction in each LC

due to partitioning is no less than 795 (or 3,153) Kbytes
under RT_1 (or RT_2) when � equals 16. Note that the
reduction amount will be much larger under IPv6. Total

SRAM amounts required for the DP trie after (or without)
partitioning are depicted in Fig. 4 under DP_S (or DP_W).

For the Lulea trie [11] (whose storage requirement is often
the lowest) with � ¼ 4 under RT_1 (or RT_2), the partitioned

tables in four LCs require 90, 91, 89, and 87 Kbytes (or 504, 494,
505, and 491 Kbytes), respectively, as opposed to roughly
260 (or 978) Kbytes in an LC of a conventional router without

partitioning. This indicates an SRAM reduction in each LC
caused by partitioning for � ¼ 4 under the Lulea trie to be
169 (or 473) Kbytes or beyond, when RT_1 (or RT_2) is

concerned. For � ¼ 16, the Lulea trie sees its size to be no
more than 39 (or 163) Kbytes in any LC after partitioning RT_1
(or RT_2), giving rise to a savings of at least 221 (or 815) Kbytes

in each LC. Total SRAM amounts required for the Lulea trie
after (or without) partitioning are depicted under LL_S (or
LL_W) in Fig. 4. Similarly, the LC-trie [24] under RT_1 (or

RT_2) enjoys storage reduction in any LC due to SPAL by no
less than 815 (or 1,961) Kbytes, for � ¼ 4 with a fill factor of
0.25. The storage saving amount in an LC increases to over

1,025 (or 2,456) Kbytes for RT_1 (or RT_2) under � ¼ 16 with
the same fill factor (of 0.25). Therefore, SPAL always leads to a
far bigger SRAM savings in each LC than the size of the LR-
cache incorporated therein (i.e., 24 Kbytes) under the three

distinct tries we have implemented and examined.

488 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 5, MAY 2006

Fig. 3. LR-cache and relevant logics housed inside the FIL chip, where

an LR1 (or LR2) detector examines the destination (or originator)

address.

4.2 Worst-Case Lookup Times

The time taken for a software lookup involves two
components, one due to multiple memory accesses and
the other due to program execution (involving some one
hundred instructions or so). The former time component
dictates the worst-case lookup time for a given longest-
prefix matching algorithm employed in the FE of an LC,
while the latter one is machine-dependent but typically is
no less than 100 ns, irrespective of whether a lookup is the
worst case or not. The worst-case lookup time for an
existing router is thus proportional to the number of
memory accesses, each of which takes, say, 12 ns when
prefixes are held in off-chip SRAM (e.g., the L3 data cache,
if existing; otherwise, the L2 data cache, of the FE
processor). The numbers of worst-case memory accesses
under different tries have been obtained via our actual
implementations.

In this work, the latency over the switching fabric is
assumed to be size-dependent and is measured in terms of
the cycle time, which signifies the duration of a visit to an
LR-cache and equals 5 ns. (Note that this cycle time of 5 ns is
not impossible, since on-chip SRAM is used for LR-caches
and the access time of such SRAM can be as low as 1 ns, if
its size is small, as is the case of our LR-caches.) The latency
over the switching fabric for � ¼ 4 (or 16) is assumed to be
one cycle (or two cycles). This latency assumption is
conservative when compared with a previous switch cache
design [20], which is built by 4� 4 switching elements
incorporated with caches operating at 200 MHz (like
Cavallino [5]). Without any cache, our switching fabric
sized 4 is simpler than a 4� 4 switch cache element and can
surely operate at 200 MHz.

When compared with its counterpart, a SPAL-based
router with � ¼ 4 (or 16) sees the worst-case lookup time to
increase by: a round-trip latency over the fabric equal to
two (or four) cycles plus two cycles for visiting two LR-
caches, one at LCar and the other at LCho, amounting to 20
(or 30) ns extra in total. However, the matching algorithm
executed by an FE under SPAL can be shorter in the worst
case due to fewer memory accesses, as a result of
partitioning the routing table. When the DP trie [12] is
considered with respect to RT_1 (or RT_2) under � ¼ 4, for
example, our implementation results indicate that in the
worst case, search through the four partitioned tries

