
Computer Networks xxx (2012) xxx–xxx
Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
A high-throughput and high-capacity IPv6 routing lookup system

Yi-Mao Hsiao ⇑, Yuan-Sun Chu, Jeng-Farn Lee, Jinn-Shyan Wang
Department of Electrical Engineering, The Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University,
Chia-Yi, Taiwan

a r t i c l e i n f o a b s t r a c t
Article history:
Received 23 May 2012
Received in revised form 17 September
2012
Accepted 2 November 2012
Available online xxxx

Keywords:
IPv6
Routing lookup
ASIC
1389-1286/$ - see front matter Published by Elsevie
http://dx.doi.org/10.1016/j.comnet.2012.11.001

⇑ Corresponding author. Tel.: +886 5 2720411x
2720862.

E-mail address: 93mowmow@vlsi.ee.ccu.edu.tw

Please cite this article in press as: Y.-M. Hsia
(2012), http://dx.doi.org/10.1016/j.comnet.201
With the growing number of routing entries, IP routing lookup has become the major per-
formance bottleneck in backbone routers. In this paper, a complete hardware-based rout-
ing lookup system is proposed to achieve high-throughput and high-capacity for IPv6. The
proposed system is a cache-centric, hash-based architecture that contains a routing lookup
application specific integrated circuit (ASIC) and a memory set. A hash function is used to
reduce lookup time for the routing table and ternary content addressable memory (TCAM)
effectively resolves the collision problem. The gate count of the ASIC, excluding the binary
content addressable memory (BCAM), is about 5306 gates, using an in-house 0.18 lm
CMOS single-poly six-metal standard cell library. The results of post-layout simulations
show that the ASIC operates in 3.6 ns so that the routing lookup system approaches 260
Mega lookups per second (Mlps), which is sufficient for 100 Gbps networks. The memory
density is good, with each routing entry requiring only 64 bits. Moreover, the routing table
only needs 10.24 KB on-chip BCAM, 20.04 KB off-chip TCAM and 29.29 MB DRAM for 3.6 M
routing entries in the proposed system.

Published by Elsevier B.V.
1. Introduction

With the rapid growth in the number of Internet users
and services, the increasing volume of network traffic is a
major challenge for backbone routers. A 32-bit address
length Internet protocol (IP) has been the standard for
classless inter-domain routing (CIDR) technology [1],
where each routing entry uses a hprefix,prefix lengthi pair
to increase the effective size of the IP address space. How-
ever, CIDR suffers from the longest prefix match (LPM)
problem [2] and the available IP addresses will soon be ex-
hausted. The IPv6 protocol with a 128-bit address length
could provide a long-term solution to the problem of insuf-
ficient IP addresses, but the switch to longer addresses will
make the design of routing tables more complex. Further-
more, the amount of Internet traffic is expected to double
every few months. By analyzing the trend in network
r B.V.

23280; fax: +886 5

(Y.-M. Hsiao).

o et al., A high-throughpu
2.11.001
backbone routers, we found that as the link rate increased
from 10 Gbps to 100 Gbps [3] and number of routing en-
tries grew from 20 K to 400 K [4]. Internet routing table
sizes are expected to exponentially double every 2 years
and are expected to reach one million routes in the near fu-
ture [5,6]. Thus, the routing lookup function has become the
major performance bottleneck in backbone routers [7–11].

A number of algorithms have been proposed to resolve
the routing lookup problem. One approach [12] creates a
routing lookup table with a trie, which is a simple and suit-
able structure for the IP addresses. Specifically, a trie is an
ordered tree data structure that is used to store an associa-
tive array in which the keys are usually strings. Most trie-
based approaches can achieve high average search
throughput for IPv4 [12–15], but their update speed is
slow. For IPv6, Li et al. proposed a modified tree data struc-
ture and algorithms to resolve the routing lookup problem
[16–19]. However, the time complexity for searching is O
(logN), which is still too long for IPv6 core networks.

A different approach has been to use a hash scheme. The
time complexity for searching under a hash scheme is only
t and high-capacity IPv6 routing lookup system, Comput. Netw.

http://dx.doi.org/10.1016/j.comnet.2012.11.001
mailto:93mowmow@vlsi.ee.ccu.edu.tw
http://dx.doi.org/10.1016/j.comnet.2012.11.001
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet
http://dx.doi.org/10.1016/j.comnet.2012.11.001

001 Global routing prefix Subnet ID Interface ID

Network ID(1-64)

3 45 bits 16 bits 64 bits

Fig. 1. IPv6 global unicast address format.

2 Y.-M. Hsiao et al. / Computer Networks xxx (2012) xxx–xxx
O(1). In a hash scheme, a prefix entry with the next hop
information generates a key using a hash function. The
key is then used to access the routing table directly for
the IP routing lookup [20–23]. The drawback of the hash
scheme is that there is a risk of collisions when different
keys have the same hash value. Gupta et al. [24] proposed
a hierarchical hardware architecture using RAM for IPv4
routing lookup. Searching the RAM is sequential, so the
search time becomes very long when the number of rout-
ing entries is large. A hash scheme can be used in a hard-
ware-based architecture to increase the lookup speed
[25–27]. Chang and Lim [25] designed a high speed ASIC
with a trie architecture for IPv6. Fadishei et al. [26] imple-
mented a fast IP routing lookup architecture with a hash
scheme based on the Field-programmable Gate Array
(FPGA), but the lookup speed is slow and the entry capacity
is too small to meet even the current requirements of back-
bone routers.

Another proposal has been the use of Content Address-
able Memory (CAM), memory that implements the lookup
function using dedicated comparison circuitry. CAM is
widely used for routing lookup systems [28–32]. Francis
and McAuley [28] perform routing lookup with CAM, with
all matching actions in one clock cycle. Tan and Gong [30]
uses both CAM array and TCAM for high speed IP lookup;
while Akhbarizadeh utilizes a parallel TCAM architecture
for high speed packet forwarding [31]. The drawbacks of
conventional CAM are high power consumption and that
the cost of CAM is higher than RAM. To resolve these prob-
lems, Sahni couples TCAM and SRAM to overcome the
power and size limitations of pure TCAM forwarding en-
gines [32], but routing lookup performance depends on
the access time of the off-chip memory (TCAM and SRAM)
since the recently used entries are not cached in the on-
chip memory.

In this paper, we propose a high-throughput and high-
capacity routing lookup system. The system is a cache-cen-
tric, hash-based architecture with a memory set (RAMs)
and a TCAM to resolve the problem of collisions caused
by the hash function. We determine the optimal address
length of the two-level hash table architecture by observ-
ing the prefix length distribution of real-world routing ta-
bles, so that most entries can be looked up in the first level
of hash tables. The number of buckets and the size of the
hash buckets in our proposed system are determined based
on a numerical analysis of the hash table model and simu-
lations of synthetic IPv6 routing entries. The system con-
tains a routing lookup ASIC and a BCAM as cache
memory to speed up the search time. The memory density
is also good, with each routing entry requiring only 64 bits.
The routing lookup system approaches 260 Mlps, which is
sufficient for 100 Gbps networks, and the routing table
only needs 10.24 KB on-chip BCAM, 20.04 KB off-chip
TCAM and 29.29 MB DRAM. It can support 3.6 M routing
entries, which is sufficient for routing tables in the near
future.

