

Abstract – As more and more network security threats are
emerging today, the network-based intrusion detection system
(NIDS) is one of the most important systems to protect the
network from attacks and intrusions without modifying end-user
software. Searching through entire packet headers and payloads,
NIDSs can identify and classify the packets that contain malicious
patterns. The most essential technology to the NIDS is an efficient
multiple-pattern matching algorithm, which performs exact
string matching between packets and a large set of patterns. This
paper proposes a novel hierarchical multiple-pattern matching
algorithm (HMA) for intrusion detection, which is a two-tier and
cluster-wise matching algorithm. HMA drastically reduces the
amount of external memory access as well as required memory
space, enabling an efficient and cost-effective real-time IDS. The
simulations show that HMA significantly improves the matching
performance in both the average and the worst cases (about
1.7~63 times better than the state-of-the-art algorithms).
Keywords — Network Security, Intrusion Detection, Content
Inspection, Matching Algorithm.

I. INTRODUCTION

With each passing day, there are more critical threats to the
data and systems on the network emerging. Different from
firewalls which only checks specified fields of the packet
headers, intrusion detection systems (IDSs) are proposed to
detect the malicious information in the payloads. The
network-based IDSs (NIDSs) can protect the network systems
from attacks and intrusions without modifying end-user
software. The NIDS must be capable of real-time packet
analyzing and fast enough to keep up with the ever-increasing
data volume over the network; otherwise the protectorate will
not be defended strictly. An IDS typically contains a pattern
database applied to finding harmful packets over the network.
In the database, each rule compromises several patterns (also
called signatures) and a matching action (or a series of actions).
These patterns describe the fingerprints of user behavior. The
number of patterns is generally a few thousands and the
lengths of the patterns are varied. The patterns may appear
anywhere in any packet payload. Therefore, the NIDS requires
a pattern detection engine capable of in-depth packet
inspection, which searches the entire packet headers and
payloads for pattern matching. For example, Snort is an
open-source NIDS, which is used for eavesdropping the
packets on a network link, detecting anomalous intruder
behavior with a set of patterns, and generating logs and alerts
by the predefined actions [1]. One of the patterns of Nimda
worm is described as “GET /scripts/root.exe?/c+dir” [2], [3].
When the detection engine of Snort finds this pattern existing
in a packet, the corresponding alert will be generated to warn
network administrators. It has been pointed out that the pattern
matching is the most resource intensive tasks in the Snort

detection engine [4], [5]. Thus in this paper, we focus our
efforts on the nascent issues of payload inspection for
multiple-pattern matching.

Without exception, the most essential technology of a
detection engine is a powerful multiple-pattern matching
algorithm, which can efficiently execute exact pattern
matching to keep up with the growing data volume in the
network. However, the state-of-the-art matching algorithms are
impracticable for packet inspection in realistic
implementations, though on computation complexity the
Boyer-Moore-based algorithms provided the best average-case
performance [6], [7]; while the Aho-Corasick-based algorithms
had the best worst-case performance [9], [10], [14]. This is
because the performance of processing packets is not only
affected by the required computation time, but also strongly
affected by the number of required memory reference.
Nevertheless, the previous proposed algorithms only addressed
on reducing the computation time. For example, the latency of
one external memory access is about 150~250 times more than
one instruction cycle in the Intel IXP2x00 network processor
systems [17]. Therefore, the critical issue of designing a
high-speed detection engine is to reduce the number of
external memory access.

This paper proposes a novel hierarchical multiple-pattern
matching algorithm (HMA) for real-time packet inspection,
which searches the packet payload for a set of patterns
simultaneously. HMA is a two-tier and cluster-wise matching
algorithm that drastically reduces the number of required
external memory access and pattern comparisons. The memory
requirement for HMA is very small (less than 350 KB for the
current Snort pattern set). The average number of external
memory access of HMA is about only 0.35 per input character,
which efficaciously improves the performance of the detection
engine. The simulation results show that the performance of
HMA is better than that of the state-of the-art algorithms [7],
[12], [14]. HMA provides better best-case and average-case
performance as well as controllable worst-case performance.
Consequently, the proposed HMA is a very cost-effective and
efficient mechanism that can be employed into the real-time
NIDSs.