involves 38, 34, 38, 38 (or 39, 39, 35, 39) node accesses,
respectively, in comparison with 42 (or 43) accesses to the
DP trie without partitioning. As a result, the DP trie enjoys a
reduction of no less than four node accesses under SPAL
with � ¼ 4 when RT_1 (or RT_2) is considered; this
reduction translates to shortening the matching search time
by at least 48 ns in the worst case, when a node access is
assumed optimistically to involve just one SRAM access of
12 ns (since off-chip SRAM typically exhibits access time
ranging from 8 to 15 ns and a node in the DP trie contains
some 1þ 4� 5 ¼ 21 bytes [12]). This search time reduction
well offsets the extra time incurred under SPAL. Likewise,
SPAL for � ¼ 16 under RT_1 (or RT_2) gives rise to no more
than 34 (or 35) node accesses over any partitioned trie in the
worst case according to our actual implementations,
yielding a search time savings of at least 96 ns. The worst-
case lookup times in a SPAL-based (or commercial) router
following the DP trie are illustrated under DP_S (or DP_W)
in Fig. 5, where the worst-case lookup times are shortened
as a result of SPAL.

If the Lulea trie is adopted, a far smaller forwarding table
in each FE after partitioning may avoid the dense chunks and
the very dense chunks in the third level or even avoid all the
third level chunks of the trie [11], reducing tow or even four
memory accesses (from 4þ 4þ 4 down to 4þ 4þ 2 or even to
4þ 4) for the worst case; this memory access reduction
translates to a savings of 24 ns or even 48 ns (given the SRAM
access time of 12 ns). Under RT_1, any Lulea trie for both
� ¼ 4 and � ¼ 16 after partitioning sees the worst case search
to involve 10 memory accesses, in contrast to 12 memory
accesses when the routing table is not partitioned, according
to real implementations. The Lulea trie thus experiences
search time reduction by two memory accesses in the worst
case. The worst-case lookup times in a SPAL-based (or
commercial) router following the Lulea trie are shown under
LL_S (or LL_W) in Fig. 5. Similarly, if the LC-trie is employed,
a smaller forwarding table under SPAL usually reduces the
maximum path length in the trie constructed. Considering
RT_1 (or RT_2) under a fill factor of 0.25, for example, the
search path depth in the LC-trie after partitioning for � ¼ 4 is
bounded by 6 (or 10), whereas the maximum trie depth
without partitioning equals 5þ 3 ¼ 8 (or 6þ 6 ¼ 12) accord-
ing to the implementation provided in [24], yielding a savings

TZENG: ROUTING TABLE PARTITIONING FOR SPEEDY PACKET LOOKUPS IN SCALABLE ROUTERS 489

Fig. 4. Total SRAM (in Kbytes) required for different tries under IPv4. Fig. 5. Worst-case lookup time (in ns) under cycle time = 5 ns and SRAM

access time = 12 ns.

of at least two memory accesses in the worst case; this
amounts to a reduction of 24 ns. Likewise, the LC-trie with
� ¼ 16 under RT_1 (or RT_2) sees its maximum trie depth
after partitioning to be no more than six (or nine), exhibiting
the worst case search time savings of no less than two (or
three) memory accesses. This is likely to yield a smaller worst-
case lookup time, as depicted in Fig. 5 (denoted by LC_S).

5 PERFORMANCE EVALUATION

Trace-driving simulation was employed to evaluate the
performance of SPAL-based routers under different LR-
cache sizes and � values. This includes simulation scenarios
of different LC speeds and various longest prefix matching
algorithms under many traces available to the public. Note
that the LC speeds considered are those after link
aggregations, if needed; for example, Cisco’s 12000 Series
routers allow multiple links of varying speeds (terminating
at separate ports of an LC) to be aggregated in each LC for
up to 10 Gbps.