The remainder of this paper is arranged as follows. The
next section provides a preliminary description of the IPv6
routing lookup. In Section 3, we describe the proposed sys-
tem architecture. In Section 4, we explain the implementa-
tion of the ASIC. Section 5 presents the experimental
Please cite this article in press as: Y.-M. Hsiao et al., A high-throughpu
(2012), http://dx.doi.org/10.1016/j.comnet.2012.11.001
results and an analysis of performance. Section 6 contains
some concluding remarks.
2. The IPv6 routing lookup

2.1. IPv6 global unicast address

The format of the IPv6 global unicast address contains
the global routing prefix, subnet ID and interface ID. As
shown in Fig. 1, the global routing prefix (typically hierar-
chically structured) is a value assigned to a site (a cluster of
subnets/links), and the subnet ID is the identifier of a link
within the site. The resulting format of the global unicast
address under the 2000::/3 prefix is currently being man-
aged by Internet Assigned Numbers Authority (IANA) in
accordance with the recommendations in [33].

A prefix in IPv6 is represented by the notation: address/
prefix length. For example, the prefix 21A9:C767:FFFC::/46
means the address of the IPv6 prefix is 21A9:C767:FFFC::,
with a prefix length of 46. The ‘‘::’’ is used to compress
leading or trailing zeros in an address.

2.2. The prefix length distribution

The prefix length distribution is essential information
for address routing lookup since if we design the correct
address length for the first-level hash tables, most entries
can be looked up in the first level of the hash. Thus, we
examined this information in several real-word IPv6 rout-
ing tables: 6Net [34], BPG [4], Route Views [35] and RIPE
RIS [36]. 6Net is a European project concerned with the
continued growth of the Internet. BGP lists the number of
unique routing entries in the Internet routing table. The
Route Views project obtains real-time information about
the global routing system from the perspective of several
different backbones and locations around the Internet.
RIPE is a forum open to all parties with an interest in the
technical development of the Internet. The RIPE network
coordination centre (NCC) is the Regional Internet Registry
for Europe, the Middle East and parts of Central Asia, deter-
mining the allocation and registration of Internet number
resources including IPv4 addresses, IPv6 addresses and
Autonomous System numbers. The RIPE Routing Informa-
tion Service (RIS) project collects and stores Internet rout-
ing data from several locations around the globe. Table 1
shows the distribution of prefix lengths for the 6Net router
with 616 routing entries. The BGP tables for AS2.0 and
AS6447 are analyzed in Fig. 2a. The table of AS2 was re-
ported on May 1 05:45:02 2012 and AS6447 was on May
1 04:40:00 2012. The entry counts of the two BGP tables
are 8435 and 8821, respectively. The Route Views tables
for USA and Japan, with 651 and 595 entries, respectively,
are shown in Fig. 2b. Four tables (rrc01, rrc03, rrc05 and
t and high-capacity IPv6 routing lookup system, Comput. Netw.

http://dx.doi.org/10.1016/j.comnet.2012.11.001

Table 1
Prefix length distribution of 6 NET.

Prefix length Entry counts %

19–31 7 1.14
32 444 72.08
33–47 43 6.97
48 81 13.15
64 41 6.66
Total 616 100

(a)

(b)

(c)

0

2000

4000

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 56 64 96
12

6
12

8

47.43%

35.03%

0.25%

BGP AS2.0

Prefix length

of

 P
re

fi
x

Total:8435

of
 P

re
fi

x

0

300

600

0 16 19 20 21 24 27 28 29 30 32 33 34 35 39 40 42 45 48 64 12
8

79.3%

10.1%

of

 p
re

fi
x

Prefix length

RouteViews
USA

Total:651

30

60

of

 p
re

fi
x

44.21%

36.87%

of

 p
re

fi
x

Prefix length

RIPE RIS
rrc01

Total:78593

0.25%

47.64%

35.14%

of

 p
re

fi
x

Prefix length

RIPE RIS
rrc05

Total:45796

0.26%

Fig. 2. Prefix length distribution: (a) the IPv6 BGP table; (b

Y.-M. Hsiao et al. / Computer Networks xxx (2012) xxx–xxx 3

Please cite this article in press as: Y.-M. Hsiao et al., A high-throughpu
(2012), http://dx.doi.org/10.1016/j.comnet.2012.11.001
rrc10) from RIPE RIS are analyzed in Fig. 2. All were re-
ported at August 14 08:00 2012. According to our observa-
tions, the most common prefix lengths in the routing
tables are 32 or 48. Based on the policy for assigning new
Internet-wide IP addresses by the IANA organization, a lo-
cal Internet register primarily assigns address space to the
users of network services with a prefix length of 64. The to-
tal percentage of prefixes having a length of either 32, 48
or 64 in the nine data sets are 91.89%, 82.71%, 82.41%
0

2000

4000

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 56 63 64 80

46.17%

35.52%

0.72%

BGP AS6447

Prefix length

Total:8821

0

0

0

0 16 19 20 21 24 27 28 29 30 32 33 34 35 39 40 42 45 48 64 12
8

85.3%

3%0.1%

Prefix length

RouteViews
JAPAN

Total:595

44.37%

36.88%

of

 p
re

fi
x

Prefix length

RIPE RIS
rrc03

Total:108312

0.15%

44.73%

36.38%

of

 p
re

fi
x

Prefix length

RIPE RIS
rrc10

Total:40678

0.37%

) the Route Views project; and (c) RIPE RIS project.

t and high-capacity IPv6 routing lookup system, Comput. Netw.

http://dx.doi.org/10.1016/j.comnet.2012.11.001

4 Y.-M. Hsiao et al. / Computer Networks xxx (2012) xxx–xxx
89.4%, 88.6%, 81.33%, 81.4%, 83.04% and 81.48%, respec-
tively. Thus, the vast majority of routing entries use these
three prefix lengths. Fig. 3 shows the historical data of pre-
fix length distribution for rrc03 from 2003 to 2012. The
prefix length of most routing entries is either 32 or 48.
These represent over 80% of the prefix lengths assigned
from 2003 to 2012. To design a fast routing lookup archi-
tecture, the first level of a hash table design will use a pre-
fix length with these three lengths; the other prefix
lengths, which are far less frequent, are put into the second
level. This way, most of the routing entries (over 80%) can
be searched in the first memory access.

3. System architecture

The proposed routing lookup system is a cache-centric
and hash-based architecture, as shown in Fig. 4. Based on
the network ID of the IPv6 global unicast address format,
the system is designed to connect with the Internet back-
bone using 64 bit IPv6 addresses. The system provides in-
sert, search, delete and update functions, and contains a
routing lookup ASIC and memory sets. In ASIC, the cache
memory has a hit ratio of up to 80% with a FIFO replace-
ment algorithm, based on simulation results. Based on
the prefix length distribution of existing IPv6 routing ta-
bles, we designed a hash architecture as shown in Sec-
tion 3.2 to attain high performance routing lookup.
Routing tables are stored in the memory set, which has a
two-layer hierarchical memory architecture. The first layer
of memory stores most of the routing entries, for prefix
lengths of 32, 48 and 64. When hash collision happens,
the routing entries are stored in a TCAM. The TCAM per-
forms a parallel search to achieve high performance rout-
ing lookup. The second layer of the routing table contains
two tables: TAB33_47, which stores entries with prefixes
lengths between 33 and 47 bits; and TAB49_63, which
stores entries with prefixes between 49 and 63 bits.