II. THE HIERARCHICAL MULTIPLE-PATTERN MATCHING
ALGORITHM

To improve the performance as well as reduce the size and
cost of the network equipment, there is a tendency towards
hardware implementations [5], [15], and generally they have
both the embedded memory and the external memory elements.
For example, the Vitesse IQ2000 network processor [16] has 4

 A Novel Hierarchical Matching Algorithm for Intrusion Detection Systems

+Institute of Communication Engineering, National Tsing-Hua University, Taiwan
*Department of Computer Science, National Tsing-Hua Universuty, Taiwan

{sunnie@ieee.org, nfhuang@cs.nthu.edu.tw }

Tzu-Fang Sheu+, Nen-Fu Huang*,+ and Hsiao-Ping Lee*

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 1691 0-7803-9415-1/05/$20.00 © 2005 IEEE

 FCS Algorithm;

 Input: A set of patterns P.

 Output: A set of frequent-common codes F.
1 Initialize: F ← ∅ ;
2 For each pattern pi from P, 0 ≤ i<|P| do
3 __Transfer the pattern pi into a vector M by setting mj = 1 if j∈pi;

otherwise mj = 0, for all j, 0 ≤ j<| Λ |;
4 __Read M. For each mj = 1, set the elements of matrix R: rjk = rjk + mk, for

all k, 0 ≤ k<| Λ |;
5 While rii ≠ 0, 0 ≤ i<| Λ | do
6 __Find a frequent common-code f, where rff = max{rii | ∀ i, 0 ≤ i<| Λ |};
7 __Add this code into F : F = F ∪ {f};
8 __For 0 ≤ i<| Λ | do
9 ____rii = rii – rfi, if rii >rfi; otherwise, rii = 0;
10 Return;

Fig. 1. The FCS algorithm.

KB data cache, 2 KB for local storage and 2 KB for reserved
header buffers. As the size of the pattern database and the
lookup table for the state-of-the-art matching algorithms
[6]-[14] are usually larger than 300 KB, which is still growing,
the patterns of the IDS must be stored in the external memory.
However, frequently accessing the external memory to read
patterns or tables will extremely reduce the matching
efficiency, as the latency of the external memory access is very
long and indeterminist. Therefore, decreasing the amount of
computational time is not the only way to improve the
throughput of detection engines. The most important is
reducing the required number of external memory access.

As a hierarchical and cluster-wise matching algorithm, the
proposed HMA effectively reduces the number of external
memory access and string comparisons, without sacrificing the
memory space. HMA comprises two stages: the off-line stage
and the on-line matching stage. The off-line stage constructs
two small tables (H1 and H2) for hierarchical multiple-pattern
searching, where a frequent common-code searching algorithm
(FCS) and a clustering procedure are proposed for the table
construction. H1 and H2 act as two filters to avoid unnecessary
external memory access and pattern comparisons respectively,
and thereby pass the innocuous packets quickly in the on-line
matching stage. The second-tier matching activates after the
first-tier is matched, where H2 indicates a small subset of
patterns that are similar to the input packet. HMA compares
only a few selected patterns in P with the suspected substrings
of the packet, instead of comparing all patterns with all
substrings of the packet. Thus, HMA significantly improves
the matching performance.

Let P = {pi} be a set of distinct patterns, where pi is a pattern
with an identification number (ID) i, and |P| means the number
of patterns in P. We consider the payload of an input packet T
and the pattern pi∈P are both strings drawn over Λ , with
finite-length |T| and |pi| respectively. A multiple-pattern
matching algorithm is used to search the input T for all
occurrences of any pattern pi ∈ P where |P|>>1, or to
corroborate that no pattern of P is in T. The matched patterns
will be added into the set PM. We note that all matched
patterns will be found and PM can be used for high-level

decisions, such as the first-matched-win or the
high-priority-win.

