686 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL.4, NO.4, OCTOBER-DECEMBER 2018

Fast TCAM-Based Multi-Match Packet
Classification Using Discriminators

Hsin-Tsung Lin and Pi-Chung Wang

, Member, IEEE

Abstract—Ternary content addressable memory (TCAM) is a widely used technology for network devices to perform packet
classification. TCAM compares a search key with all ternary entries in parallel to yield the first matching entry. To generate all matching
entries, either storage or speed penalty is inevitable. Because of the inherit disadvantages of TCAM, including power hungry and limited
capacity, the feasibility of TCAM-based multi-match packet classification (TMPC) is thus debatable. Discriminators appended to each
TCAM entry have been used to avoid storage penalty for TMPC. We are motivated to minimize speed penalty for TMPC with
discriminators. In this paper, a novel scheme, which utilizes unused TCAM entries to accelerate the search performance, is presented.
It selectively generates TCAM entries to merge overlapping match conditions so that the number of accessed TCAM entries can be
significantly reduced. By limiting the number of generated TCAM entries, the storage penalty is minimized since our scheme does not
need extra TCAM chips. We further present several refinements to the search procedure. The experimental results show that our
scheme can drastically improve the search performance with extra 10-20 percent TCAM entries. As a result, the power consumption,
which correlates to the number of accessed TCAM entries per classification, can be reduced.

Index Terms—Packet classification, TCAM, multi-match, geometric intersection

1 INTRODUCTION

PACKET classification is a process employed by Internet
routers to classify packets into network flows. It is
applied to many Internet services such as firewall packet fil-
tering, quality of services, and intrusion detection. Packet
classification is based on rules, which consist of multiple
field specifications of a packet header. The most common
fields include source IP address, destination IP address,
source port, destination port, and protocol. A typical rule
thus has 104 bits. The specification of an IP address field is a
prefix, and that of a port field is a range. The protocol field
is usually an exact value. Since different services may use
different fields in a packet header, a rule can ignore a field
by specifying a wildcard. Each rule is associated with an
action to process the matching packet, where a packet
matches a rule if each field of the packet matches the corre-
sponding field of the rule. Some network services, such as
firewall and quality of services, relies on single-match
packet classification, which only yields the best matching
rule. The best matching rule could be the rule with the high-
est priority or the least-cost action. The services such as
intrusion detection or multifunction devices that perform
single-match packet classification for each function require
multi-match packet classification to produce all matching
rules.

o The authors are with the Department of Computer Science and Engineering,
National Chung Hsing University, Taichung, Taiwan 402, ROC.
E-mail: aries77329@gmail .com, pcwang@nchu.edu.tw.

Manuscript received 1 Jan. 2018; revised 17 May 2018; accepted 1 June 2018.
Date of publication 15 June 2018; date of current version 29 Jan. 2019.
(Corresponding author: Pi-Chung Wang.)

Recommended for acceptance by R. Grant.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TMSCS.2018.2847677

In the past few years, ternary content addressable memo-
ries (TCAMs) have been widely used for packet classifica-
tion due to its high throughput. A TCAM entry consists of
hundreds of cells, where each cell can store ‘0’, “1’, or “don’t
care”. We denote a cell storing “don’t care” as an x-bit.
TCAM can thus store binary strings with arbitrary bit masks
(i.e., ternary strings). TCAM compares search keys with all
entries simultaneously and only needs one access to decide
the first matching entry. By storing rules in a descending
order of their priority, TCAM supports single-match packet
classification effectively. Unfortunately, TCAM has several
drawbacks, including the inefficient storage of arbitrary
ranges, limited capacity, high cost and high power con-
sumption. More specifically, the largest TCAM chip has
only 72 megabits (Mb) [1]. TCAM costs about 30 times more
per bit of storage than SRAM and consumes 150 times more
power per bit than SRAM [2]. The extra logic and capacitive
loading of TCAM also result in tripling the access time of
SRAM [2]. Another research suggests that larger TCAM
chips may have longer access latency [3]. All of these draw-
backs directly correlate to the number of required TCAM
entries.

To support multi-match packet classification, the existing
algorithms suffer from either extra TCAM entries or accesses.
For example, geometric intersection (GI) [4] generates one
pseudo rule for each unique set of overlapping rules, where
each pseudo rule stores the overlapping rules. All matching
rules can thus be yielded in one TCAM access by searching
for the best-matching pseudo rule. Due to the limited TCAM
capacity, Gl is not feasible for heavily overlapping rules. For
example, our experiments show that, while applying GI
to one thousand rules designed for a network intrusion detec-
tion system, more than two hundred thousand pseudo
rules are generated. Another algorithm, multi-match using

2332-7766 © 2018 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: National Cheng Kung Univ.. Downloaded on June 22,2020 at 08:59:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4220-2853
https://orcid.org/0000-0002-4220-2853
https://orcid.org/0000-0002-4220-2853
https://orcid.org/0000-0002-4220-2853
https://orcid.org/0000-0002-4220-2853
mailto:
mailto:

LIN AND WANG: FAST TCAM-BASED MULTI-MATCH PACKET CLASSIFICATION USING DISCRIMINATORS 687

discriminators (MUD) [5], does not require any redundant
entries, but it may access more TCAM entries than the match-
ing rules. In other words, a TCAM access may not always
yield a successful match even there exist other matching
entries. These redundant accesses also result in considerable
energy wastage.

In this work, we focus on fast multi-match packet classifi-
cation based on commodity TCAM. We observed that the
existing algorithms have a tradeoff for either space or search
efficiency. Since a commodity TCAM chip has limited space,
a scheme, which can adaptively utilize unused TCAM entries
to achieve better search performance, is thus preferable. We
present a scheme that uses discriminators and pseudo rules
simultaneously to minimize the number of redundant TCAM
accesses. Our scheme selectively generates pseudo rules,
which are stored in unused TCAM entries. These pseudo
rules can significantly reduce the number of required discrim-
inators. As a result, the redundant TCAM accesses are elimi-
nated to raise search performance as well as lower power
consumption. We also develop two refinements, bypass and
reassign, to further improve the search performance by incor-
porating pre-computation information. Our experimental
results show that by making use of the available TCAM
entries, our scheme outperforms MUD in terms of speed per-
formance. Both refinements provide further speed improve-
ment. Because our scheme can effectively control the number
of occupied TCAM entries, it also avoids the issue of feasibil-
ity for supporting a rule set with a large number of overlap-
ping rules.

The rest of the paper is organized as follows. In Section 2,
we describe the previous schemes for solving the problem
of multi-match packet classification and some TCAM-
related research. Section 3 discusses the motivation of our
scheme. Section 4 introduces our scheme and two speed
refinements in detail. The experimental results and discus-
sion are described in Section 5. Finally, we conclude our
work in Section 6.

2 RELATED WORKS

In this section, we first introduce some research relevant to
our scheme. Then, the relationships between multi-match
packet classification and the other research topics of TCAM
are discussed.

2.1 Multi-Match Packet Classification

To perform multi-match packet classification without modi-
fying the TCAM circuit, entry-invalidation exploits a valid
bit, which is originally used for indicating whether a TCAM
entry is occupied or not [5]. A search key is only compared
with the occupied TCAM entries with an enabled valid bit.
When a TCAM entry matches a search key, its valid bit is
disabled so that the entry is excluded from the next TCAM
access. The valid bits must be reenabled for a new search
key. The major drawback of this scheme is the extra two
TCAM writes for each matching entry.

Lakshminaryanan et al. propose a scheme, multi-match
using discriminator, to avoid slow TCAM write operations by
appending a discriminator field to each entry [5]. The discrim-
inator field of each entry stores a sequence number, and all
entries are sorted based on their sequence number in an

ascending order. In the search process, a discriminator field is
appended to the search key to determine the range of TCAM
entries to be compared. Initially, the discriminator field is set
to wildcard so that all entries are compared. When the search
key matches the jth entry, the discriminator of the search key
is changed to “greater than j” to avoid matching the jth entry
again. The process repeats until there is no matching entry.
Another algorithm also uses rule grouping to facilitate multi-
match classification [6]. Unlike MUD, the rule grouping
approach is based on the layered ranges using P?C, a
database-dependent range encoding algorithm [7]. Each rule
group is identified by using one bit of a bitmap appended to
each TCAM entry. The algorithm also alters the range field of
a search key to shorten the bitmap length. Because the algo-
rithm is tightly combined with range encoding, it may suffer
from high update cost caused by rule insertion.