3.1. Hash table size

The collision problem causes the hash bucket to over-
flow. Selecting a sensible probability of overflow deter-
mines what is a reasonable size for the hash table. In [37],
an exact probability model for finite hash tables is used to
Fig. 3. The prefix length distri

Please cite this article in press as: Y.-M. Hsiao et al., A high-throughpu
(2012), http://dx.doi.org/10.1016/j.comnet.2012.11.001
calculate the hash table size. In this hash table model, where
k is the total number of IP addresses, b is the number of
buckets in the hash table, and s is the size of the bucket,
there are n IP addresses directed to the same bucket by a
hash function. The probability p(k,n,b) is defined as follows:

pðk;n; bÞ ¼ Ck
n

1
b

� �n

� 1� 1
b

� �k�n

ð1Þ

The overflow probability is calculated by

Poverflow ¼ 1� probability of nonOverflow

¼ 1� Ck
0

1
b

� �0

� 1� 1
b

� �k

þ Ck
1

1
b

� �1

� 1� 1
b

� �k�1
"

þ � � � þ Ck
s

1
b

� �s

� 1� 1
b

� �k�s
#

¼ 1�
Xs

n¼0

pðk;n; bÞ

ð2Þ
The expected number of IP addresses stored in one bucket is

ExpBucketðk; s; bÞ ¼
Xs

n¼0

pðk;n; bÞ � nþ
Xk

n¼sþ1

pðk;n; bÞ � s

¼
Xs

n¼0

pðk;n; bÞ � nþ 1�
Xs

n¼0

pðk;n; bÞ
" #

� s

¼ sþ
Xs

n¼0

pðk;n; bÞ � ðn� sÞ

The expected value of the overflow is ExpOverflow(k,s,b):

*k� ExpOverflowðk; s; bÞ
b

¼ ExpBucketðk; s; bÞ

)ExpOverflowðk; s; bÞ ¼ k� b� ExpBucketðk; s; bÞ

¼ k� b sþ
Xs

n¼0

pðk;n; bÞ � ðn� sÞ
" #

¼ k� b sþ
Xs�1

n¼0

pðk;n; bÞ � ðn� sÞ
" #

ð4Þ

The hash table size is determined by b and s(i.e., b⁄s).
Two methods can be used to increase the size of the
bution of rrc03 RIPE RIS.

t and high-capacity IPv6 routing lookup system, Comput. Netw.

http://dx.doi.org/10.1016/j.comnet.2012.11.001

prefix
1~32 bits

prefix 33~47 bits

Prefix
1~64 bitspr

ef
ix

in
te

rf
ac

e
ID

1
64

12
8

Hash32
I NH/Ptr

prefix
1~48 bits

prefix 49~63 bits

Hash48
I NH/Ptr

I=0

I=1

I=0

I=1

prefix
1~64 bits

Hash64
NH

next hop

address

address

1st level of
routing table

2nd level of
routing table

R
ou

ti
ng

L
oo

ku
p

A
SI

C

TCAM

Collision

Table 33_47

Table49_63

NH

NH

Fig. 4. The architecture of routing lookup system.

Y.-M. Hsiao et al. / Computer Networks xxx (2012) xxx–xxx 5
hash table. The first method increases the number of
buckets (b), while the second increases bucket size (s).
To compare the performance of the two methods, we
use the value of ExpOverflow(k,s,b) as an index. In
method 1, increasing the number of buckets, the value
of (k,s,b) is (108120,1,n � 218), and in method 2,
increasing bucket size, the value of (k,s,b) is
(108120,n,218), where n is defined as the ratio of in-
crease in hash table size. Fig. 5 shows the results of
increasing the hash table size for the two methods. If
the hash table size is one, both methods experience the
same number of overflows. As hash table size increases,
the number of overflows with method 1 decreases
slowly, but the number of overflows decreases quickly
with method 2. Thus the second method is more suitable
for increasing the size of the hash table. Therefore, we
determined that the optimum number of buckets in a
hash table is 2, since when the number of buckets ex-
ceeds 2, there are essentially no overflows.

The other essential issue is to decide optimal bucket
size (i.e., the value of b) based on the number of buckets
T
he

 n
um

be
r

of
 o

ve
rf

lo
w

 p
re

fi
x

Ration of the increasing table size

Method 1: Increasing number of buckets
Method 2: Increasing bucket size

Fig. 5. Number of overflows with increasing hash size.

Please cite this article in press as: Y.-M. Hsiao et al., A high-throughpu
(2012), http://dx.doi.org/10.1016/j.comnet.2012.11.001
being 2. Since existing routing tables using IPv6 are small
(108 K in RIPE RIS), we used synthetic routing entries in
our simulations to find a suitable size for the bucket.
We used V6Gen [38] to generate routing entries in IPv6
to simulate the relationship between overflow probability
and bucket size, then determined ideal bucket size based
on the simulation results. We set the prefix length distri-
bution of 32, 48 and 64 as 72.08%, 13.15% and 6.66%,
respectively, reflecting the values in the 6NET database.
Based on CIDR and Cisco global IP traffic reports, we esti-
mated the trend of routing table size as shown in Fig. 6.
The routing table will exceed more than a million routes
in 2020. To satisfy the expected trend in routing table size
through 2035, 3.6 M prefixes were generated using
V6Gen. Because the overflow routing entries are stored
in TCAM, we set the target overflow ratio to be less than
5%, by adjusting the size of TCAM. The index sizes (i.e.,
the value of b) for Hash32, Hash48, and Hash64 tables
are 18, 15, and 14, respectively, according to the simula-
tion results shown in Table 2. This requires a DRAM size
of 29.29 MB and a TCAM size of 20.04 KB for 3.6 M rout-
ing entries.

3.2. Hash table design

In our hash table architecture, each hash table has two
hash buckets in DRAM and one in TCAM. The major objec-
tives of this design are to minimize the number of hash
collisions and to speed up search time when a collision
occurs. As shown in Fig. 7, using two hash buckets in
DRAM reduces the hash collision probability significantly,
as described in Section 3.1, and TCAM can match data in
one clock cycle to resolve the hash collision problem. The
hash function is XOR, which is a simple architecture that
yields a good performance. Our simulation results demon-
strate that the designed hash function with XOR is
t and high-capacity IPv6 routing lookup system, Comput. Netw.

http://dx.doi.org/10.1016/j.comnet.2012.11.001

0.5M

1M

1.5M

2M

2.5M

3M

3.5M

00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Actual routing entries

Approximation line
A

ct
iv

e
B

G
P

 e
nt

ri
es

Year

Fig. 6. IPv4 routing table size with estimated approximation line.

Table 2
Simulation results for 3.6 M entries

Hash table Prefix length (%) Number of entries Hash table size Overflow (number) Overflow (%)

Hash32 72.08 2594880 217 274680 7.63
218 83520 2.32
219 23040 0.64

Hash48 13.15 473400 215 162360 4.51
216 46800 1.30
217 12600 0.35

Hash64 6.66 239760 214 165960 4.61
215 47880 1.33
216 12600 0.35

I prefix NH/Ptr I prefix NH/Ptr

XOR index

xiferp I NH/Ptr

prefix

hash collision

hash table

Priority E
ncoder

LPM

TCAM

Fig. 7. Hash table architecture.