A. The Off-line Stage

Since the patterns may appear anywhere in the packet
payload, and the packet payload T and the pattern pi are both
strings drawn over Λ , it is hard to recognize the patterns
within the payload. We assume that if there is a smaller code
set (< Λ), denoted F, to represent the patterns, and F can help
to distinguish the suspected substrings of T from the innocent
parts, then the pattern matching will go faster. The FCS
algorithm is proposed to find F={fi | fi ∈ Λ }, called the
frequent common-code set, where fi is a frequent common-code.
In the FCS, we gather the occurrence frequency of each
character in P, and select the most frequent character into F
until for each pi there is at least one character of pi belongs to F.
The FCS algorithm is presented in Fig. 1.

Thereafter F is used to construct a small hash table, called
the first-tier hash table (H1). To achieve fast hashing, a direct
hash table of | Λ | entries is used for H1. The ath entry of H1 is
denoted H1(a), where each entry has two fields: the frequent
common-code ID, say H1(a).fid; and the single-symbol pattern
ID, H1(a).pid. The notation e.f means the value of the field (or
offset) f at the entry (or address) e. The unused fields of H1 are
set as null. Since H1 is a small hash table (256 entries in the
case of one byte coding for example), it can be stored in the
data cache of microengines. Hereafter H1 acts as a filter in the
on-line matching to quickly find out whether the packet is a
suspect that contains a pattern. Namely, HMA makes use of H1
to narrow the searching field and to focus on the most
suspected packets.

It has been pointed out that in the general situations, most
packets (more than 98%) are innocent. Thus it is time
consuming to compare all of the patterns in the large P with
each input packet. We consider that if the patterns in P can be
distributed into different small clusters based on their
similarity, and only the patterns in the clusters that are similar
to the current packet T have to be compared with the current
one, then the matching process will perform more efficiently.

Let Pa,b represent a cluster of selected patterns that have the
same two-character substring ‘ab’, called the clustering pivot,
namely Pa,b = {pi | ‘ab’∈pi, pi∈P}, where the clustering pivots
are the similarity of the patterns in the same cluster. An
|F| × | Λ | matrix N = (na,b) is used to record the current size of
the cluster Pa,b during the pattern clustering procedure. We
distribute the patterns based on the clustering pivot in each
pattern pi, say ‘ab’, where a∈F, b∈ Λ and ‘ab’∈pi. In the
pattern clustering procedure: (1) Fetch a pattern pi from P one
at a time. (2a) Scan the pattern. If we can find the clustering
pivot of pi, say ‘ab’, that a∈F, b∈ Λ , and the current size of
the cluster Pa,b is zero (na,b = 0), then the pattern pi is grouped
to the cluster Pa,b. (2b) If there is no such a clustering pivot
‘ab’ in pi with na,b = 0, then we select the substring of pi, say
‘cd’, such that c∈F and nc,d is the smallest among all possible

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 1692 0-7803-9415-1/05/$20.00 © 2005 IEEE

Fig. 2 The architecture of hierarchical hash tables.

clustering pivots of pi. Then the pattern is grouped to the
cluster Pc,d, which is the smallest cluster that pi can choose. (3)
After grouping pi into a certain cluster, the size of the
corresponding cluster is also incremented. Sequentially all
patterns are distributed into the designate clusters. We note
that a pattern will be assigned to only one cluster.

The H2 table is constructed based on the cluster assignments.
H2 contains the pattern contents and formatted information of
patterns for fast on-line matching. Consider H2(a, b) is a
function indicating an entry of H2, which stores the head
pattern of the cluster Pa,b . Define H2(a, b) = H1(a).fid× | Λ | +b.
For fast lookup, the patterns in the same cluster Pa,b will hash
to the same head entry H2(a, b), and be connected by the
linked-list structure to optimize the memory utilization. Each
entry H2(a, b) consists of five fields: the pattern size H2(a,
b).size, the pattern content H2(a, b).data, the position of the
frequent common-code in the pattern H2(a, b).offset, the
pattern ID H2(a, b).pid of the saved pattern, and a pointer H2(a,
b).next that points to the next entry containing the pattern that
also belongs to the same cluster Pa,b or the fragmented content
of the current pattern. Transferring the information of patterns
into a predefined format can speed up the matching procedure.