5.1 Simulation Methodology

Our simulator takes as its input, the packet streams fed to
all LCs and the mean longest prefix matching time per
lookup in FEs. The packet streams were derived from
various traces of actual packet destinations collected and
posted [28], [39], one stream for each LC. For Abilene-I,
Abilene-II, Bell Labs-I, Abilene-III, and other data sets in the
PMA long traces archive (details about where, when, and
how traces were collected and about the trace format can be
found in [28]), the destinations of IP packet records (each
consisting of 64 bytes) in the traces were employed as
packet streams to drive our simulation studies. For the
WorldCup98 data set (which contained all request logs
from 30 April to 26 July 1998 with more than 1.35 billion
requests in total [39]), the clientID field of each request (i.e.,
a mapped IP address of the request originator or proxy) was
employed to drive our simulator. Two different LC speeds
were evaluated: 10 Gbps and 40 Gbps. Given a simulated
LC speed of 10 (or 40) Gbps, packets of varying length are
generated in a way that on an average, they together
amount to the given speed, with the mean packet length
assuming to be 256 bytes and the smallest packet size equal
to 40 bytes [36]. Under the clock cycle of 5 ns simulated for
the LC speed of 40 (or 10) Gbps, one packet was generated
in anywhere from two cycles to 18 cycles (or from six cycles
to 74 cycles). Given a trace, once a packet is generated at an
LC, its destination was supplied by the trace. This approach
enables one trace of addresses to feed different numbers of
LCs whose packet generation processes can be specified
individually and are dictated by their respective LC speeds
under consideration. Meanwhile, traffic locality of the trace
is reduced in this way, giving rise to pessimistic (i.e.,
conservative) simulation results. Each LC in our simulation
produces 300,000 packets, which correspond to a time
period of roughly 15 (or 60) ms for the mean packet length
of 256 bytes under the LC speed of 40 (or 10) Gbps. This
duration is so chosen because prefix changes occur some
20 times on an average [3] and possibly up to 100 times [32]
per second, and every prefix change leads to the cache
contents in LR-caches being flushed entirely.

The LR-cache organization can be specified by its size (in
terms of blocks), given that its degree of set associativity
equals 4, the victim cache size is 8, and each cache block is set
to hold only one lookup result. When a conventional
replacement policy is needed, the LRU is applied. Likewise,
the replacement policy in the victim cache follows the LRU. In
a cycle (of 5 ns), at most one packet is checked against an LR-
cache (see Fig. 3); if the check leads to a miss, the cache is then
updated accordingly. Each table lookup consists of multiple
memory accesses and the execution of the software code
which realizes longest prefix matching. The mean number of
memory accesses varies widely from one matching algorithm
to another. We have implemented various tries to measure
the average numbers of memory accesses per lookup under
the two sets of prefixes utilized for this study, namely, RT_1
and RT_2. It is found that the Lulea trie [11] requires 6.2 (or
6.6) memory accesses per lookup on an average for RT_1 (or
RT_2), while the DP trie [12] yields about 16 memory accesses
per lookup for either set of prefixes. Since the trie is kept in off-
chip SRAM (e.g., the L3 data cache, if existing; otherwise, the
L2 data cache), the memory access time is assumed to be 12 ns
and the code execution time is 120 ns (for executing some
100 instructions per lookup) in our simulation. This assump-
tion leads to a matching search time of roughly 40 cycles (of
5 ns each) in FEs under the Lulea trie and of 62 cycles or so
under the DP trie. SPAL was evaluated under these search
times in FEs.

5.2 Outcomes and Discussion

Extensive simulation results for RT_1 and RT_2 were
gathered and found to exhibit a similar trend; therefore,
only the results for RT_2 are presented here. They confirm
that typical packet streams indeed have sufficient temporal
locality to make the LR-cache effective, according to traces
collected in 1998, 2002, and 2004 available to the public [28],
[39]. These defy an earlier projection based on the trace data
gathered in 1987 and 1995, that access locality in packet
streams would decrease over time [38], and are in
agreement with another study according to real traces
collected by the authors in 1998 over the only external link
at T3 rate for connecting the Brookhaven National Labora-
tory [7], [8]. The results are for different cases: 10 Gbps and
40-cycle lookup, 10 Gbps and 62-cycle lookup, 40 Gbps and
40-cycle lookup, and 40 Gbps and 62-cycle lookup. Since
those cases see their results follow a similar trend, in this
paper, we present the simulation outcomes only for the case
of 40 Gbps and 40-cycle lookup, under two traces from
WorldCup98, namely, D_75 (for 9 July 1998) and D_81 (for
15 July 1998), two traces from the Abilene-I data set (on
14 August 2002) in the PMA Long Traces Archive, namely,
L_02-0 and L_02-1, and the Bell Labs-I trace (on 19 May
2002) from the same archive. In addition, the Abilene-III
trace (comprising 4-hour real Internet backbone traffic over
an OC192c link between the Indianapolis router node and
Kansas City on 1 June 2004 [28]) in the same archive,
denoted by AIII_04, is also employed. Note that many other
traces in [28], [39] were examined by our extensive
simulation studies and their results all fall within or around
the ranges signified by these six traces. Our performance
measures of interest include the average lookup time, the
load balancing gauge, and the normalized transient
(defined below).