6 Y.-M. Hsiao et al. / Computer Networks xxx (2012) xxx–xxx
effective and efficient. Moreover, it is easy to implement.
Detailed performance evaluations via simulations of the
hash function are described in the next section.
Please cite this article in press as: Y.-M. Hsiao et al., A high-throughpu
(2012), http://dx.doi.org/10.1016/j.comnet.2012.11.001
The routing lookup performs search operations on the
routing tables. After inputting the routing entries, the hash
table stores these entries in a dedicated address designated
t and high-capacity IPv6 routing lookup system, Comput. Netw.

http://dx.doi.org/10.1016/j.comnet.2012.11.001

Y.-M. Hsiao et al. / Computer Networks xxx (2012) xxx–xxx 7
by the hash function. If there are hash collisions, these en-
tries are stored in the TCAM. In the search operation, the
next hop information can be looked up by the hash func-
tion from the hash table. Moreover, the TCAM searches
all the entries in parallel at the same time. Then, the prior-
ity encoder selects the LPM given the next hop informa-
tion. The next section describes our design of a next hop
(NH) detector module to select the LPM entry.

4. Routing lookup ASIC

4.1. Routing lookup ASIC

The routing lookup ASIC contains the control unit, the
datapath and the cache memory implemented in BCAM,
as shown in Fig. 8. The control unit is responsible for the
insert, search, update and delete functions. It also instructs
the cache controller to execute the cache data search and
cache replacement operations. The datapath in ASIC is
comprised of BCAM, the NH detector and the Hash
Table Block. The cache memory utilizes BCAM instead of
the traditional SRAM since BCAM performs parallel search-
ing in one clock cycle. Furthermore, we customize the
BCAM to support insert, update and delete functions. A de-
tailed description of BCAM is given in the next Section 4.2.
The cache memory stores recently used routing entries. If a
cache hit occurs, the ASIC can send the NH information to
the router immediately. The on-chip BCAM performs high
throughput routing lookup because of the ASIC operation
speed. All the routing entries are stored as hash tables in
DRAMs and TCAM. The tables are managed by the Hash
Table Block, which contains the hash table generator, hash
data generator and 2nd addr generator blocks. We explain
the details of the datapath in the next paragraph.

4.2. Datapath

4.2.1. Cache replacement algorithm
The cache memory is an essential component of a rout-

ing lookup ASIC. To find a suitable cache replacement algo-
rithm, we conducted simulations to compare the
performance of five replacement algorithms: FIFO [39],
Least Recently Used (LRU) [39], multi-segment Least Re-
cently Used (mLRU) [40], Second Chance-Frequency Least
BCAM
(cache memopry)

Hash Table Block

NextHop
detector

Control unit

Datapath

Hash
table
gen.

Hash data
generator

2nd addr
generator

Fig. 8. ASIC routing lookup.

Please cite this article in press as: Y.-M. Hsiao et al., A high-throughpu
(2012), http://dx.doi.org/10.1016/j.comnet.2012.11.001
Recently Used (SF-LRU) [41], and Least Frequently Used
(LFU) [42]. Table 3 shows the results derived by the algo-
rithms on the NLNAR traffic trace [43]. Overall, SF-LRU
and LFU achieve the best performance, but they require
counters to record the last reference time and their sorting
action requires a more complex hardware design. FIFO
yields the third best performance, and it needs only one
register to record the next address for replacement. In
the simulations, the cache size ranged from 16 to 1024.
The cache hit ratio of SF-LRU, LFU and FIFO was over 80%
on a cache size of 1024. However, as the hardware design
of SF-LRU and LFU is more complex than FIFO, we select
FIFO as the cache replacement algorithm for routing look-
up in our system.

4.2.2. BCAM design
The most frequently used routing entries are stored in

the cache memory. In the proposed routing lookup ASIC,
the BCAM is the cache memory that contains the cell struc-
ture and match line structure. Fig. 9 shows the BCAM
architecture in our high-speed IPv6 routing lookup system.
The architecture incorporates both circuit-level and
gate-level techniques [44]. We use the pseudo-footless
clock-and-data pre-charged dynamic circuit (PF-CDPD)
technique to design the cell structure of BCAM. When the
circuit is in the pre-charge phase, the search data can be
transferred to the search line without influencing the cir-
cuit correction. The most critical time is when all the bits
match and the bottle part of NMOS are logic 1. When the
circuit changes to the evaluation phase, the PF-CDPD is like
an inverter chain that transfers the data to the last stage to
reduce the search time in the circuit. Besides reducing the
search time, the advantages of PF-CDPD are the following:
(1) low switching activity; (2) evaluation of a stage de-
pends on the result of the preceding stage; (3) no concerns
about the race condition or the DC current; and (4) reduc-
tion of the charge/discharge capacitance.

To speed up the search time of the lookup system, we
designed a word structure so that the critical path is re-
duced to four stages. As Fig. 10a shows, a quadruple input
AND gate design is simple and reduces the search time. The
layout implementation as shown in Fig. 10b can reduce the
resistance and capacitance of the metal.

4.2.3. Hash function
A hash scheme is a suitable solution for designing a fast

routing lookup system. Utilizing the hash function, the NH
information is looked up by a key value. However, the hash
scheme is affected by collisions that occur when too many
entries are matched to the same key. To minimize the
number of hash collisions, we have to choose a good hash
function. Jain [45] defined entropy as the average reduc-
tion in search times, and used the entropy value to com-
pare various hash functions. He proposed a hash model
in which a mathematical function maps the given key to
a hash cell I, which points to the sub-table of size n_i. There
are R frames with N distinct addresses and a hash table of
M cells. Given an address that hashes to the ith cell,
searching through a sub-table of n_i entries requires only
log2(2n_i) lookups. The total number of lookups saved is
t and high-capacity IPv6 routing lookup system, Comput. Netw.

http://dx.doi.org/10.1016/j.comnet.2012.11.001

Table 3
The hit ratio of cache replacement algorithms.

Cache size LRU (%) mLRU (%) mLRU (%) SF-LRU (%) LFU (%) FIFO (%)

16 44.41 36.20 20.68 44.81 38.10 37.86
32 49.37 42.21 27.07 49.66 42.86 43.28
64 54.72 45.84 36.20 57.15 48.65 49.21

128 61.50 49.91 42.21 64.10 55.71 56.07
256 67.27 57.33 45.84 71.50 63.50 63.46
512 73.52 64.10 49.91 79.66 71.97 72.08

1024 79.78 71.50 57.33 87.32 85.76 81.19

Fig. 9. The BCAM architecture for the high-speed IPv6 routing lookup system.

Fig. 10a. Two level tree type BCAM architecture.

Fig. 10b. Layout implementation.