Yu and Katz proposed GI to yield all matching rules using
one TCAM access [4]. Their scheme uses pseudo rules to store
all rule intersections, where each pseudo rule records the
identifiers of rules which match the corresponding address
space of a rule intersection. Pseudo rules must be stored in
front of the original rule set to ensure the search correctness.
When a search key matches more than one rule, it always
matches a pseudo rule to fetch the identifiers of all matching
rules. Theoretically, the number of pseudo rules is O(N*),
where N is the number of original rules and k is the number
of fields. GI has superior speed performance, but the number
of pseudo rules may be too large to be stored in a TCAM chip.
To alleviate the storage penalty, set splitting algorithm (SSA)
is proposed to reduce the number of pseudo rules [8]. It is
based on the observation that rule intersections can be
reduced by splitting a rule set into several subsets. The algo-
rithm categorizes rules into several subsets, where the pseudo
rules are generated only for the rules of the same subset. The
rules in the same subset as well as their pseudo rules are then
stored in an independent TCAM space. All subsets must be
accessed to ensure that all the matching rules are extracted.
The ruleset decomposition for minimizing the number of
pseudo rules is an NP-hard problem. The authors approach
this problem by applying Johnson’s algorithm [9].

Some researchers achieve TCAM-based multi-match packet
classification by modifying the hardware architecture.
Faezipour and Nourani modify TCAM's priority encoder to
produce all matching entries by employing some additional
circuits [10]. They also propose a two-phase scheme,
maximum-minimum intersection partitioning (MX-MN-IP),
to divide a rule set, where the overlapping rules are stored in a
partition. Each partition is further divided to smaller sub-
partitions, where rules in the same sub-partition are disjoint to
each other. All the matching rules of a search key can be gener-
ated by accessing all sub-partitions of a matching partition.
Song and Lockwood proposed BV-TCAM [11], which integra-
tes TCAM with BV [12] using FPGA. BV-TCAM removes pri-
ority encoder from TCAM to yield all the matching field
specifications by storing the result of all match-lines in a bit
vector. The matching rules can thus be determined by inter-
secting the bit vectors of all fields. FSBV avoids the slow range-
matching procedures to optimize the combination of TCAM
and SRAM for Snort rule sets [13]. It also relies on FPGA to
implement the proprietary architecture. Shen et al. propose a
hybrid scheme, which combines TCAM with SRAM in order

Authorized licensed use limited to: National Cheng Kung Univ.. Downloaded on June 22,2020 at 08:59:05 UTC from IEEE Xplore. Restrictions apply.

688 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL.4, NO.4, OCTOBER-DECEMBER 2018

to alleviate storage requirement in TCAM [14]. The scheme
stores distinct specifications of each field in a TCAM for index-
ing the match lists stored in SRAM. Because the number of dis-
tinct field specifications is usually much less than the number
of rules, the scheme requires several small TCAM chips. The
above proprietary architectures may increase implementation
cost and complexity.

2.2 TCAM-Related Research

The research issues of the existing TCAM solutions include
range encoding [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], power consumption [20], [25], [26], [27], [28], [29],
[30], [31], storage reduction [32], [33], [34], [35], [36], and
updates [27], [37], [38], [39]. The range encoding algorithms
have two strategies, database-dependent and database-
independent. Database-dependent encoding schemes have
excellent efficiency for both TCAM entry length and count,
but they require an extra mapping procedure to retrieve val-
ues of encoded range fields [7], [16], [17], [19], [40], [41]. Data-
base-independent encoding schemes avoid extra TCAM
searches, but range expansion may still occurs [5], [18].
Database-Independent Range Pre-Encoding (DIRPE) converts
a range into a ternary string by using fence encoding, where a
W-bit range field can be encoded into one (2"-1)-bit ternary
string. Because there could be no enough available bits in a
TCAM entry for encoding a wide field, DIRPE divides a range
field into multiple 7-bit subfields, where each subfield is inde-
pendently encoded. As a result, the length of the discriminator
field is equal to [W/r](2" — 1) with [W/r| subfields. The
tradeoff of a shorter discriminator field is the increased expan-
sion factor, where a range is expanded to 2([1V /r] — 1) ternary
strings in the worst case. The range expansion problem
increases the cost of performing multi-match classification.

Because TCAM is designed for reporting the first matching
entry, some low-priority rules are useless since they will not
be reported for any packets. Some entry pruning algorithms
remove these redundant rules to reduce the number of
TCAM entries[42]. These algorithms cannot be applied to
multi-match packet classification since all matching rules are
required.

Minimizing the cost of updating TCAM entries is impor-
tant for single-match packet classification. To ensure the
correctness of packet forwarding, TCAM entries must be
sorted according to their priorities in a descending order. A
new rule must occupy a correct position to conform the pre-
defined priority. In [37], two algorithms, PLO_OPT and
CAQO_OPT, are proposed to reduce update cost. CoPTUA
ensures the correctness of rule matching without locking
rule table by maintaining the consistency of rules [38]. PC-
DUOS divides a rule set into two subsets according their
priorities [27]. The rules of each subset are stored in differ-
ent TCAMs to shorten update time. Multi-match packet
classification may also have to deal with the problem of
updates. For example, both GI and SSA generate pseudo
rules. Inserting a new rule or deleting an existing rule may
result in updating multiple TCAM entries.

3 MOTIVATION

Before proceeding to our scheme, we present our motiva-
tion based on the observations to MUD and GI in terms of
speed and storage performance.

As mentioned above, MUD is a space-efficient algorithm,
which achieves multi-match packet classification by append-
ing a discriminator to each TCAM entry. MUD requires multi-
ple TCAM accesses to yield all the matching rules. The
number of TCAM accesses is dominated by two factors, the
number of matching rules and the cost of representing a dis-
criminator. When an entry matches a search key, MUD
assigns a range larger than the discriminator value of the
matching entry to the discriminator field of the search key for
yielding the next matching rule. The discriminator range in a
search key must be transformed into a TCAM-compatible for-
mat. As a result, the range could be converted to multiple ter-
nary strings where each string corresponds to one search key.
Each search key requires one TCAM access but does not
always yield a matching rule. The TCAM accesses can be
reduced by employing efficient range encoding algorithm.
Assume that the maximum number of matching rules is m.
Then, MUD requires at least m unique discriminator values
and a logy m-bit discriminator field is required. In our experi-
ments, we found that six-bit discriminator field is enough for
the current rule sets. A six-bit range could be expanded to
eleven prefixes in the worst case to result in excessive number
of search keys as well as redundant TCAM accesses.

The excessive number of TCAM entries can be reduced
by performing range encoding. Both types of encoding algo-
rithms have their own costs for encoding the discriminator
ranges. Database-dependent encoding schemes require m
mappings, and database-independent encoding schemes
may result in redundant TCAM accesses. In this paper, we
attempt to eliminate the redundant TCAM accesses caused
by database-independent encoding schemes.

Currently, a router supporting packet classification is
usually equipped with TCAM chips. Although the number
of rules that network administrators can insert is limited by
the capacity of these chips, some routers may reserve
TCAM entries for lowering update latency. Since multi-
match packet classification generates all matching rules,
rule reordering is unnecessary. These entries can thus be
used to boost the speed performance of TMPC.

We note that for a TCAM chip, the percentage of occu-
pied TCAM entries does not directly correlate to power con-
sumption. The state-of-the-art TCAM chips use a valid bit to
control the availability of each entry. Although the invalid
TCAM entries can be kept away from being compared to
lower power consumption, there is still significant power
consumption for leakage power of SRAM cells, capacitance
of searchline and I/O registers [43]. As a result, the invalid
TCAM entries still incur high power consumption, and the
number of TCAM accesses still dominates the power con-
sumption of TMPC.