Fig. 2 illustrates the logical architecture of the hash tables of
HMA, where assuming the alphabets are 26 English letters.
Since the H1 table is only | Λ | (= 26) entries, it can be stored in
the cache memory. Considering we have six patterns and
according to FCS, we obtain F={a, e}. Since the first pattern
‘a’ is a single-pattern, its pid (= 1) is stored in the entry of H1
table. As the pattern ‘red’ has ‘e’∈F and the clustering pivots
‘ed’ with ne,d = 0, it is grouped to the cluster Pe,d. Then ne,d is
incremented. The remainders of the patterns follow the same
clustering strategy.

B. The On-line Hierarchical and Cluster-wise Matching

Since the pattern set P may contain single-symbol patterns
(|pi| = 1), each character of T must be checked without any
jump over T. As a hierarchical matching, the on-line matching
procedure of HMA is divided into two tiers: the first-tier

 Procedure OnlineMatching(T, H1, H2)
 Input: Packet payload T, two preprocessed indexing tables: H1 and H2
 Output: The matched pattern set of T: PM, and its corresponding pid PIDM
1 Load the input payload into buffer T;
2 Initialize: PM← ∅ ;
3 For each T[t] do

4 __If (k←H1[T[t]].pid) ≠ NULL then PM←PM ∪ {pk} and
PIDM←PIDM ∪ {k}; /* First-tier matching*/

5 __If (k←H1[T[t]].fid) ≠ NULL && t < |T| then

6 ____Load data from the external RAM at entry H2(T[t], T[t+1]) to a local
buffer LB;

7 ____While (k← LB.pid) ≠ NULL do
/* Second-tier matching*/

8 ______Compare the substring start at T[(t-LB.offset)] with the pattern
LB.data of length LB.size; /* Assume no fragmentation here*/

9 ______If the comparison is matched then PM←PM ∪ {pk} and
PIDM←PIDM ∪ {k};

10 ______If LB.next ≠ NULL then

11 ________Load data from the external RAM at entry LB.next to the local
buffer LB;

12 ______Else
13 ________Break;
14 Return;

Fig. 3. The on-line matching algorithm.

matching and the second-tier matching. The on-line matching
algorithm is shown in Fig. 3.

The given T is scanned from left to right, and each character
T[t] is directly used as the hash key to fetch the entry H1(T[t]).
In the first-tier matching, (1) if H1(T[t]).pid is not null, we
know that T[t] is a single-symbol pattern, and this matched
pattern will be added into PM. Whether H1(T[t]).pid is null or
not, then matching procedure checks the fid field. (2a) If
H1(T[t]).fid is null (T[t]∉F, T[t]) will be skipped without any
pattern comparison, and thereby fetching the pattern from
external memory is unnecessary. Then the next character of
payload string T[t+1] is processed to check the H1(T[t+1]).pid
as previous steps, and the matching procedure stays in the
first-tier matching. Since the size of F is much smaller than
that of Λ , most characters of T will gain the skips and avoid
the second-tier matching. Consequently, both the number of
character comparisons and costly memory access can be
drastically reduced. (2b) Otherwise, as H1(T[t]).fid is not null,
T may have a pattern that belongs to the cluster PT[t],T[t+1]. In
this case, the matching procedure activates the second-tier
matching to identify the pattern.