490 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 5, MAY 2006

As the set of associativity degree is chosen to be 4 and
blocks in a set can be employed to hold LOC and REM
lookup results, we examined how the “mix” value (�,
reflecting percent of blocks devoted for REM results)
affected lookup performance under various LR-cache sizes
(�, in blocks, with a block holding one lookup result) for �
ranging from 1 to 64. The simulation outcomes all follow a
trend similar to that signified in Fig. 6, where the mean
lookup time (in cycles of 5 ns each) as a function of � under
the six traces is depicted for � ¼ 4 with � equal to 2K and
4K. This figure reveals that � ¼ 50 percent typically yields
best (or nearly best) performance, namely, two cache blocks
per set are for REM results, because 1) sufficient blocks are
always needed to cache local lookup results and 2) lookup
execution is far more expensive than the round-trip latency
over the switching fabric. Hence, we present subsequently
the outcomes only for � ¼ 50 percent.

We investigated the impact of the LR-cache size on SPAL
performance, with simulation results under the six traces
demonstrated in Fig. 7 and Fig. 8. The average lookup time (in
cycles) as a function of the cache size (�) for � ¼ 3 and 16 is
depicted in Fig. 7, where a table lookup carried out at an FE
(after a miss in the LR-cache) takes 40 cycles. For any given
trace, a larger� consistently yields a shorter lookup time until
it reaches a saturation point (determined largely by �); with
� ¼ 4K, the mean lookup times under SPAL sized � ¼ 3 (or
16) drop below 15.6 (or 9.2) cycles for all the traces shown,
translating to a lookup speed beyond 12.8 (or 21.7) million
packets per second for each LC. Therefore, a SPAL-based
router sized 3 (or 16) can forward more than 38 (or 347)
million packets per second, provided that � � 4K. In
contrast, a current router without table partitioning nor LR-
caches experiences the mean lookup time equal to 200 ns (i.e.,

40 cycles) if the queuing time of the FE is ignored
optimistically; that is equivalent to 5 million lookup per
second per LC. Thus, a SPAL-based router with � ¼ 3 (or 16)
accelerates packet lookups by 2.5 (or 4.3) times, when
compared with its commercial counterpart, despite its
reduced total SRAM amount and a possibly shorter worst-
case lookup time. If� grows beyond the saturation point (say,
8K under � ¼ 3 for all traces), mean lookup performance
stays roughly unchanged or even drops slightly.

Mean lookup performance versus � (i.e., the number of

LCs) under � ¼ 4K and � ¼ 50 percent is illustrated in Fig. 8.

According to the figure, a larger � generally leads to a lower

TZENG: ROUTING TABLE PARTITIONING FOR SPEEDY PACKET LOOKUPS IN SCALABLE ROUTERS 491

Fig. 6. Mean lookup time (in cycles) versus mix value (�) for � ¼ 4.

(a) � ¼ 2K and (b) � ¼ 4K.
Fig. 7. Mean lookup time (in cycles) versus LR-cache size (�). (a) � ¼ 3

and (b) � ¼ 16.

Fig. 8. Mean lookup time (in cycles) versus � under � = 4K and � =

50 percent.

mean lookup time for any trace, because of better address
space coverage in each LC (due to fewer prefixes in its
forwarding table) and increased parallelism offered by more
FEs (for longest-prefix matching execution). Specifically, the
mean lookup time for trace L_02-0 drops from more than six
cycles down to less than three cycles, if � rises from 1 to 16,
translating to a speedup factor of more than 2 as a result of
finer routing table fragmentation (and, thus, partitioning the
IP packet streams into more subsets) for larger parallelism.
When the LR-cache is incorporated in each LC while the
routing table is not partitioned (as treated in an earlier
processor caching work [8], [16]), the mean lookup time will
be independent of � and be always equal to that of � ¼ 1

depicted in Fig. 8. The benefits due to incorporating LR-
caches in LCs then drop substantially because 1) the LR-cache
has a larger coverage of the address space (i.e., the whole
routing table, instead of a small fraction of it, like SPAL) and
2) the lookups of same IP addresses have to be repeated in
different LCs, discounting the purpose of caches. Note that
the number of LCs can be of any integer, not limited to powers
of 2 as mentioned earlier.