We are motivated to improve the speed performance of
MUD by exploiting the unused TCAM entries. We notice that
previous algorithms of multi-match packet classification gen-
erate rule intersections to achieve superior speed perfor-
mance. While a pure geometric-intersection scheme may
result in a significant increase of TCAM entries, we can con-
trol the number of rule intersections by only intersecting a
part of rules. The remaining rules are still maintained by
MUD. There are two advantages for using our scheme with
MUD. First, the maximum number of matching TCAM
entries could be reduced because each rule intersection

Authorized licensed use limited to: National Cheng Kung Univ.. Downloaded on June 22,2020 at 08:59:05 UTC from IEEE Xplore. Restrictions apply.

LIN AND WANG: FAST TCAM-BASED MULTI-MATCH PACKET CLASSIFICATION USING DISCRIMINATORS 689

TABLE 1
An Example with 10 Rules on Two Fields

Rule fi fo Rule fi fa

Ry 01 * Rs 10 *
R1 1001 * R(; 1x *
Ry 001 * R 1100 *
R3 0 * Rg 00 *
Ry 101x% * Ry * 0%

merges two or more overlapping rules. As a result, redundant
TCAM accesses could be eliminated. Second, the number of
unique discriminator values could be decreased to reduce the
number of chunks. Both advantages could benefit MUD to
achieve better speed performance. It is worth to note that,
because inserting a moderate number of TCAM entries would
reduce the number of TCAM accesses, power consumption
could be improved simultaneously.

4 SELECTIVELY GENERATING PSEUDO RULES

4.1 Algorithm

Our scheme exploits the reserved TCAM entries to store
rule intersections. To effectively utilize the reserved TCAM
entries, we need to control the number of pseudo rules.
There are two possible approaches. The first approach gen-
erates pseudo rules for all rules first. Then, it gradually
chooses the rules overlapping with the most rules. These
rules are handled by MUD for reducing the pseudo rules.
The procedure stops until both intersection and original
rules can be stored in TCAM. This approach is suitable for
the rule set whose pseudo rules are fewer or slightly more
than the available TCAM entries because only few rules
experience extra process. It is not suitable for the rule sets
with numerous rule intersections. Because the number of
rule intersections would grow exponentially with respect to
the number of overlapping rules, the computation cost of
this approach could be too high to be feasible. In addition,
this approach cannot effectively determine the length of the
discriminator field. If these chosen rules need numerous
discriminator values, the speed performance of MUD is
degraded, as mentioned above.

We choose another approach that stores the original rules
using MUD and selectively generates pseudo rules for some
rules. To reduce the number of discriminator values in MUD,
the original rules with the same x-bit distributions are catego-
rized in a group, where two rules have the same x-bit distribu-
tion if the occurrences of their x-bits are the same. We note that
any two rules with the same x-bit distribution are either mutu-
ally disjoint or identical. Since the identical rules are always
merged to avoid redundant TCAM entries, the rules in a
group can share the same discriminator value. Accordingly,
we iteratively choose two groups from MUD to store their
rule intersections in TCAM. By controlling the number of the
generated rule intersections, we can simultaneously reduce
both numbers of rule groups and the required discriminator
values to improve the speed performance of MUD. Subse-
quently, the detailed procedure of our approach is described.

We start from introducing the MUD procedure of rule
grouping. As mentioned above, MUD appends a discrimina-
tor field to each TCAM entry so that a search key can be com-
bined with different discriminator ranges to determine the

TABLE 2
Groups of the Rules in Table 1
GO G1 G2 G3 G4
Ry : (%,0%) Ry :(001%,%) Rs:(10%,%) Rs:(0%,%) Ry:(1001,x)
Ry : (101k,%) Rs:(00%,%) Rg: (1x,%) Ryr:(1100,%)
Ry : (01x, %)

TCAM entries for comparison. To generate the discriminator
value of each rule, the range fields of the original rules are
converted to ternary strings by using database-independent
range pre-encoding. Then, the rules with the same x-bit distri-
butions are categorized in a group. Two rules with the same
x-bit distribution must be disjoint to each other unless they
have the same specifications. Accordingly, a packet matches
at most one rule in a group. The rules in the same group are
assigned with the same discriminator value; hence, the length
of the discriminator field is reduced to logs(number of
distinct x — bit distributions) bits.

We use an example with ten rules in Table 1 to further
explain the above procedure. Both fields of these rules have
different prefix lengths. These rules are categorized to dis-
tinct groups according their x-bit distributions. The result of
rule grouping is listed in Table 2. Rules in the same group
have the same x-bit distribution. For example, R5, Rs and
Ry have the same x-bits in the least-significant two bits of f;
and all bits of f5. These rules are disjoint to each other.

Next, we use a greedy method to selectively store the
rule groups in an intersection group. Since the rules from
different groups could overlap with each other, pseudo
rules are generated for the overlapping rules. All rules in
the intersection group share the same discriminator value.
The pseudo rules must be located in front of the original
rules. Unlike the original groups of MUD, a packet could
match more than one rule of the intersection group. A
packet that matches more than two original rules always
matches the pseudo rule, which is synthesized for the over-
lapping region of all the matching rules.

Due to the variant characteristics of different rule sets, a
rule set may have variable number of groups and variable
number of rules in each group. We also note that although
the rules are categorized according to their x-bit distribu-
tions, the rules in different groups are not necessary to over-
lap with each other. It is possible to merge several groups in
an intersection group with the cost of few pseudo rules. Our
algorithm aims at merging as more groups as possible
under the limited number of available TCAM entries.

We describe the procedure of selecting rule groups to be
inserted into the intersection group. Initially, the intersec-
tion group is empty. We pick the smallest group and insert
its rules into the intersection group. The smallest group
stands for the number of the required TCAM entries for the
rules in the group. If there are two or more groups having
the same size, one of them is randomly selected. Next,
another group is selected to be merged with the intersection
group. The group should be the one that leads to the fewest
extra TCAM entries. The calculation is performed by first
generating all pairs of partially overlapping rules. For each
pair, a pseudo rule is generated for the overlapping region.
The number of the required TCAM entries for each pseudo
rule is then produced. The group that generates the least

Authorized licensed use limited to: National Cheng Kung Univ.. Downloaded on June 22,2020 at 08:59:05 UTC from IEEE Xplore. Restrictions apply.

690 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL.4, NO.4, OCTOBER-DECEMBER 2018

TABLE 3 TABLE 4
Pseudo Rules Generated by the Rules of Each Different Group The Final Result of Our Scheme
G1 G2 G3 G4 1G:3 G2:0 G3:1 G4:2
Ryg : (001%,0%) Rpg: (10%,0%) Rsg: (0%,0%) Ryg: (1001%,0%) Ry : (001, 0%) R : (10, %) R : (0%, %) Ry : (1001, %)
Ryg: (101%,0%) Rgg: (00%,0%) Rgg: (1%,0%) Rrg: (1100%,0x) Ryg: (101%,0%) Rg: (00%,%) Rg: (1x,x) Rr: (1100,)
Rog : (01%,0%) Ry : (*,0%) Ry : (01x, %)
Ry : (001, x)
Ry : (101, %)

TCAM entries for the extra pseudo rules is merged into the
intersection group. If more than one candidate group gener-
ates the fewest TCAM entries, then we choose one of them
randomly. Because these TCAM entries will occupy the
unused TCAM entries, we must check whether the number
of the TCAM entries yielded from the pseudo rules is
smaller than the number of available TCAM entries. If there
are enough TCAM entries, the pseudo rules are generated
and stored. Otherwise, our greedy method stops merging
with additional groups and is complete.

We use the previous example in Table 2 to illustrate the
procedure of group selection. There are five groups with
different sizes as shown in Table 2. In the first iteration, the
group GO is the only candidate because it is the smallest
group. We store its rules in the intersection group. In the
second iteration, we calculate the cost of inserting different
groups into the intersection group. We list the generated
pseudo rules for moving the rules of different groups to the
intersection group in Table 3, where the costs for groups G1
~ G4 are two, three, two and two. Because three groups,
G1, G3 and G4, have the same cost, our greedy method ran-
domly selects the rules of G1 to be stored in the intersection
group. Assume that there is not enough TCAM entries for
merging another group, the above procedure stops. A total
of one intersection group and three original groups, as
shown in Table 4, result from implementing our algorithm.