8 Y.-M. Hsiao et al. / Computer Networks xxx (2012) xxx–xxx
X
i

r i½log2ð2NÞ � log2ð2n iÞ� ð5Þ

where r_i is the number of frames that hash to the ith cellP
ri
¼ R. Thus, the entropy is defined asX

i

� r i

R
log2

n i

N

� �
¼
X

i

� qilog2pi ð6Þ
Please cite this article in press as: Y.-M. Hsiao et al., A high-throughpu
(2012), http://dx.doi.org/10.1016/j.comnet.2012.11.001
To evaluate the performance of hash functions, we utilized
a real trace of destination IP addresses on the TANET back-
bone router [46] in Taiwan. The trace recorded 7.6 million
entries with 43867 distinct destination addresses in a 1-h
period. We simulated the following hash functions on the
data: Bit Extraction, Fletch Checksum, exclusive-OR (XOR)
Folding, and cyclic redundancy checking (CRC). Bit Extrac-
tion, the simplest function, uses the last 12 bits of an IP ad-
dress as the hash index. The first 24 bits of an IP address
are used to perform the CRC16 operation and the first to
twelfth bits of the CRC16 result make up the hash index.
Since each bit of CRC contains rich information, this hash
function has a high computation cost. In XOR Folding, bits
1–24 of an IP address are divided equally into two units,
i.e., 12 bits per unit, and the XOR operation uses them with
the hash index. The entropy values of above hash functions
are shown in Table 4. Although CRC performs slightly bet-
ter than XOR Folding, it requires more complex computa-
tion in the hardware design. The Fletcher checksum and
bit extraction functions do not perform well if the patterns
of extracted bits are randomly distributed. Since XOR Fold-
ing achieves a good performance and does not need com-
plex computation, we utilize it in our proposed routing
lookup system.
t and high-capacity IPv6 routing lookup system, Comput. Netw.

http://dx.doi.org/10.1016/j.comnet.2012.11.001

Table 4
The entropy of various hash functions.

Hash function Bit extraction Fletch checksum XOR folding CRC

Entropy 11.9694 11.9714 11.9753 11.9770

prefix
1~32 bits

prefix 33~47 bits Priority encoder

Hash32
I NH/Ptr

TAB33_47
len NH

prefix
1~48 bits

prefix 49~63 bits

Hash48
I NH/Ptr

TAB49_63
len NH

I=0

I=1

I=0

I=1

prefix
1~64 bits

Hash64
NH/Ptr

Offchip memory

TCAM

LPM

M
ux

NH

Cache
hit

NH from Cache

NH
detector

Fig. 11. The architecture of the NH detector.

Y.-M. Hsiao et al. / Computer Networks xxx (2012) xxx–xxx 9
4.2.4. Hash Table Block and NH detector
The Hash Table Block contains the hash table generator,

hash data generator and 2nd addr generator blocks. We use
XOR with a 64-bit index as the hash function, as described
above. The hash table generator module generates the ad-
dresses of the hash tables, i.e., Hash32, Hash48 and
Hash64. Then the hash data generator converts the prefix
data into hash tables. The formats of the hash tables are
shown in Table 5. In the first level, the prefix lengths are
32/48/64, the number of index bits is one and the next
hop is eight bits. In the second level, the bit length is five
and the length for next hop information is eight bits. The
2nd addr generator generates the addresses of the second
layer tables (i.e., TAB33_47 and TAB49_63).

The NH detector decides the next hop bit information
based on the cache hit from the cache memory or hash ta-
ble and outputs from the NH to the router, as shown in
Fig. 11. CIDR has a drawback, namely LPM, that a router
has to choose the longest prefix in the routing table. When
searching the NH from the hash table, there may be more
than one NH result matched. Thus, in our proposed system
the NH from hash64 has the highest priority and the NH
from hash32 has the lowest priority for the priority enco-
der in order to resolve the LPM problem. Next, the NH of
LPM is sent to a multiplexer. If the cache memory hits,
the NH is from the cache. Otherwise, the NH is the LPM
from the hash tables.

4.3. Control unit

The control unit contains the main finite-state machine
(FSM), RAM controller, Binary CAM controller and TCAM
controller, which control all the components on the data-
path. With the control unit design, the system supports in-
sert, search, update and delete functions for the router.

4.3.1. Search
The search operation is the function of the routing look-

up system that initiates the lookup operation. On-chip
BCAM, off-chip DRAMs and TCAM are searched in parallel.
If a cache hit happens, so that the prefix is found in the on-
chip BCAM, the NH information is passed to the router
immediately. In the off-chip DRAMs, the search operation
starts at Hash32, Hash48, and Hash64. If the hash tables
Table 5
The data format of the off-chip routing tables.

Component Entry field Field length Functi

Hash32/48/64 Prefix 32/48/64 bits Store p
I 1 bits I = 1: N
NH/Ptr 8 bits I = 0: N

Table33_47/49_63 Length 5 bits Used t
NH 8 bits Next h

Please cite this article in press as: Y.-M. Hsiao et al., A high-throughpu
(2012), http://dx.doi.org/10.1016/j.comnet.2012.11.001
do not have an entry whose prefix information is the same
as the incoming routing lookup data, the search operation
is finished, and the function unit sends a hit signal of 0 to
the router. However, if a matching entry exists, the func-
tion unit checks the I bit. If I bit is 0, the search operation
is finished, and the NH/Ptr field in this matching entry be-
comes the next hop information for the router. An example
of why the prefix 21A9:C767:FFFC::/46 uses a value of 1 for
the I bit in the second level of the routing table is shown in
Fig. 12. When the I bit of the matching entry in Hash32 is 1,
the function unit gets the NH information from TAB33_47
with the following address:

‘‘NH/Ptr � 215 + (33rd � 47thbitsofdestinationIP)’’. In
this example, the address is 3 � 215 + 65532. For the pre-
fix 21A9:C767:FFFC::/46, the NH is A. The NH informa-
tion in this entry is the routing lookup result. The NH
of another prefix entry 18EA:4CB5:3A6B::/33 is D. The
search operations are the same in TAB49_63 and
TAB33_47.
on Size

refix data 21.11/3.85/0.19 MB
H/Ptr is next hop information
H/Ptr is index for 2nd level routing table

o create the address range 2.06/2.06 MB
op information

t and high-capacity IPv6 routing lookup system, Comput. Netw.

http://dx.doi.org/10.1016/j.comnet.2012.11.001

address length NH

3*215 0 0

3*215+1 33 D

3*215+(215-2) 46 A

3*215+(215-1) 46 A

.

.

.

.

I prefix NH/Ptr

0 20FC:3A9C A

1 18EA:4CB5 3

1 21A9:C767 3

Hash32 TAB33_47

65532

65533

Update to C

The range of
pointer 3

Fig. 12. An example of the relationship between Hash32 and TAB33 47.

Fig. 13. ASIC layout of the routing lookup system.

10 Y.-M. Hsiao et al. / Computer Networks xxx (2012) xxx–xxx
4.3.2. Update
The update function changes the information about

routing entries. When a routing path is changed, the entry
in the routing table must be modified. The updating steps
in the routing lookup system are as follows:

(1) The function unit searches for matching entries
whose prefix is the same as the prefix of updated
data in the hash table and the on-chip BCAM.

(2) The matching entries’ next hops are updated with
the new next hop information in the on-chip BCAM.

(3) The matching entries’ next hops in the hash table are
amended with the new next hop information.

As shown in Fig. 12, the original prefix is
21A9:C767:FFFC::/46 and the NH is A. If there is an update
request to update its NH as C, the system calculates the
second level of the routing table and finds the range is
two. Finally, two addresses of NH information are changed
from A to C. Because we designed the routing table as a two
level memory set, the worst case memory access time for
the update operation is generally twice the shortest.
Although there are several NHs updated in TAB49_63 and
TAB33_47 depending on the dedicated prefix and the
length, we designed the hash data generator and 2nd addr
generator in our ASIC to update the NH of these entries.
The memory controller in ASIC uses direct memory access;
the update of the second level memory is operated in a mi-
cro way using the pipeline technique.
Table 6
Specifications of the implemented ASIC.