The partitioning bits chosen under SPAL are simply based
on prefixes in the routing table without regard to IP packet
streams. The bits so chosen aim to minimize and equalize the
forwarding table size at each LC, irrespective of traffic whose
distribution of its packet destinations change dynamically. It
is interesting to observe that the partitioning bits obtained this
way often give rise to reasonably balanced load at each FE for
the range of � examined, ensuring that concurrent packet
lookups are done rather evenly across all LCs to achieve high
performance. Let 4FE denote a load balancing gauge of FEs,
expressed by (LH � LLÞ=LH, where LH (or LL) is the highest
(or lowest) load among all FEs in the router, with the load of
an FE measured by the total number of lookups performed in
the FE. Load balancing gauge (4FEÞ versus � under the cache
size of � = 4K and the mix value of � = 50 percent is shown in
Fig. 9, where a lower4FE signifies a better balanced outcome.
As can be found in the figure, all traces result in fairly
balanced load (with 4FE < 56 percent always) over the
� range evaluated. While our partitioning approach takes no
specific traffic characteristics into consideration, it often
makes all FEs carry out table lookups concurrently with
reasonably balanced load, yielding a small mean lookup time.

The amount of crossing traffic over the switching fabric
for looking up routing tables remotely can be reflected by
the fraction of total lookup requests which are originated
from remote LCs and handled by a given LC, called the
crossing traffic ratio of the LC (denoted by �). The crossing
traffic ratio varies from one LC to another, and the maximal
� (represented by �max) versus � is depicted in Fig. 10,
where � is 4K and � equals 50 percent. As expected, �max

grows in general when � rises, but it is no more than
5.5 percent for � up to 64, except for the AIII_04 trace
(whose �max approaches 10.2 percent for � ¼ 64). Crossing
traffic under SPAL therefore accounts for a very small
fraction of total traffic over the switching fabric.

As explained earlier in Fig. 6, the LR-cache at each LC
holds both LOC and REM lookup results. It is interesting to
know how frequent those LOC lookup results at LCs are
employed to satisfy remote lookup requests issued from
other LCs. To this end, cached remote entries utilization is
calculated via dividing the number of remote “hit” requests
by the number of remote requests served by FEs, and the
utilization results as a function of � under � = 4K and � =
50 percent is demonstrated in Fig. 11. As can be observed
from the figure, cached LOC lookup results benefit a large
amount of subsequent remote requests for all traces but B_L
under � � 4. Without caching LOC lookup results, the load
of table lookups at every FE will grow considerably.

Since SPAL flushes all the cache contents upon its
operation or after each batch of routing table updates, it is
thus insightful to gauge the period for cache initialization,
called the warm-up period (in cycles), defined as the
number of cycles taken until the cache hit rate reaches a
specified level, say 75 percent. Each LC is assumed to
process 300,000 packets before a batch of table updates
occurs, followed by flushing out all LR-cache contents. The
normalized transient is designated as the warm-up period
divided by the total service time (in cycles) for every LC to
finish its 300,000 packets.

Normalized transient versus the number of LCs (�) for � =
4K and � = 50 percent under different traces is illustrated in
Fig. 12, where a smaller normalized transient reflects better
access locality and therefore a lower average lookup time. It
can be observed that the normalized transient is trace-
dependent and is usually very small, ranging from 0.03 per-
cent to less than 1.3 percent, for � � 2. When � equals 1, the

492 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 5, MAY 2006

Fig. 9. Load balancing gauge (4FEÞ versus � under � = 4K and � =

50 percent.