Each group is then assigned with a unique discriminator
value, and the intersection group is always assigned with
the largest discriminator value. Since we merge multiple
rule groups in an intersection group, the length of the dis-
criminator value can be shortened. In the previous example,
each discriminator value is reduced from three bits for five
groups to two bits (see Table 4). The rules are sorted accord-
ing to the discriminator values of their groups and inserted
into TCAM by appending the discriminator values of their
groups.

Because the intersection group occupies the empty space
of TCAM, its rules are stored in the bottommost TCAM
entries (i.e., behind the empty space). Moreover, the pseudo
rules are stored in front of the original rules to ensure the
correctness of the search procedure. As mentioned above,
the rules of the intersection group may overlap with each
other; thus, a search key may match more than one TCAM
entry. By assigning the same discriminator value to the
TCAM entries of the intersection group, only the first
matching entry is accessed and the other matching entries
are ignored.

Rule updates taking place at the original groups or the
intersection group can be efficiently processed. Any rule
insertion or deletion in the original groups can be accom-
plished by updating at most one TCAM entry for each
group [37]. The intersection group can also be updated by
inserting new pseudo rules for rule insertions or deleting

the existing pseudo rules for rule removals. If a new rule
generates too many pseudo rules, the new rule should be
stored in a new rule group behind the original rule groups
to avoid high update cost.

4.2 Implementation Considerations
In our scheme, both a discriminator field and an original
rule are stored in one TCAM entry. In a typical TCAM,
each entry has 144 bits. A five-field (source/destination IP
address, source/destination port number, protocol) rule
consumes 104 bits. Thus, there are 40 available bits. These
bits can be used to improve the efficiency of range encod-
ing. We assume that the range fields (source and destina-
tion port fields) of all rules are encoded by using the
DIRPE algorithm. DIRPE can reduce the number of TCAM
entries for both original rules and pseudo rules. Since each
field of a pseudo rule is equal to one of the field specifica-
tions of two overlapping rules, a succinct representation of
range fields can thus reduce the number of required
TCAM entries for the pseudo rules. For both port fields,
source-port field uses six subfields whose strides are 2, 2,
3, 3, 3, 3 and destination-port field uses seven subfields
whose strides are 2, 2, 2, 2, 2, 3, 3. Hence, both fields con-
sume 34 bits and 29 bits, respectively. After the deduction
of 32 bits from both ports, DIRPE requires 31 extra bits.
There are nine bits left for the discriminator field. As
mentioned above, the six-bit discriminator field, which can
identify at most 64 groups, is split into three two-bit sub-
fields, where each subfield requires three bits for DIRPE. If
there are more than 64 groups, the number of bits used both
port fields can be reduced by increasing the number of sub-
fields for DIRPE. For example, the source-port field can be
split into seven subfields as the destination-port field to pro-
duce five extra bits. With these extra bits, the discriminator
field can specify up to 1,024 groups.

4.3 Search Procedure

To perform multi-match packet classification upon the
TCAM entries, the operations to generate the search key
are listed below. First, all the inspected header fields of an
incoming packet are extracted and concatenated as a
search key. Then, both transport-layer port fields of the
search key are encoded by using DIRPE. Next, a discrimi-
nator field is appended to the search key. Initially, all bits
in the discriminator field are set to ‘x” for comparing all
TCAM entries.

In the first TCAM access, all TCAM entries are com-
pared. If a matching entry is reported, the discriminator
value of the matching entry is retrieved. Assume that the
value is j. Then, the discriminator value of the search key is
revised to “greater than j” in order to search for the next

Authorized licensed use limited to: National Cheng Kung Univ.. Downloaded on June 22,2020 at 08:59:05 UTC from IEEE Xplore. Restrictions apply.

LIN AND WANG: FAST TCAM-BASED MULTI-MATCH PACKET CLASSIFICATION USING DISCRIMINATORS 691

TABLE 5
The Rules with Overlapping Pre-Computation

1G: 3 G2:0 G3:1 G4:2

Rog : (001%,0%)/¢p Rs: (10%,%)/1 Rs: (0x,%)/3 Ry :(1001,%)/3
Ryg: (101%,0%) /¢ Rs: (00%,%)/1 Rg: (1x,%)/2 R7:(1100,%)/3
Ry : (%,0%) /¢ Ry : (01,%)/1

Ry : (001%,%)/¢

Ry : (101x,%)/¢

matching entry within the remaining TCAM entries. The
discriminator range “greater than j” is encoded by using
DIRPE to reduce the number of TCAM accesses. The maxi-
mum number of the subranges for “greater than j” is equal
to the number of chunks used in DIRPE. For example, we
use three two-bit chunks for encoding the discriminator
field. If there is a matching entry with a discriminator value,
1, then the discriminator ranges encoded by DIRPE are “000
000 x11”, “000 xx1 xxx” and “xx1 xxx xxx”, where the corre-
sponding decimal ranges are [2:3], [4:15] and [16:63]. One
TCAM access is performed for each range. The above proce-
dure repeats until that no match is reported.

4.4 Improving Speed Performance

We develop two speed refinements for MUD. The first refine-
ment, overlapping pre-computation, is based on the observa-
tion to the difference between the number of matching rules
and the number of TCAM accesses. The main reason for the
difference is the range representation of the discriminator
field. While the discriminator uses the index number of a
matching rule to determine the range of TCAM entries for fur-
ther comparisons, we could bypass several rule groups by
using pre-computation information. For each rule, we calcu-
late the smallest index number of the subsequent groups
which have at least one overlapping rule. This number denotes
the next group with possible matching rules. We can store the
smallest index number of the overlapping groups in the corre-
sponding entry of SRAM. When a rule matches the search key,
the corresponding index number is extracted to revise the
range of compared TCAM entries. Since each TCAM access
must retrieve the TCAM entries whose discriminator values
are equal to or larger than the index number, those groups
without any overlapping rules are ignored. This approach can
reduce the number of TCAM accesses but does not yield any
matching rules. For the example in Table 5, with the pre-
computation information behind each slash, i3 does not over-
lap with any rules in G4 but overlaps with more than one rule
in the intersection group whose index value is 3. G4 can thus
be bypassed if Rs3 is matched by the search procedure.

The second approach, discriminator reassignment, is
designed for the proposed scheme to reduce the number of
DIRPE entries for a given range. Since the proposed scheme
reduces the number of groups to be searched by using MUD,
we develop a refinement for further speed improvement. By
observing the multi-bit trie for multiple chunks of fence
encoding, there are several ranges, which can be represented
by one ternary string. In Section 4.2, we use DIRPE with three
two-bit chunks for the discriminator field. With the DIRPE
configuration, there are nine ranges whose DIRPE codes only
need one entry. These ranges in decimal numbers are [16:63],
[32:63], [48:63], [52:63], [56:63], [60:63], [61:63], [62:63], and

TABLE 6
The Rule Groups with Discriminator Reassignment

IG: 51 G2:15 G3:31 G4:47
Rog: (001x,0%) Rs:(10%,%) Ry:(0%,%) Ry: (1001, x)
Ryg: (101%,0%) Rg:(00k,%) Rg:(1x*) R;:(1100,x)
Ry : (*,0%) Ry : (01, %)
Ry : (001, x)
Ry : (101, %)

TABLE 7

The Statistics of SNORT Rulesets

SNORT Rules DIRPE Groups Avg.Acc. Max. Acc.
v2.9.0.0 956 1,207 22 10.031 16
v29.1.0 1,128 1,417 24 13.585 21
v29.20 1,172 1,469 25 12.299 23
v293.0 1,222 1,536 27 11.564 24

[63:63]. The largest values in front of these ranges can be used
to label the groups of MUD to reduce TCAM accesses. For
example, we can assign a group with an identifier value, 15.
When there is a matching rule in the group, the search proce-
dure can use the DIRPE code of [16:63], namely “xx1 xxx
xxx”, to express the range for the subsequent search. In this
example, there is a total of ten values for labeling groups,
including the last number, 63. When the rules of the groups
labeled based on the perfect DIRPE codes are matched, the
range corresponding to the subsequent groups can be
encoded as one DIRPE code. As a result, only one TCAM
access is required for each discriminator range. In our exam-
ple, the number of remaining groups is smaller than ten, and
each group can be assigned a new group ID, as shown in
Table 6. With these group IDs, only one TCAM access is
needed to search for the remaining groups. If there remain
more than ten groups, the extra groups could be labeled as
those values whose successive ranges can be encoded as two
DIRPE codes.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our scheme,
selective generation of pseudo rules (SGPR), with different
types of rulesets. We start our evaluation by using four
SNORT rulesets [23] whose versions vary from v2.9.0.0 to
v2.9.3.0. The initial statistics of four Snort rule sets are shown
in Table 7. There are about 1,000 to 1,200 rules in these Snort
rulesets. By encoding the range fields of the original rules
with DIRPE, these rulesets consume about 1,200 to 1,500
TCAM entries. These rules are categorized into 22 ~ 27
groups. We also show the speed performance of MUD by list-
ing the number of memory accesses in both average and worst
cases. The maximum TCAM accesses of MUD is proportional
to the number of rule groups.