After the first-tier matching, as long as H1(T[t]).fid is not
null, the matching procedure proceeds to the second-tier
matching. According to the input T, the hash function H2(T[t],
T[t+1]) indicates the location of the corresponding cluster
PT[t],T[t+1]. As a cluster-wise matching, only the patterns in the
small set PT[t],T[t+1], which are most similar to T, will be loaded
to the microengine for further checks. In the second-tier
matching, (1) first the pid field of H2 is checked. (2a) If the
H2(T[t], T[t+1]).pid is null, it means there is no pattern in the
cluster PT[t],T[t+1] and no pattern comparison is necessary.
Afterward the next character T[t+1] will be processed and the
on-line matching procedure returns to the first-tier matching.
(2b) Otherwise, if the H2(T[t], T[t+1]).pid is valid, it means
there are patterns in PT[t],T[t+1] similar to T. Then HMA will

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 1693 0-7803-9415-1/05/$20.00 © 2005 IEEE

compare the pattern content in H2(T[t], T[t+1]) with the
corresponding substring of T, starting at T[t-H2(T[t],
T[t+1]).offset] of length H2(T[t], T[t+1]).size. (3) If the next
field of the last pattern fragment is valid and pointing to the
next entry, say H2(a, b), similarly the pattern in H2(a, b).data
will be compared with the substring of T starting at T[t-H2(a,
b).offset]. The process continues until all patterns in the cluster
PT[t],T[t+1] are compared. All matched pattern will be added to
the matched pattern set PM.

Note that if a pattern pi exists in T, then all characters of pi
will appear in T. Definitely, the clustering pivot of pattern pi,
say pi[k] and pi[k+1], will be scanned, say at T[t] and T[t+1],
where T[t] = pi[k]∈F. When T compares with the patterns in
the cluster PT[t],T[t+1] during the matching procedure, pi will be
recognized. Consequently, no patterns in the payload T will be
missed.

For example, assume the H1 and H2 tables have been
constructed as Fig. 2. When the input T is ‘pink’, since all
characters of T do not belong to F, by only checking T with the
embedded table H1 HMA can know that T contains no pattern.
If T = ‘black’, scanning from left to right, HMA will stay in the
first-tier matching until it matches ‘a’, where ‘a’∈F (H1(a).fid
is valid) and it is a single-symbol pattern (H1(a).pid = 1). Then
the second-tier matching activates, and ‘ac’ will be the hash
keys (clustering pivot). HMA will load the entry from H2(a,c)
to check H2(a,c).pid. As H2(a,c).pid (= 6) is not null, HMA
compares the input T with the pattern(s) in Pa,c (where
H2(a,c).data = ‘black’) and get a match. Afterwards, the
first-tier matching will continue. Due to ‘c’ and ‘k’∉F, the
on-line matching of this input T is finished and no second-tier
matching is necessary. For the input ‘black’, only one pattern
is loaded from DRAM for exact string comparisons. The
matching results of T are PM={a, black}.

III. RESULTS AND DISCUSSIONS

This section will show the simulation results of HMA,
compared with the Boyer-Moore-Horspool algorithm (BMH)
which is deployed in a famous NIDS – Snort [7], the
Boyer-Moore-Horspool algorithm with a grouped prefix table
(BM-PH) which is employed in a network-processor-based
NIDS [12], and the Aho-Corasick algorithm with memory
compression (AC-C) [14]. We emulate the assembly-like
microprograms for HMA, BMH, BM-PH and AC-C
respectively by the RISC instructions of general network
processors, and calculate the number of instructions and
memory access needed to process a packet. We assume one
microprocessor is used in the simulations to simplify the
evaluation though there are several microengines in the
network processor systems.

In the simulations, with detachment we use the free and real
pattern set released by Snort in Aug. 2004 [1], although the
pattern set can be self-defined or any commercial pattern set.
Since the patterns of Snort are written in mixed plain text and
hex formatted bytecodes, we assume that the alphabet size

TABLE 1. THE MEMORY REQUIREMENTS.
 HMA BM-PH BMH AC-C

Cache memory O(| Λ |) O(1) O(| Λ |) O(1)
External memory* O(|F| × | Λ |+|P|) O(| Λ |3+|P|) O(|P| × | Λ |+|P|) O(S+|P|)

*|F| < | Λ | << |P| < S

(| Λ |) is 256 in the simulations.