Fig. 10. Maximal crossing traffic ratio (percent) versus � under � = 4K

and � = 50 percent.

normalized transient reaches 1.85 percent for Trace AIII_04.
For a given trace, the normalized transient drops when �ð�
2Þ increases, as expected, since more LCs are then involved in
packet lookups concurrently to populate LR-caches with
lookup results sooner. The outcomes indicate that SPAL is
effectively suitable for the case of batch updates to the routing
table, given its tiny normalized transients. While not
demonstrated here, our simulation results also reveal that
the normalized transient is rather insensitive to the cache size
(�) for every trace examined, because SPAL would hold
enough IP lookup results to reach the specified hit rate (of
75 percent) after a certain number of cycles from the time its
caches were flushed, as long as� is greater than or equal to 2K.
Even with a simple flushing mechanism for the LR-cache
contents upon a routing table update, the SPAL-based router
is observed to exhibit speedy forwarding quickly after each
update because every lookup result from an FE is held not
only in the LR-cache of the home LC, but also in each remote
LR-cache where packets with the same destination arrive, as
stated in Section 3.3.

6 CONCLUSION

A speedy packet lookup (SPAL) technique has been
investigated for scalable high-performance routers, realized
by fragmenting the BGP routing tables and incorporating a
small cache (say 4K � 6 bytes under IPv4, called the LR-
cache) for keeping lookup results. The forwarding table
housed in each LC (linecard) includes only a small subset of
prefixes (in the routing table), leading to a significant drop in
the SRAM requirement and a possibly improved worst-case
lookup time. The number of LCs (i.e., fragments of a BGP
table) can be an arbitrary integer, not necessarily a power of 2.
The LR-cache enables quick replies to subsequent requests
(for looking up same addresses) originated from the home LC
as well as other LCs, greatly enhancing mean lookup
performance of a SPAL-based router. Trace-driven simula-
tion is adopted to assess the performance measures of
interest, and the simulation outcomes under various traces
demonstrate that a SPAL-based router delivers much faster
mean lookups than any existing router whose forwarding
tables are all identical and have the same number of prefixes
as the core routing table. For a given LR-cache size and any
trace, mean lookup performance typically improves for a

larger �, as a result of finer routing table fragmentation so that
each LR-cache in an LC then achieves a better address space
coverage. While the partitioning bits are chosen according to
the prefixes in a given routing table and irrespective of packet
streams, it is found that the partitioning bits obtained this way
often yield reasonably balanced load across FEs, ensuring
good scalability (with respect to the growth of routing tables)
and high lookup concurrency to arrive at a small mean lookup
time. In addition, SPAL is equally applicable to IPv6, unlike
other known software or hardware-based forwarding en-
hancement approaches which are typically far more expen-
sive, if possible, for IPv6. Capable of speeding up packet
lookups while drastically lowering SRAM amounts needed,
SPAL is ideally suitable for the new generation of scalable
high-performance routers.

ACKNOWLEDGMENTS

The author thanks G. Wang and R. Dugyala for their

participation in discussions and their efforts in helping to

develop and rectify the simulator, collecting simulation

results, and drawing figures. This work was supported in

part by the US National Science Foundation under Grants

EIA-9871315 and CCR-0105529. Its preliminary version was

delivered at the 2004 International Conference on Parallel

Processing, August 2004.

REFERENCES

[1] M. Akhbarizadeh and M. Nourani, “An IP Packet Forwarding
Technique Based on Partitioned Lookup Table,” Proc. 2002 IEEE
Int’l Conf. Comm., Apr./May 2002.

[2] AS1221 BGP Table Data, http://bgp.potaroo.net/as1221/bgp-
active.html, routing table snapshot taken during Sept. 4-6, 2004.

[3] A. Basu and G. Narlikar, “Fast Incremental Updates for Pipelined
Forwarding Engines,” Proc. IEEE Conf. Computer Comm. (INFO-
COM ’03), Apr. 2003.

[4] BGP Table Data, http://bgp.potaroo.net, Sept. 2004.
[5] J. Carbonaro and F. Verhoorn, “Cavallino: The Teraflops Router

and NIC,” Proc. Fourth Symp. High-Performance Interconnects (Hot
Interconnects 4), Aug. 1996.