SGPR uses free TCAM entries to improve the performance
of TMPC; thus, our first experiment demonstrates the rela-
tionship between the performance of SGPR and the number
of free TCAM entries. Because each rulesets have different
sizes, we use a storage expansion ratio to determine the num-
ber of available TCAM entries for storing a ruleset. The expan-
sion ratiosare 1.1,1.2,1.3,1.4,15,1.6,1.7,18,1.9, 2,4 and 8.

Authorized licensed use limited to: National Cheng Kung Univ.. Downloaded on June 22,2020 at 08:59:05 UTC from IEEE Xplore. Restrictions apply.

692
Lo le 29.00 + 29.1.0 = 2920 * 293.0|
258N
=
g
g
S
2
5
Z
1 1.1 12 13 14 15 16 1.7 1.8 19 2 4 8
Storage Ratio
(a) The number of groups
25
Kl* 2900 + 2910 « 2920 =+ 293.0
w 22.5 RN
@ S\
§ 20\ ““* e *
2N .
‘b\ \\-—-4-—--&-—-*-—-*
2 175 e 8 .
E s e - —e— o~ — %\""«x ------ - N
e \ Se— —‘0\
—% 1255\, N
4
g 10 \

7.5 :
1 1.1

12 13 14 15 16 1.7 1.8 19 2 4 8
Storage Ratio
(c) The number of TCAM accesses

Fig. 1. Performance of SGPR with different expansion ratios.

The number of TCAM entries used by SGPR is thus equal to
the number of rules with DIRPE times the expansion ratio.
We evaluate the tradeoff between space and speed perfor-
mance of SGPR by adjusting the number of occupied TCAM
entries. Accordingly, we evaluate four performance metrics
related to SGPR in Fig. 1. These performance metrics include
the numbers of rule groups, total TCAM entries, TCAM
accesses per classification and accessed TCAM entries per
classification.

We first show the number of rule groups generated by
SGPR in Fig. 1a. When the expansion ratio is equal to one,
SGPR has the same number of groups as MUD because no
groups can be merged. The number of groups for all rule-
sets can be significantly reduced with 10 percent extra
TCAM entries by setting the expansion ratio to 1.1. How-
ever, the reduction of rule groups is not effective when the
expansion ratio is increased to 1.2, where only one group of
two rulesets, v2.9.1.0 and v2.9.2.0, can be merged. For the
ruleset, v2.9.3.0, another group reduction takes place until
the expansion ratio is increased to 1.6, which means the
group reduction requires about 40~50% extra TCAM
entries. We conclude that the effectiveness of group reduc-
tion is not the same for all rulesets because of different over-
lapping relationships between rule groups.

When the expansion ratio is increased, SGPR may con-
sume more TCAM entries to merge rule groups, as shown in
Fig. 1b. We note that two groups would not be merged if the

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL.4, NO.4, OCTOBER-DECEMBER 2018

123K 75900 + 2910 = 2920 » 2930 }
8 10k "'iI’
5 I /l
Z T I
= f-’7/
T sk A
o] S
E a
Z 2.5k g et —

e i k. Gl g e A

12 13 14 15 16 1.7 1.8 19 2 4 8
Storage Ratio
(b) The number of occupied TCAM entries

250k ‘. 2900 + 2910 = 2920 =+ 2930 :
|
200k i
3 'a
= 11
5 fi
5 150k "//
."".
g /)I’ ['l
3 100k Fal
§ F e e m e — ok — ’l'/
g 4 ~ 4T
50k -r_;‘:*.___*___*____*._.* o 4
R G S S . s St
ol— ‘ ‘

12 13 14 15 16 1.7 1.8 19 2 4 8
Storage Ratio
(d) The number of accessed TCAM entries

1 1.1

merge requires more TCAM entries than available. However,
it is possible that the TCAM entries of SGPR could be the
same for different expansion ratios. For example, the number
of TCAM entries for all rulesets remains the same for the
expansion ratio within 1.2 to 1.5 because no any two groups
can be merged. The increment of TCAM entries is significant
when the expansion ratio is large enough.

The speed performance of SGPR is tied to the number of
rule groups. In the worst case, the search procedure accesses
all groups to yield all matching rules. As a result, the number
of TCAM accesses is tied to the number of rule groups, as
shown in Fig. 1c. By increasing the expansion ratio, the speed
performance of SGPR can be improved. Similarly, the expan-
sion ratio 1.2 improves speed performance for all rulesets.

In Fig. 1d, we show the number of accessed TCAM entries
per classification in the worst case. We assume that the small-
est TCAM chip which can store the required TCAM entries is
used to store the entries. The number of TCAM entries per
classification is yielded by multiplying the number of TCAM
accesses to the number of entries in the TCAM chip because
the invalid TCAM entries still consume a considerable
amount of power, as mentioned in Section 3. The smallest
TCAM chip has 1,024 entries. If a ruleset has more than 1,024
entries, the TCAM chip could be exponentially enlarged by
the power of two. Thus, the second smallest TCAM has 2,048
entries and so on. Because different rulesets have a different
number of overlapping rules between two rule groups, they

Authorized licensed use limited to: National Cheng Kung Univ.. Downloaded on June 22,2020 at 08:59:05 UTC from IEEE Xplore. Restrictions apply.

LIN AND WANG: FAST TCAM-BASED MULTI-MATCH PACKET CLASSIFICATION USING DISCRIMINATORS 693

11 —
[] Original E R2 B Both
a R1]
2 10 S S R o =
172}
[
Q
2
= 9 = o
< L 2]
&) — S5
=] 5
[5
s 8 e e W
= 5
5 5
S e S
=)] 39555
z 7 e W
3
R 3
]
K]]
K] oeoose
2.9.0.0 2.9.1.0 2.9.2.0 2.9.3.0
Snort Version
(a) The average case
200 Original B R2 B Both
4] 0 RI
]
‘é)g 18
<
% 16
Q
=
B
14
i
g
Z 12
10
2.9.0.0 2.9.1.0 2.9.2.0 2.9.3.0
Snort Version

(b) The worst case

Fig. 2. Speed performance of SGPR with different refinements.

may need TCAM chips with different sizes even with the
same expansion ratio. For the rulesets requiring a larger
TCAM chip, the number of accessed TCAM entries would
increase sharply. For example, the number of accessed entries
for Snort v2.9.3.0 for the expansion ratio 1.6 is almost twice
that for the expansion ratio 1.5. Although the number of
TCAM accessed is reduced, the adoption of a larger TCAM
chip may result in a significant increment of accessed TCAM
entries. A small expansion ratio is thus preferred to leverage
the speed performance and power consumption simulta-
neously. Accordingly, we set the expansion ratio to 1.2 for
SGPR in the following experiments.