Define NI as the average number of RISC instructions; NL as
the average number of local memory access for each input
character required in the pattern matching. NE represents the
average number of external memory access per input character.
Respectively wI represents the time required by one instruction
or one local memory/register access, and wE is the time for one
external memory access. Thereby, we have the measurements:
the average computation cycles Iψ = NI × wI; the average
memory latency Mψ = NE × wE + NL× wI; and the total average
matching cost Ψ = Iψ + Mψ . In the simulations, note that we
assume the skip table of BMH is small enough to be loaded
into the cache memory, and thus only one external memory
access is counted during the matching process of BMH for
each pattern; one external memory access is assumed for AC-C
although it generally requires two memory references for
fetching the transition matrixes and the matched patterns. In
the simulations, the payload length is 640 bytes, |P| = 1200, wI
= 1, and wE = 100.

The memory requirements of HMA, BM-PH, BMH and
AC-C are summarized in TABLE 1, including the requirements
of lookup tables (nodes) and pattern contents (where S is the
number of states). In the simulations, with |P|=1200, the
external memory size of HMA is 20192 entries (326.75 KB
with each entry of 16 bytes, including pattern contents and
formatted information), where |F|=77; BM-PH needs more
than 16M entries (16 MB for the skip table, excluding |P|
entries for pattern contents); BMH needs more than 300K
entries (300 KB for skip table, excluding |P| entries for pattern
contents); and AC-C requires 10213 states (439 KB with each
node of 44 bytes, excluding |P| entries for pattern IDs).
Consequently, the required memory space of HMA is very
small.

In the simulations, the malicious packets are generated by
randomly choosing patterns from the pattern set P and
spreading over the packet payloads. An attack load λ is
defined to represent the expected number of malicious patterns
existing in one packet. Except for the patterns in the payload,
other characters of the payload are randomly drawn from Λ .
Fig. 4 shows the comparisons of Ψ , Mψ and NE for HMA,
BM-PH, BMH and AC-C with different λ . Since different
systems introduce different implementation overheads, we
extract NE from overall matching cost to examine the
performance of algorithm itself. This figure demonstrates that
HMA effectively reduces the number of required external
memory access (only around 0.35 for each input character).
We can find that the memory latency predominates the
matching cost of every approach. This result reflects our

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 1694 0-7803-9415-1/05/$20.00 © 2005 IEEE

Fig. 4. The total processing time (Ψ), the memory latency (Mψ), and the
average number of external memory access (NE) for each input character, with
λ = 4 and λ = 0 respectively.

Fig. 5. The costs of the matching algorithms in the worst-case, the best-case
and the average situations.

opinion mentioned previously that the essential issue to design
a high-speed detection engine is to reduce the number of
required external memory access. As HMA significantly
reduces Mψ without sacrificing Iψ , HMA outperforms
BM-PH, BMH and AC-C. When λ =0, the performance of
HMA is 1.7, 63.5, and 7 times better than that of BM-PH,
BMH and AC-C respectively. Consequently, HMA is very
appropriate for network environment because generally most
packets are innocent. The faster to process the innocent
packets, the more time the detection engine will gain to
process the malicious packets.

Since different multiple-pattern matching algorithms have
different string forms that cause their extreme (best-case or
worst-case) performance, we examine the performance with all
permutations of four-character input strings (232 strings). We
choose the length of four characters because 24.5% of all
patterns are less than or equal to four characters, and the test
pool of 4G input strings is large enough for simulations. We
use this model to approach extreme and average evaluations in
the practical network. Fig. 5 plots the best-case, the worst-case
and the average performance for each approach. The matching
costs shown in this figure exclude the cost for loading the input
packets from external memory into the processor, as in this
case, we are interested in the pure costs of the matching
algorithms required for each input character. Fig. 5 shows that
in the best case, HMA requires only seven instruction cycles to
process an input character, which successfully reduces the
processing delay of innocent packets. In the worst case, HMA
offers the same performance as AC-C. As improving the
worst-case performance, HMA can provide stronger defense
against the attacks under the same hardware expenses.
Therefore, HMA significantly improve the performance of the
pattern matching.