[6] H. Chan, H. Alnuweiri, and V. Leung, “A Framework for
Optimizing the Cost and Performance of Next-Generation IP
Routers,” IEEE J. Selected Areas in Comm., vol. 17, pp. 1013-1029,
June 1999.

[7] T. Chiueh and P. Pradhan, ”High-Performance IP Routing Table
Lookup using CPU Caching,” Proc. IEEE Conf. Computer Comm.
(INFOCOM ’99), pp. 1421-1428, Apr. 1999.

TZENG: ROUTING TABLE PARTITIONING FOR SPEEDY PACKET LOOKUPS IN SCALABLE ROUTERS 493

Fig. 11. Cached remote entries utilization versus � under � = 4K and � =

50 percent.
Fig. 12. Normalized transient versus � under � = 4K and � = 50 percent.

[8] T. Chiueh and P. Pradhan, “Cache Memory Design for Internet
Processors,” IEEE Micro, vol. 20, Jan./Feb. 2000.

[9] Cypress Semiconductor Corp., “Network Search Engines,”http://
www.cypress.com/, Dec. 2003.

[10] Cisco Systems, Cisco 12016 Gigabit Switch Router, Data Sheet,
http://www.cisco.com, 2001.

[11] M. Degermark et al., “Small Forwarding Tables for Fast Routing
Lookups,” Proc. ACM SIGCOMM 1997 Conf., pp. 3-14, Sept. 1997.

[12] W. Doeringer, G. Karjoth, and M. Nassehi, “Routing on Longest-
Matching Prefixes,” IEEE/ACM Trans. Networking, vol. 4, no. 1,
pp. 86-97, Feb. 1996.

[13] C. Estan and G. Varghese, “New Directions in Traffic Measure-
ment and Accounting,” Proc. ACM SIGCOMM 2002 Conf., pp. 323-
336, Aug. 2002.

[14] W. Fang and L. Peterson, “Inter-AS Traffic Patterns and Their
Implications,” Proc. 1999 IEEE Global Internet Symp., Dec. 1999.

[15] M. Galles, “Spider: A High-Speed Network Interconnect,” IEEE
Micro, vol. 17, pp. 34-39, Jan./Feb. 1997.

[16] K. Gopalan and T. Chiueh, “Improving Route Lookup Perfor-
mance Using Network Processor Cache,” Proc. Supercomputing
Conf. 2002, Nov. 2002.

[17] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in
Hardware at Memory Access Speeds,” Proc. IEEE Conf. Computer
Comm. (INFOCOM ’98), pp. 1240-1247, Apr. 1998.

[18] Hitachi, Ltd., “The Hitachi GR2000 Gigabit Router Series,” http://
www.internetworking.hitachi.com, 2002.

[19] G. Huston, “Analyzing the Internet’s BGP Routing Table,” The
Internet Protocol J., vol. 4, no. 1, Mar. 2001.

[20] R. Iyer and L. Bhuyan, “Switch Cache: A Framework for
Improving the Remote Memory Access Latency of CC-NUMA
Multiprocessors,” Proc. Fifth Int’l Symp. High-Performance Computer
Architecture, pp. 152-160, Jan. 1999.

[21] N. Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” Proc. 17th Ann. Int’l Symp. Computer Architecture,
pp. 364-373, May 1990.

[22] Juniper Networks, Inc., “T-Series Routing Platforms: System
and Packet Forwarding Architecture,” white paper, http://
www.juniper.net, Apr. 2002.

[23] NetLogic Microsystems, “Network Search Engines (NSEs),”
http://www.netlogicmicro.com/products/products.html, Jan.
2004.

[24] S. Nilsson and G. Karlsson, “IP-Address Lookup Using LC-Tries,”
IEEE J. Selected Areas in Comm., vol. 17, no. 6, pp. 1083-1092, June
1999.

[25] D. Pao et al., “Efficient Hardware Architecture for Fast IP Address
Lookup,” Proc. IEEE Conf. Computer Comm. (INFOCOM ’02), June
2002.

[26] C. Partridge, “Locality and Route Caches,” Proc. US Nat’l Science
Foundation Workshop Internet Statistics and Metrics Analysis, http://
www.caida.org/outreach/isma/9602/positions/partridge.html,
Feb. 1996.