Next, we show the performance improvement achieved
by two refinements presented in Section 4.4. We denote the
first refinement, overlapping pre-computation, as R1 and
the other refinement, discriminator reassignment, as R2. In
Fig. 2, four combinations, with or without applying each
refinement, are considered. We also show the search perfor-
mance in both average and worst cases. In Fig. 2a, both
refinements can improve the speed performance of the orig-
inal search procedure in the average case. R1 outperforms
R2 for v2.9.0.0 and v2.9.1.0 but R2 is better for the other two
rulesets. Because the performance of R2 is tied to the num-
ber of rule groups generated by SGPR, the rulesets with
many groups, e.g., v2.9.3.0, cannot be fully benefited from
the reassigned discriminator values. Implementing both

107
GI B MUD

” ssA-2 B SGPR
£ 10°-B SSA-4
S — - _
% —
O 10°F m
H
Gy
o
2
£ 10°F
=}
z

10K [| el . |

2.9.0.0 29.1.0 2.9.2.0 2.9.3.0

Snort Version

Fig. 3. The number of TCAM entries for different schemes.
30
[0 GI B MuUD
% 25F@ SSA-2 W SGPR
2 E SsA-4
320
z
o 15
H
G
o
g 10
o
g
=
Z 5
2.9.0.0 2.9.1.0 29.2.0 2.9.3.0

Snort Version

Fig. 4. The number of TCAM accesses in the worst case for different
schemes.

refinements always achieves the best performance among
these four combinations.

Although the proposed refinements can reduce the num-
ber of TCAM accesses in average case, they are not equiva-
lently effective in the worst case. As shown in Fig. 2b, R1
can only reduce the number of TCAM accesses for Snort
v2.9.0.0, and R2 does not demonstrate any improvement.
The worst-case performance occurs when there is one
matching rule in each group yielded by SGPR. It is because
the rule groups of SGPR usually heavily overlap with each
other. Since both refinements attempt to eliminate TCAM
accesses without any matching rule, they cannot reduce the
number of TCAM accesses in the worst case.

We relate the performance of SGPR with three previous
schemes, GI [4], SSA [8] and MUD [5]. Because SSA can
reduce pseudo rules by generating more rule subsets, we
include two configurations for SSA, two subsets (SSA-2)
and four subsets (5S5A-4), to show the tradeoff between stor-
age and speed performance. Three performance metrics, the
numbers of total TCAM entries, TCAM accesses per classifi-
cation and accessed TCAM entries per classification, are
revealed in Figs. 3, 4, and 5.

First, we discuss the storage performance of different
schemes in Fig. 3. Because there are a lot of overlapping rules
in Snort rulesets, GI generates a great number of pseudo rules.
By splitting the overlapping rules in a ruleset into different

Authorized licensed use limited to: National Cheng Kung Univ.. Downloaded on June 22,2020 at 08:59:05 UTC from IEEE Xplore. Restrictions apply.

694 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL.4, NO.4, OCTOBER-DECEMBER 2018

600k

500k

AN

(=3

=]

=
T

200k - —‘

100kH| [

Accessed TCAM Entries
=
S
=~

2.9.0.0 2.9.1.0 29.2.0

Snort Version

293.0

Fig. 5. The number of accessed TCAM entries per classification in the
worst case for different schemes.

subsets, SSA can reduce the number of pseudo rules to
achieve better storage performance. Without generating any
pseudo rules, MUD requires the fewest TCAM entries among
the four schemes. SGPR has better storage performance than
GI and SSA for the Snort rulesets because it produces a mod-
erate number of pseudo rules in a controlled manner.

We show the number of TCAM accesses in the worst case
in Fig. 4. There exists a significant tradeoff between speed
and storage performance in the previous schemes. The
speed performance of the previous schemes shows a reverse
trend as the storage performance, where GI has the best per-
formance and MUD requires the most TCAM accesses. The
speed performance of SSA-2 and SSA-4 is equal to the num-
ber of rule subsets. SGPR improves the speed performance
of MUD by reducing the number of rule groups. In particu-
lar, SGPR reduces 16% ~ 30% TCAM accesses required by
MUD. As mentioned above, the speed performance of
SGPR is tied to the number of generated rule groups. Due to
the heavily overlapping rules in Snort rulesets, the limited
number of pseudo rules also restricts the speed improve-
ment. We note that SGPR can be treated as a generalized
version of GI, where GI merges all rule groups in one. If
there are enough TCAM entries, SGPR can achieve the same
speed performance as GI.

Fig. 5 depicts the number of accessed TCAM entries in the
worst case for different schemes. Although the results are
yielded by multiplying the number of TCAM entries in a chip
by the number of TCAM accesses, storage performance domi-
nates the power consumption of TMPC. Although GI only
needs one TCAM access to produce the matching rules, it
consumes too many TCAM entries to result in the highest
power consumption among four schemes. SSA-2 can reduce
50 percent or more accessed TCAM entries of GI because SSA
needs one fourth or less TCAM entries of GI. However, SSA-4
does not improve power consumption of SSA-2 for Snort
v2.9.1.0 and v2.9.3.0 because the storage reduction cannot
compensate for the extra TCAM accesses. MUD outperforms
the previous schemes because of its superior storage perfor-
mance. SGPR further reduces the number of TCAM accesses
for MUD by generating a moderate number of pseudo rules.
While SGPR does not incur more cost than MUD, it provides
a feasible approach to improve both speed performance and
power consumption.

TABLE 8
The Statistics of ClassBench Rulesets
Database Rules DIRPE Avg.Acc. Max. Acc.
REAL 683 1,168 8.465 37
ACL 1K 916 1,112 3.948 7
5K 4,415 5,516 7.537 13
10K 9,603 11,746 6.153 10
REAL 269 443 3.547 4
FW 1K 791 1413 3.915 8
5K 4,653 7,351 4173 8
10K 9,311 14,847 4.841 6
REAL 1,550 1,791 6.726 16
PC 1K 938 1,047 4.943 11
5K 4,460 5,008 6.152 14
10K 9,037 10,203 5.916 14

We further evaluate the performance of our scheme
based on three types of rule databases used in [44]. These
types include access control list (ACL), firewall (FW) and IP
chain (IPC). There is one real database for each type.
Because these real databases are too small to evaluate the
scalability, another three databases, which have 1,000, 5,000
and 10,000 rules, are synthesized by using ClassBench [45].
Some rules of these databases are removed because of
duplication. Due to the different characteristics and configu-
rations, each rule database consumes different number of
TCAM entries. In particular, the number of TCAM entries
with DIRPE varies from about 450 to 15,000. We list the sta-
tistics of different rule databases in Table 8, where the speed
performance of MUD is also included.

We first show the storage performance of SGPR in
Fig. 6, where the numbers of required TCAM entries for
GI, SSA and MUD are also revealed. Among all schemes,
MUD has the best storage performance and GI has the
worst, but their differences vary for different database
types. For example, GI generates few pseudo rules for
the ACL databases because there are fractional overlap-
ping rules in these databases. The IPC databases have
more overlapping rules than the ACL databases to result
in more TCAM entries for GI. While the FW databases
have the most overlapping rules among all databases, the
rules of these databases also specify wide port ranges (e.
q., 1024-65535) to result in the worst storage performance
for GI. The difference between GI and MUD also depends
on the number of rules. For example, GI requires about
fifty times more TCAM entries than MUD does for the
1K-rule FW database, but the difference is increased to
more than one thousand for the 10K-rule FW database.
As a result, GI could not be able to support large rule
databases due to limited TCAM storage. Although SSA
can significantly improve the storage performance of GI,
it still requires near one hundred times more TCAM
entries than MUD does for the 10K-rule FW database.
The largest TCAM chip with 72 Mb cannot accommodate
the entries required by 5K-rule and 10K-rule FW data-
bases. As compared to GI and SSA, SGPR generates a
moderate number of pseudo rules by setting the rule
expansion ratio to 1.2. Therefore, SGPR can keep the stor-
age performance at the same level as MUD.

Authorized licensed use limited to: National Cheng Kung Univ.. Downloaded on June 22,2020 at 08:59:05 UTC from IEEE Xplore. Restrictions apply.

LIN AND WANG: FAST TCAM-BASED MULTI-MATCH PACKET CLASSIFICATION USING DISCRIMINATORS 695
10
[GI B MUD —
@ [0 SSA-2 SGPR u
£ 10°b- |8 ssA-4 .
g —
m
= — L
S 10 =
5 g N
= — o
S -
b} 4 [] —] 2
< 10 - = 53
2 B m &
aiE | |
REAL 1K K 10K REAL 1K K 10K REAL 1K K 10K
ACL 5 0 5 0 PC 5 0
FW
Database
Fig. 6. The number of TCAM entries for different schemes.
38
34 [GI B MUD
3 0 SsA-2 SGPR
%] SSA-4
g 15
<
=
<
O
= 10
[
o
z
E s
1K SK 10K REAL 1K 5K 1K SK
ACL 1IPC
FW
Database

Fig. 7. The number of TCAM entries accesses in the worst case for different schemes.