Technology 0.18 lm 1P6M mix-signal CMOS

Core supply voltage 1.8 V
Core area 1.93 � 1.99 mm2

Logic gate count 5306 gates
BCAM size 10.24 KB
Total gate count 143 K gates
Clock frequency 277 MHz
Power consumption 109.18 mW
4.4. ASIC implementation

The ASIC VLSI design was partially written in Verilog
code and synthesized by Synopsys using the CCU
0.18 lm CMOS single-poly six-metal standard cell library.
The CCU standard cell library [47] is an in-house design
in our school. The gate count of the ASIC, excluding Binary
CAM, is about 5306 gates; and the gate count of the Binary
CAM in the ASIC is nearly 138074 NAND gates. The ASIC
design was converted to the physical layout shown in
Fig. 13, using placement and routing tools. The core area
of the layout is 1.93 mm � 1.99 mm. The layout was dou-
ble-checked with the design rule check (DRC) and layout
versus schematic rules (LVS). It operates at 277 MHz, using
Please cite this article in press as: Y.-M. Hsiao et al., A high-throughpu
(2012), http://dx.doi.org/10.1016/j.comnet.2012.11.001
Nanosim for post-layout simulation. The supply voltage is
1.8 V and the power dissipation is about 109.18 mW. The
chip information is summarized in Table 6.

5. Results and analysis

Currently, the fastest line rate is 100 Gbps, and the
smallest Ethernet frame is 64 bytes. It is assumed that
the traffic flow rate in the backbone router is as follows:

Traffic Flow Rate ¼ Line Rate� Frame Size

¼ ð100 Gbs=sÞ=ð64 bytesÞ
¼ 195ðMega lookups per secondÞ

Routing lookup speed of the system :

Average routing lookup time ¼ hit ratio� cache search time

þmiss ratio� non� collision accesstimeðRAMÞ
þmiss ratio� collision� TCAM access time

Throughput ¼ 1� average routing lookup time

The clock period of the implemented ASIC is 3.6 ns, so the
routing lookup speed is 277 MHz. The clock periods for
commercial TCAM [48] and DRAM [49] are 10 ns and
5 ns, respectively. The above information is used for
the off-chip and on-chip parameters to calculate the
t and high-capacity IPv6 routing lookup system, Comput. Netw.

http://dx.doi.org/10.1016/j.comnet.2012.11.001

Table 7
Summary of routing lookup speeds.

On-chip (ns) Off-chip (ns) Worst case (cycles) Mlps

ICC 04 [30] 10 10 2 97
TCS 04 [25] 33 – 1 30
TComputer 07 [31] 3.9 10 1 72
Micro 08 [26] 5.1 5 1 164
Infocom 09 [8] 6.6 4 1 149
TNetworking 12 [9] 5 5 6 200
Infocom 12 [11] 3.4 4 1 250
This work 3.6 5 2 260

Table 8
Comparison with other systems.

Design [30] ICC
2004

[25]
TCS
2004

[31]
TComputer
2007

[26] Microp. &
Micros. 2008

[8]
Infocom
2009

[9] TNetworking
2012

[11] Infocom
2012

This work

Strategy Hash Tree Multi-
selector
Multi-block

Hash + Update
Tree

Hash Hash + Compressed
Tree

Tree Cache + Hash

Table storage CAM RAM CAM RAM RAM RAM RAM + CAM CAM + RAM
Lookup speed (ASIC) 100 Mlps 30 Mlps 100 Mlps 193 Mlps 180 Mlps 200 Mlps 297 Mlps 277 Mlps
Update (worst case) 4 N/A N/A 2 1 5 1 2
On-chip memory CAM:

1.55 MB
TCAM:
0.094 MB

SRAM:
0.59 MB

N/A SRAM:
0.002 MB

SRAM:
21.6 MB

SRAM: 1.17 MB SRAM: N/A BCAM:
0.01 MB

Off-chip memory N/A N/A TCAM:
18.4 MB

SRAM: 8.5 MB SRAM:
36 MB

DRAM: 19.5 MB TCAM: N/A TCAM:
0.02 MB
DRAM:
29.29 MB

Bits per entry 12.13 14.75 72 38.7 320 83 N/A 64
Capacity (# of entries) 128 K 40 K 256 K 220 K 180 K 2558 K N/A 3665 K
System throughput 97 Mlps 30 Mlps 72 Mlps 164 Mlps 149 Mlps 200 Mlps 250 Mlps

(Theoretical)
5.95 Mlps
(Measured)

260 Mlps

Microp. & Micros.: Microprocessors and Microsystems.

Y.-M. Hsiao et al. / Computer Networks xxx (2012) xxx–xxx 11
throughput of the routing lookup system. Thus, in terms of
system throughput, the design can provide approximately
260 Mega lookups per second (Mlps), which is sufficient
for 100 Gbps. Table 7 shows the estimated system lookup
speed of various approaches.

In Table 8, we compare the proposed cache-centric
hash-based architecture with existing approaches. All
architectures of the approaches compared in Table 8 use
tree-based or hash-based strategies, with routing table
data stored in the RAM or CAM. The memory size on-chip
and off-chip are also shown in the comparison table. To
compare the performance of routing lookup hardware de-
sign, we analyzed system throughput and ASIC lookup
speed. We also estimated the system throughput of all re-
lated works. The results show that [26,9,11] and our sys-
tem can all achieve 100 Gbps. The system throughput of
[30,25,31] are slow and their capacities are small: 128 K,
40 K and 256 K, respectively, capacity being the number
of entries in the hardware routing table. On the other hand,
their memory densities, the bits per entry, are good: 12.13
and 14.75 for [30,25], respectively. [26] can achieve
100 Gbps and the memory density is good, 38.7, but it only
Please cite this article in press as: Y.-M. Hsiao et al., A high-throughpu
(2012), http://dx.doi.org/10.1016/j.comnet.2012.11.001
supports 220 K routing entries. The system throughput of
[9] is 200 Mlps and supports 2558 K entries. This is the
only architecture apart from ours that can support more
than 2 M entries. We anticipate that our design will be able
to support more than 3 M entries with advances in the fu-
ture. The system described in [11] achieves a throughput of
297 Mlps in ASIC lookup speed and 250 Mlps of system
throughput based on the theoretical and the maximum
speed of FPGA and TCAM. [11] is theoretically the fastest
lookup hardware design, but the measured speed is only
5.95 Mlps because of a performance bottleneck in the
Gigabit Ethernet interface card. The memory size and
capacity are not mentioned [11]. We estimate memory
density as a way of determining the memory efficiency of
the routing lookup system. As shown in Table 8, [30] has
the lowest density at 12.13 bits per entry and [8] has the
highest density at 320 bits per entry. Our memory density
is 64 bits. Although this work used 0.03 MB CAM (on-chip
and off-chip) at a little higher cost than RAM, it is cheaper
than the cost of [30,31]. Our system supports full functions,
including update. The systems described in [25,31] do not
support the update function. The update function of [30]
t and high-capacity IPv6 routing lookup system, Comput. Netw.

http://dx.doi.org/10.1016/j.comnet.2012.11.001

12 Y.-M. Hsiao et al. / Computer Networks xxx (2012) xxx–xxx
requires 4 cycles of memory access and [9] needs 5 cycles.
Because they use a compressed tree, in the worst case the
update requires that the memory be accessed many times,
slowing the process.