IV. CONCLUSIONS

A novel hierarchical multiple-pattern matching algorithm
(HMA) has been proposed in this paper for the real-time IDSs.
HMA uses the proposed FCS to narrow the searching scope,
and thereby speeds up the pattern matching processes.
Furthermore, as a hierarchical and cluster-wise matching
mechanism, HMA not only drastically reduces the required
number of memory access as well as string comparisons, but
also reduces the requirements on memory space. Simulation
results show that HMA outperforms the state-of-the-art pattern
matching algorithms. Therefore, HMA enables efficient,
practical and cost-effective IDSs.

ACKNOWLEDGMENT
This work was supported by the MediaTek Fellowship and the MOE

Program for Promoting Academic Excellent of Universities (II) under the grant
number NSC-94-2752-E-007-002-PAE.

REFERENCES
[1] Snort, http://www.snort.org.
[2] Brian Caswell, Jay Beale, James C. Foster, and Jeremy Faircloth, “Snort

2.0 Intrusion Detection,” Syngress, Feb, 2003.
[3] CERT/CC. The Nimda worm has the potential to affect both user

workstations (clients) running Windows 95, 98, ME, NT, or 2000 and
servers running Windows NT and 2000. CERT Advisory CA-2001-26, Sep.
2001.

[4] Martin Roesch, “Snort – Lightweight Intrusion Detection for Networks,”
Proceedings of the 13th Systems Administration Conference, 1999.

[5] Tomoaki Sato and Masa-aki Fukase, “Reconfigurable Hardware
Implementation of Host-based IDS,” the 9th Asia-Pacific Conference on
Communication, Vol. 2, pp. 849-853, Penang, Malaysia, Sept. 2003.

[6] R.S. Boyer and J.S. Moor, “A Fast String Searching Algorithm,”
Communications of the ACM, Vol. 20, No. 10, pp. 762-772, October 1977.

[7] R. Nigel Horspool, “Practical Fast Searching in Strings,” Sofetware
Practice and Experience, Col. 10, No. 6, pp. 501-506, 1980.

[8] R.A. Baeza-Yates, “Improved String Search,” Software – Proctice and
Experience, Vol. 19, No. 3, pp. 257-271, Martch 1989.

[9] A.V. Aho and M.J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Communications of the ACM, Vol. 18, Np. 6, pp.
330-340, June 1975.

[10] Graham A. Stephen, “String Matching Algorithms,” World Scientific
(ISBN 981-02-1829-X), 1994.

[11] Sun Wu and Udi Manber, “A Fast Algorithm for Multi-Pattern
Searching," Tech. Rep. TR94-17, Department of Computer Science,
University of Arizona, May 1994.

[12] Rong-Tai Liu, Nen-Fu Huang, Chih-Hao Chen and Chia-Nan Kao, “A
Fast String Matching Algorithm for Network Processor-Based Intrusion
Detection System,” ACM Transactions in Embedded Computing
Systems,Vol.3, Issue 3., Aug. 2004.

[13] E. Markatos, S. Antonatos, M. Polychronakis and K. Anagnostakis,
“Exclusion-based Signature Matching for Intrusion Detection,”
Proceedings of IASTED International Conference on Communications and
Computer Networks (CCN 2002), October 2002.

[14] Nathan Tuck, Timothy Sherwood, Brad Calder, George Varghese,
“Deterministic Memory –Efficient String Matching Algorithms for
Intrusion Detection,” Proceedings of the IEEE Infocom Conference, Hong
Kong, March 2004.

[15] Gordon Brebner and Delon Levi, “Networking on Chip with Platform
FPGAs,“ Proceedings of 2003 IEEE International Conference on
Field-Programmable Technology, pp. 13-20, Dec. 2003.

[16] Vitesse Network Processors, http://www.vitesse.com.
[17] Sridhar Lakshmanamurthy, Kin-Yip Liu, Yim Pun, Larry Huston, and

Uday Naik, “ Network Processor Perfromance Analysis Methodology,”
Intel Technology Journal, Vol. 6, Aug. 2002.

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 1695 0-7803-9415-1/05/$20.00 © 2005 IEEE