In Fig. 7, we show the number of TCAM accesses in the
worst case for different schemes. Similar to what is
observed in Snort rulesets, GI has the best speed perfor-
mance and MUD has the worst. For the ACL databases, GI
has the best overall performance because only few pseudo
rules are required. However, its speed performance could
not be achieved for FW databases due to the high storage
overhead. SSA can improve the feasibility by balancing
the storage and speed performance. The speed perfor-
mance of MUD is tied to the number of rule groups; thus,
MUD has good speed performance for the FW databases.
For the ACL and IPC databases, MUD needs twofold or
more TCAM accesses than SSA. SGPR can effectively
leverage the available TCAM entries to lower the number
of rule groups. SGPR requires at most five TCAM accesses
for the ACL and FW databases and less than ten accesses
for the IPC databases. For the ACL databases, SGPR
achieves similar speed performance as GI and outperforms
SSA. SGPR has worse speed performance than SSA for the
FW and IPC databases as the tradeoff for lower storage
requirements. As compared to MUD, SGPR drastically
improves its speed performance by selectively merging
rule groups.

Finally, we show the number of accessed TCAM per clas-
sification in the worst case for different schemes in Fig. 8.

Unlike the experimental results of Snort rulesets, the power
consumption for the ACL databases are dominated by
speed performance. Because there are fewer overlapping
rules in the ACL databases, GI and SGPR have the best per-
formance, and MUD accesses the most TCAM entries. The
performance of GI and SSA severely degrades for the FW
databases due to the overwhelming number of overlapping
rules. In addition, SSA cannot outperform GI even with a
slower speed performance. MUD and SGPR achieve better
power consumption than GI and SSA for the FW databases
because of significantly better storage performance. SGPR
outperforms MUD due to the smaller number of required
TCAM accesses. Similar results can also be observed for 5K-
rule and 10K-rule IPC databases.

In summary, SGPR provides superior storage perfor-
mance for all types of databases. It also achieves comparable
speed performance as GI and SSA for the databases with
few overlapping rules. For the databases with more over-
lapping rules, the scalability of SGPR is better than GI and
SSA because SGPR can adjust the number of pseudo rules
according to the number of available TCAM entries. Both
GI and SSA cannot support heavily overlapping rules
because of their huge memory footprints. As compared to
MUD, SGPR always has better speed performance by selec-
tively merging rule groups, especially for the rule databases

Authorized licensed use limited to: National Cheng Kung Univ.. Downloaded on June 22,2020 at 08:59:05 UTC from IEEE Xplore. Restrictions apply.

696 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL.4, NO.4, OCTOBER-DECEMBER 2018
10°-0 aI B MUD M M
. 0 SSA-2 SGPR _ | _
8 B SSA-4
= — 5
@ = B |
R L S S e = o R = = S & \E
2 - A
<
2] B
8 10 - N
K] <
i
10°

1K
FW

5K 10K REAL 1K SK

IPC 10K

Database

Fig. 8. The accessed TCAM entries per classification in the worst case for different schemes.

with few overlapping rules. We also conclude that SGPR
has the best power consumption among these schemes for
databases heavily embedded with overlapping rules.

6 CONCLUSIONS

The existing TCAM-based algorithms for multi-match packet
classification have significant tradeoff between speed and
space performance. They may result in high memory require-
ments or require multiple TCAM accesses to find out all the
matching rules. Both drawbacks not only affect the feasibility
and throughput but also increase the power consumption of
packet classification. In this paper, we present a scheme to
achieve efficient TCAM-based mulit-match packet classifica-
tion by selectively generating pseudo rules. Our scheme is
based on the observation that a fixed-size TCAM chip usually
has unused entries after storing the original rules. Since these
entries still consume considerable amount of energy, it would
be reasonable to use these entries to improve the speed per-
formance of packet classification. Accordingly, our algorithm
generates pseudo rules to merge rule groups. As a result, the
number of matching TCAM entries per classification can be
reduced to minimize the number of required TCAM accesses.
Moreover, because fewer number of unique discriminator
values are required, the number of chunks for the discrimina-
tor field with DIRPE can be reduced to avoid redundant
TCAM accesses. Our experimental results show that, as com-
pared to MUD, our scheme has similar memory requirements
but much better speed performance. Our scheme also needs
fewer TCAM entries than the existing intersection-based
schemes. In summary, our scheme has superior scalability
with respect to the number of overlapping rules for the per-
formance metrics of interests.

ACKNOWLEDGMENTS

The authors would like to thank Prof. An-Yeu (Andy) Wu,
Dr. Ding-Yuan Lee, and Dr. Ting-Sheng Chen at the Access
IC Design Laboratory in National Taiwan University for
their valuable information about TCAM power consump-
tion. This work was supported in part by the Ministry of Sci-
ence and Technology of Taiwan, R.O.C., under Grant MOST
105-2221-E-005-046 and 106-2221-E-005-015.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

E. Norige, A. X. Liu, E. Torng, E. Torng, E. Norige, and A. X. Liu,
“A ternary unification framework for optimizing TCAM-based
packet classification systems,” IEEE/ACM Trans. Netw., vol. 26,
no. 2, pp. 657-670, Apr. 2018.

D. E. Taylor, “Survey and taxonomy of packet classification
techniques,” ACM Comput. Survey, vol. 37, no. 3, pp. 238-275, 2005.
B. Agrawal and T. Sherwood, “Ternary CAM power and delay
model: Extensions and uses,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 16, no. 5, pp. 554-564, May 2008.

Y. Fang and R. H. Katz, “Efficient multi-match packet classifica-
tion with TCAM,” in Proc. Annu. IEEE Symp. High Perform. Inter-
connects, 2004, pp. 28-34.

K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary,
“Algorithms for advanced packet classification with ternary
CAMs,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 4,
pp- 193-204, 2005.

D.-Y. Chang and P.-C. Wang, “TCAM-based multi-match packet
classification using multidimensional rule layering,” IEEE/ACM
Trans. Netw., vol. 24, no. 2, pp. 1125-1138, Apr. 2016.

J. V. Lunteren and T. Engbersen, “Fast and scalable packet classi-
fication,” IEEE]. Sel. Areas Commun., vol. 21, no. 4, pp. 560-571,
May 2003.

F.Yu, T. V. Lakshman, M. A. Motoyama, and R. H. Katz, “SSA: A
power and memory efficient scheme to multi-match packet classi-
fication,” in Proc. ACM Symp. Archit. Netw. Commun. Syst., 2005,
pp- 105-113.

D. S. Johnson, “Approximation algorithms for combinatorial
problems,” J. Comput. Syst. Sci., vol. 9, no. 3, pp. 256278, 1974.

M. Faezipour and M. Nourani, “Wire-speed TCAM-based archi-
tectures for multimatch packet classification,” IEEE Trans. Com-
put., vol. 58, no. 1, pp. 5-17, Jan. 2009.

H. Song and J. W. Lockwood, “Efficient packet classification for
network intrusion detection using FPGA,” in Proc. ACM/SIGDA
13th Int. Symp. Field-Programmable Gate Arrays, 2005, pp. 238-245.
T. Lakshman and D. Stidialis, “High-speed policy-based packet
forwarding using efficient multi-dimensional range matching,” in
Proc. ACM SIGCOMM Conf. Appl. Technol. Archit. Protocols Com-
put. Commun., 1998, pp. 203-214.

W. Jiang and V. K. Prasanna, “Field-split parallel architecture
for high performance multi-match packet classification using
FPGAs,” in Proc. 21st Annu. Symp. Parallelism Algorithms Archit.,
2009, pp. 188-196.

R. Shen, X. Li, and H. Li, “A hybrid TCAM + SRAM scheme for
multi-match packet classification,” in Proc. 13th Int. Conf. Parallel
Distrib. Comput. Appl. Technol., Dec. 2012, pp. 685-690.