The limitation of an ASIC is that it is not as flexible as
software. If the prefix length distribution changes so that
the length of most routing entries is no longer 32, 48 and
64, most of the search operations would require second le-
vel memory so that the search operation in the hash table
would have to access memory twice. The cache-centric
architecture of our system stores the most frequently used
routing entries in the cache memory (on-chip BCAM), pro-
ducing a high throughput routing lookup system.
6. Conclusion

We have proposed a high-throughput, low-cost, high-
capacity IPv6 routing lookup system, and designed a
hash-based architecture with a cache memory. The sys-
tem is comprised of a routing lookup ASIC and memory
set. The ASIC contains a function unit and a BCAM. The
function unit performs insert, search, update, and delete
operations in the routing lookup system. The BCAM,
which is used as a cache memory, can guarantee an 80%
hit ratio. FIFO is used as cache replacement algorithm in
the proposed architecture. In the hierarchal memory set
design, most routing entries can be found in the first
memory access, in the worst case requiring two memory
accesses. The routing lookup speed of proposed system
is 260 Mlps, satisfying the requirement of 100 Gbps. The
high speed IPv6 routing lookup system requires only
20.04 KB TCAM, 10.24 KB BCAM, and 29.29 MB DRAM for
3.6 M routing entries.

References

[1] J. Yu, V. Fuller, T. Li, K. Varadhan, RFC1519: Classless Inter-Domain
Routing (CIDR): an Address Assignment and Aggregation Strategy,
Internet Engineering Task Force (IETF), September 1993.

[2] W. Doeringer, G. Karjoth, M. Nassehi, Routing on longest-matching
prefixes, IEEE/ACM Trans. Netw. 4 (1) (1996) 86–97.

[3] Cisco Router T1600. <http://www.cisco.com>.
[4] BGP Routing Table. <http://bgp.potaroo.net/>.
[5] CIDR Report. <http://www.cidr-report.org/>.
[6] Cisco Global IP Traffic Report. <http://www.cisco.com/en/US/netsol/

ns827/networking_solutions_sub_solution.html>.
[7] A. Singhal, R. Jain, Terabit switching: a survey of techniques and

current products, Comput. Commun. 25 (2002) 547–556.
[8] H. Song, F. Hao, M. Kodialam, T.V. Lakshman, IPv6 lookups using

distributed and load balanced bloom filters for 100 Gbps core router
line cards, in: Proc. IEEE INFOCOM, 2009.

[9] M. Bando, Y.-L. Lin, H.J. Chao, FlashTrie: beyond 100-Gb/s IP route
lookup using hash-based prefix-compressed trie, IEEE/ACM Trans.
Netw. 20 (4) (2012) 1262–1275.

[10] K. Huang, G. Xie, Y. Li, Alex X. Liu, Offset addressing approach to
memory-efficient IP address lookup, in: Proc. IEEE INFOCOM, 2011.

[11] L. Luo, G. Xie, Y. Li, L. Mathy, K. Salamatian, A hybrid IP lookup
architecture with fast updates, in: Proc. IEEE INFOCOM, 2012.

[12] G. Varghese, B. Lampson, V. Srinivasan, IP lookups using multiway
and multicolumn search, IEEE/ACM Trans. Netw. 7 (3) (1999) 324–
334.

[13] J. Turner M. Waldvogel, G. Varghese, B. Plattner, Scalable high speed
IP routing lookups, in: Proc. ACM SIGCOMM’97, 1997.

[14] A.K. Somani, R. Sangireddy, High-speed IP routing with binary
decision diagrams based hardware address lookup engine, IEEE J. Sel.
Areas Commun. 21 (4) (2003) 513–521.
Please cite this article in press as: Y.-M. Hsiao et al., A high-throughpu
(2012), http://dx.doi.org/10.1016/j.comnet.2012.11.001
[15] L.-C. Wuu, T.-J. Liu, K.-M. Chen, A longest prefix first search tree for IP
lookup, Comput. Netw. 51 (12) (2007) 3354–3367.

[16] Z. Li, D. Zheng, Y. Ma, Tree, Segment table, and route bucket: a multi-
stage algorithm for IPv6 routing table, in: Proc. IEEE INFOCOM, 2007.

[17] Y.-K. Chang, Fast binary and multiway prefix searches for packet
forwarding, Comput. Netw. 51 (3) (2007) 588–605.

[18] X. Huang, X. Zhao, G. Zhao, W. Jiang, D. Zheng, Q. Sun, Y. Ma, A novel
level-based IPv6 routing lookup algorithm, in: Proc. IEEE
GLOBECOM, 2008.

[19] H. Park, H. Hong, S. Kang, An efficient IP address lookup algorithm
based on a small balanced tree using entry reduction, Comput. Netw.
56 (1) (2012) 231–243.

[20] H. Lim, J.-H. Seo, Y.-J. Hung, High speed IP address lookup
architecture using hashing, IEEE Commun. Lett. 7 (10) (2003) 502–
504.

[21] Y.-K. Chang, A small and fast IP forwarding table using hashing, IEICE
Trans. Commun. E88-B (1) (2005).

[22] Q. Sun, X.Huang, X. Zhou, Y. Ma, A dynamic binary hash scheme for
IPv6 lookup, in: Proc. IEEE GLOBECOM, 2008.

[23] Z. Huang, J.-K. Peir, S. Chen, Approximately-perfect hashing:
improving network throughput through efficient off-chip routing
table lookup, in: Proc. IEEE INFOCOM, 2011.

[24] S. Lin, P. Gupta, N. McKeown, Routing lookups in hardware at
memory access speeds, in Proc. IEEE INFOCOM, 1998.

[25] R.C. Chang, B.-H. Lim, Efficient IP routing table VLSI design for
multigigabit routers, IEEE Trans. Circ. Syst. I: Fundam. Theor. Appl.
51 (4) (2004).

[26] H. Fadishei, M.S. Zamani, M. Sabaei, A fast IP routing lookup
architecture for multi-gigabit switching routers based on
reconfigurable systems, Microprocess. Microsyst. 32 (4) (2008)
223–233.

[27] W. Jiang, Q. Wang, V.K. Prasanna, Beyond TCAMs: an SRAM-based
parallel multi-pipeline architecture for terabit IP lookup, in: Proc.
IEEE INFOCOM, 2008.

[28] P. Francis, A.J. McAuley, Fast routing table lookup using CAMs, in:
Proc. IEEE INFOCOM, 1993.

[29] K. Pagiamtzis, A. Sheikholeslami, Content-addressable memory
(CAM) circuits and architectures: a tutorial and survey, IEEE J.
Solid-State Circ. 41 (3) (2006) 712–727.

[30] M. Tan, Z. Gong, High speed IP lookup algorithm with scalability and
parallelism based on CAM array and TCAM, in: Proc. IEEE ICC, 2004.

[31] M.J. Akhbarizadeh, M. Nourani, R. Panigrahy, S. Sharma, A TCAM-
based parallel architecture for high-speed packet forwarding, IEEE
Trans. Comput. 56 (1) (2007) 58–72.