[27] Pericom Semiconductor Corp., “Throughput Expansion with FET-
Based Crossbar Switching,” http://www.pericom.com/, Nov.
2001.

[28] PMA Long Traces Archive, http://pma.nlanr.net/Traces/long/,
Passive Measurement and Analysis, Nat’l Laboratory for Applied
Network Research, Sept. 2004.

[29] The RACE Multicomputer, vol. 1, version 1.3, Mercury Computer
Systems, Inc., 1995.

[30] V. Ravikumar and R. Mahapatra, “TCAM Architecture for IP
Lookup Using Prefix Properties,” IEEE Micro, vol. 24, no. 2, pp. 60-
69, Mar./Apr. 2004.

[31] V. Ravikumar, R. Mahapatra, and L.N. Bhuyan, “EaseCAM: An
Energy and Storage Efficient TCAM-Based Router Architecture,”
IEEE Trans. Computers, to appear.

[32] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous, “Survey and
Taxonomy of IP Address Lookup Algorithms,” IEEE Network,
vol. 15, pp. 8-23, Mar./Apr. 2001.

[33] S. Sahni and K. Kim, “An OðlognÞ Dynamic Router-Table Design,”
IEEE Trans. Computers, vol. 53, no. 3, pp. 351-363, Mar. 2004.

[34] K. Sklower, “A Tree-Based Packet Routing Table for Berkeley
Unix,” Proc. 1991 Winter Usenix Conf., pp. 93-99, 1991.

[35] V. Srinivasan and G. Varghese, “Fast Address Lookups Using
Controlled Prefix Expansion,” Proc. ACM Sigmetrics ’98, pp. 1-11,
June 1998.

[36] K. Thompson, G. Miller, and R. Wilder, “Wide-Area Internet
Traffic Patterns and Characteristics,” IEEE Network, vol. 11, pp. 10-
23, Nov./Dec. 1997.

[37] N. Tzeng, “Hardware-Assisted Design for Fast Packet Forwarding
in Parallel Routers,” Proc. 2003 Int’l Conf. Parallel Processing, pp. 11-
18, Oct. 2003.

[38] M. Waldvogel et al., ”Scalable High-Speed Prefix Matching,” ACM
Trans. Computer Systems, vol. 19, no. 4, pp. 440-482, Nov. 2001.

[39] WorldCup98 Data Set, http://ita.ee.lbl.gov/html/contrib/World
Cup.html, The Internet Traffic Archive, Lawrence Berkeley Nat’l
Laboratory, Apr. 2000.

[40] Xelerated, Inc., “Co-Processors,” http://www.xelerated.com/
templates/page.aspx?page_id=197, Oct. 2003.

[41] R. Zakon, “Hobbes’ Internet Timeline v6.0,” 2003, http://
www.zakon.org/robert/internet/timeline.

[42] K. Zheng et al., “An Ultra High Throughput and Power Efficient
TCAM-Based IP Lookup Engine,” Proc. IEEE Conf. Computer
Comm. (INFOCOM ’04), Mar. 2004.

Nian-Feng Tzeng received the PhD degree in
computer science from the University of Illinois
at Urbana-Champaign in 1986. He is currently a
professor with the Center for Advanced Compu-
ter Studies, University of Louisiana at Lafayette,
which he joined in 1987. His current research
interests are in the areas of computer commu-
nications and networks, grid and peer-to-peer
computing, and high-performance and depend-
able systems. He had been on the editorial

board of the IEEE Transactions on Parallel and Distributed Systems
(1998-2001) and on the editorial board of the IEEE Transactions on
Computers (1994-1998), and had served as coguest editor of a special
issue of the Journal of Parallel and Distributed Computing (September
1995), and as a distinguished visitor of the IEEE Computer Society
(1994-1997). He was the chair of the technical committee on distributed
processing, the IEEE Computer Society, from 1999 to 2002, and the
technical program chair of the 10th International Conference on Parallel
and Distributed Systems, July 2004, and has been on the technical
program committees of various conferences. Dr. Tzeng is a member of
the ACM and the recipient of the outstanding paper award of the 10th
International Conference on Distributed Computing Systems, May 1990.
He received the University Foundation Distinguished Professor Award at
University of Louisiana in 1997. He is a senior member of the IEEE and
the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

494 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 5, MAY 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