C. R. Meiners,]. Patel, E. Norige, E. Torng, and A. X. Liu, “Fast
regular expression matching using small TCAMs for network
intrusion detection and prevention systems,” in Proc. USENIX
Conf. Secur., 2010, pp. 8-8.

A. Bremler-Barr, D. Hay, and D. Hendler, “Layered interval codes
for TCAM-based classification,” in Proc. IEEE INFOCOM, 2009,
pp. 1305-1313.

Authorized licensed use limited to: National Cheng Kung Univ.. Downloaded on June 22,2020 at 08:59:05 UTC from IEEE Xplore. Restrictions apply.

LIN AND WANG: FAST TCAM-BASED MULTI-MATCH PACKET CLASSIFICATION USING DISCRIMINATORS

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

Y.-K. Chang, C.-I. Lee, and C.-C. Su, “Multi-field range encoding
for packet classification in TCAM,” in Proc. IEEE INFOCOM, 2011,
pp- 196-200.

A. Bremler-Barr and D. Hendler, “Space-efficient TCAM-based
classification using gray coding,” in Proc. IEEE INFOCOM, 2007,
pp. 1388-1396.

H. Che, Z. Wang, K. Zheng, and B. Liu, “DRES: Dynamic range
encoding scheme for TCAM coprocessors,” IEEE Trans. Comput.,
vol. 57, no. 7, pp. 902-915, Jul. 2008.

A. Kesselman, K. Kogan, S. Nemzer, and M. Segal, “Space and
speed tradeoffs in TCAM hierarchical packet classification,” in
Proc. IEEE Sarnoff Symp., 2008, pp. 1-6.

X. He, J. Peddersen, and S. Parameswaran, “LOP_RE: Range
encoding for low power packet classification,” in Proc. IEEE 34th
Conf. Local Comput. Netw., 2009, pp. 137-144.

O. Rottenstreich and I. Keslassy, “Worst-case TCAM rule
expansion,” in Proc. IEEE INFOCOM, 2010, pp. 456—460.

M. Roesch, “Snort - Lightweight intrusion detection for networks,”
in Proc. 13th USENIX Conf. Syst. Admin., 1999, pp. 229-238.

Z. Kai, H. Che, W. Zhijun, L. Bin, and Z. Xin, “DPPC-RE: TCAM-
based distributed parallel packet classification with range encoding,”
IEEE Trans. Comput., vol. 55, no. 8, pp. 947-961, Aug. 2006.

T. Banerjee-Mishra and S. Sahni, “DUOS - Simple dual TCAM
architecture for routing tables with incremental update,” in Proc.
IEEE Symp. Comput. Commun., 2010, pp. 503-508.

W. Lu and S. Sahni, “Low-power TCAMs for very large forward-
ing tables,” IEEE/ACM Trans. Netw., vol. 18, no. 3, pp. 948-959,
Jun. 2010.

T. Banerjee-Mishra, S. Sahni, and G. Seetharaman, “PC-DUOS:
Fast TCAM lookup and update for packet classifiers,” in Proc.
IEEE Symp. Comput. Commun., 2011, pp. 265-270.

T. Banerjee-Mishra and S. Sahni, “PETCAM—A power efficient
TCAM architecture for forwarding tables,” IEEE Trans. Comput.,
vol. 61, no. 1, pp. 3-17, Jan. 2012.

T. Banerjee-Mishra, S. Sahni, and G. Seetharaman, “PC-TRIO: An
indexed TCAM architecture for packet classifiers,” in Proc. IEEE
Symp. Comput. Commun., 2012, pp. 325-330.

E. Spitznagel, D. Taylor, and]. Turner, “Packet classification using
extended TCAMs,” in Proc. 11th IEEE Int. Conf. Netw. Protocols,
Nov. 2003, pp. 120-131.

Y. Ma and S. Banerjee, “A smart pre-classifier to reduce power
consumption of TCAMs for multi-dimensional packet classi-
fication,” SIGCOMM Comput. Commun. Rev., vol. 42, no. 4,
pp- 335-346, Aug. 2012.

C. R. Meiners, A. X. Liu, and E. Torng, “Bit weaving: A non-prefix
approach to compressing packet classifiers in TCAMs,” in Proc.
IEEE Int. Conf. Netw. Protocols, 2009, pp. 93-102.

R. Wei, X. Yang, and H. J. Chao, “Block permutations in boolean
space to minimize TCAM for packet classification,” in Proc. IEEE
INFOCOM, 2012, pp. 2561-2565.

R. Cohen and D. Raz, “Simple efficient TCAM based range classi-
fication,” in Proc. IEEE INFOCOM, 2010, pp. 1-5.

C. R. Meiners, A. X. Liu, E. Torng, and J. Patel, “Split: Optimizing
space, power, and throughput for TCAM-based classification,” in
Proc. ACM/IEEE 7th Symp. Archit. Netw. Commun. Syst., 2011,
pp- 200-210.

A. Liu, C. Meiners, and E. Torng, “TCAM Razor: A systematic
approach towards minimizing packet classifiers in TCAMSs,”
IEEE/ACM Trans. Netw., vol. 18, no. 2, pp. 490-500, Apr. 2010.

D. Shah and P. Gupta, “Fast updating algorithms for TCAMs,”
IEEE Micro, vol. 21, no. 1, pp. 36—47, Jan. 2001.

Z. Wang, H. Che, M. Kumar, and S. K. Das, “CoPTUA: Consistent
policy table update algorithm for TCAM without locking,” IEEE
Trans. Comput., vol. 53, no. 12, pp. 1602-1614, Dec. 2004.

H. Song and J. S. Turner, “Fast filter updates for packet classifica-
tion using TCAM,” in Proc. IEEE Global Commun. Conf., 2006,
pp- 1-6.

H. Liu, “Efficient mapping of range classifier into ternary-CAM,”
in Proc. 10th Symp. High Perform. Interconnects, 2002, pp. 95-100.
Y.-K. Chang, C.-C. Su, Y.-C. Lin, and S.-Y. Hsieh, “Efficient gray-
code-based range encoding schemes for packet classification in
TCAM,” IEEEJACM Trans. Netw., vol. 21, no. 4, pp. 1201-1214,
Aug. 2013.

A. X. Liu, C. R. Meiners, and Y. Zhou, “All-match based complete
redundancy removal for packet classifiers in TCAMs,” in Proc.
IEEE INFOCOM, 2008, pp. 111-115.

[43]

[44]

[45]

697

K. Nii, T. Amano, N. Watanabe, M. Yamawaki, K. Yoshinaga,
M. Wada, and I. Hayashi, “A 28nm 400MHz 4-parallel
1.6Gsearch/s 80Mb ternary CAM,” in Proc. IEEE Int. Solid-State
Circuits Conf. Dig. Tech. Papers, Feb. 2014, pp. 240-241.

H. Song and J. S. Turner, “Toward advocacy-free evaluation of
packet classification algorithms,” IEEE Trans. Comput., vol. 60,
no. 5, pp. 723-733, May 2011.

D. E. Taylor and J. S. Turner, “ClassBench: A packet classification
benchmark,” in Proc. IEEE INFOCOM, Mar. 2005, pp. 2068-2079.

Hsin-Tsung Lin received the MS degree in com-
puter science and engineering from National Chung
Hsing University, in 2012. He is currently working
toward the PhD degree at the same university. His
research interests include packet classification
algorithms and software-defined networking.

Pi-Chung Wang received the MS and PhD
degrees in computer science and information
engineering from National Chiao Tung University,
Taiwan, in 1997 and 2001, respectively. From
2002 to 2006, he was with Telecommunication
Laboratories, Chunghwa Telecom. He joined the
Deparement of Computer Science and Engineer-
ing (CSE), National Chung Hsing University
(NCHU), Taiwan, in 2006. Since 2014, he has
been a professor of CSE, NCHU. His research
interests include IP lookup and classification

algorithms, scheduling algorithms, protocols in local area networks, and
wireless sensor networks. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: National Cheng Kung Univ.. Downloaded on June 22,2020 at 08:59:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