[32] W. Lu, S. Sahni, Low power TCAMs for very large forwarding tables,
in: Proc. IEEE INFOCOM, 2008.

[33] S. Deering, R. Hinden, E. Nordmark, RFC3587: IPv6 Global Unicast
Address Format, Internet Engineering Task Force (IETF), August.
2003.

[34] 6NET, Large-Scale International IPv6 Pilot Network. <http://
www.6net.org/>.

[35] University of Oregon Route Views Project. <http://
www.routeviews.org/>.

[36] RIPERIS.<http://www.ripe.net/data-tools/stats/ris/routing-information-
service>.

[37] M.V. Ramakrishna, An exact probability model for finite hash table,
in: Proc. IEEE Fourth International Conference on Data Engineering,
February 1991.

[38] K. Zheng, B. Liu, A Scalable IPv6 prefix generator for route lookup
algorithm, in: Proc. IEEE Advanced Information Networking and
Applications, 2006.

[39] A.S. Tanenbaum, A.S. Woodhull, Operating Systems: Design and
Implementation, Second ed., Prentice Hall, 1996.

[40] H. Liu, Reducing cache miss ratio for routing prefix cache, in: Proc.
IEEE GLOBECOM, 2002.

[41] A. Akaaboune, J. Alghazo, N. Botros, Sf-lru cache replacement
algorithm, in: Proc. International Workshop on Memory
Technology Design and Testing, 2004.

[42] C.-S. Wu, W.-L. Shyu, T.-C. Hou, Efficiency analyses on routing cache
replacement algorithms, in Proc. IEEE ICC, 2002.

[43] Nlnar Measurement and Network Analysis. <http://pma.nlanr.net/>.
[44] C.-C. Wang, J.-S. Wang, C. Yeh, High-speed and low-power design

techniques for TCAM macros, IEEE J. Solid-State Circ. 43 (2) (2008)
530–540.

[45] R. Jain, A comparison of hashing schemes for address lookup in
computer networks, IEEE Trans. Commun. 40 (3) (1992) 1570–1573.

[46] The Computer Center of the Ministry of Education. <http://
www.edu.tw/tanet/introduction.html>.
t and high-capacity IPv6 routing lookup system, Comput. Netw.

http://www.cisco.com
http://bgp.potaroo.net/
http://www.cidr-report.org/
http://www.cisco.com/en/US/netsol/ns827/networking_solutions_sub_solution.html
http://www.cisco.com/en/US/netsol/ns827/networking_solutions_sub_solution.html
http://www.6net.org/
http://www.6net.org/
http://www.routeviews.org/
http://www.routeviews.org/
http://www.ripe.net/data-tools/stats/ris/routing-information-service
http://www.ripe.net/data-tools/stats/ris/routing-information-service
http://pma.nlanr.net/
http://www.edu.tw/tanet/introduction.html
http://www.edu.tw/tanet/introduction.html
http://dx.doi.org/10.1016/j.comnet.2012.11.001

Y.-M. Hsiao et al. / Computer Networks xxx (2012) xxx–xxx 13
[47] The SoC group of Electrical Engineering department in National
Chung Cheng University. <http://www.soc.ccu.edu.tw>.

[48] Renesas TCAM. <http://tw.renesas.com/media/products/memory/
TCAM/p20_tcam_products.pdf>.

[49] Micron DRAM, 256Mb DDR SDRAM, MT46V32M8P-5B. <http://
www.micron.com>.

Yi-Mao Hsiao is currently a Ph.D. student in
the Department of Electrical Engineering at
National Chung-Cheng University. He
received the B.S. degree in Information Engi-
neering from Feng Chia University in 2004
and the M.S. degree in Electrical Engineering
from National Chung-Cheng University in
2006. His research interests are digital VLSI
system design, high speed routing lookup
system design, computer network, and Qual-
ity of Service system design.
Yuan-Sun Chu received the B.S. degree in
electrical engineering from Feng-Chia Uni-
versity, Taichung, Taiwan in 1978, and the
M.S. and Ph.D. degrees in electrical engineer-
ing from Katholieke Universiteit Leuven, Leu-
ven, Belgium, in 1986 and 1991, respectively.
He is a Professor with the Department of
Electrical Engineering, and the director of SOC
Research Center, National Chung Cheng Uni-
versity, Chiayi, Taiwan. His research interest
includes computer architecture, VLSI low
power design, multimedia network IC design.
Please cite this article in press as: Y.-M. Hsiao et al., A high-throughpu
(2012), http://dx.doi.org/10.1016/j.comnet.2012.11.001
Jeng-Farn Lee received the B.S., M.S., and Ph.D.
degrees from National Taiwan University,
Taipei, Taiwan, in 1998, 2000, and 2007,
respectively. He was a Postdoctoral Fellow
with the Institute of Information Science, Aca-
demia Sinica, Taipei, until July 2007. In August
2007, he joined the Department of Computer
Science and Information Engineering, National
Chung-Cheng University, Chia-yi, Taiwan, as an
Assistant Professor. His current research
interests include quality-of-service network-
ing, scheduling, and wireless access networks.
Jinn-Shyan Wang (S’85–M’88) received the
B.S. degree in electrical engineering from the
National Cheng-Kung University, Tainan, Tai-
wan, in 1982 and the M.S. and Ph.D. degrees
from the Institute of Electronics, National
Chiao-Tung University, Hsinchu, Taiwan, in
1984 and 1988, respectively. He was with the
Industrial Technology Research Institute
(ITRI) from 1988 to 1995, engaged in ASIC
circuit and system design, and became the
Manager of the Department of VLSI Design. He
joined the Department of Electrical Engineer-

ing, National Chung-Cheng University, Chia-Yi, Taiwan, in 1995, where
currently he is a full Professor. He funded the SOC Research Center of
National Chung-Cheng University. His research interests are in low-

power and high-speed digital integrated circuits and systems, analog
integrated circuits, IP and SOC design, and CMOS image sensors. He has
published over 35 journal papers and 50 conference papers and holds
over 30 patents on VLSI circuits and architectures. Dr. Wang has served as
an ITPC member of IEEE ISSCC since 2007.
t and high-capacity IPv6 routing lookup system, Comput. Netw.

http://www.soc.ccu.edu.tw
http://tw.renesas.com/media/products/memory/TCAM/p20_tcam_products.pdf
http://tw.renesas.com/media/products/memory/TCAM/p20_tcam_products.pdf
http://www.micron.com
http://www.micron.com
http://dx.doi.org/10.1016/j.comnet.2012.11.001

	A high-throughput and high-capacity IPv6 routing lookup system
	1 Introduction
	2 The IPv6 routing lookup
	2.1 IPv6 global unicast address
	2.2 The prefix length distribution

	3 System architecture
	3.1 Hash table size
	3.2 Hash table design

	4 Routing lookup ASIC
	4.1 Routing lookup ASIC
	4.2 Datapath
	4.2.1 Cache replacement algorithm
	4.2.2 BCAM design
	4.2.3 Hash function
	4.2.4 Hash Table Block and NH detector

	4.3 Control unit
	4.3.1 Search
	4.3.2 Update

	4.4 ASIC implementation

	5 Results and analysis
	6 Conclusion
	References

