
Wire-Speed TCAM-Based Architectures
for Multimatch Packet Classification

Miad Faezipour, Student Member, IEEE, and Mehrdad Nourani, Senior Member, IEEE

Abstract—Most conventional packet classifiers find only the highest priority filter that matches the arriving packet. However,
new networking applications such as network intrusion detection systems and load balancers require all (or the first few) matching
filters during classification. In this paper, two TCAM-based architectures for multimatch search are introduced. The first one is a
renovated TCAM design that can find all or the first r matches in a packet filter set. The second architecture is a novel partitioning
scheme based on filter intersection properties allowing us to use off-the-shelf TCAMs for multimatch packet classification.
Our classifier engine finds all matches in exactly one conventional TCAM cycle while reducing the power consumption by at least
two orders of magnitude, which is far better than the existing hardware-based designs.

Index Terms—Ternary content addressable memory, multimatch, packet classification, prioritizer, network intrusion detection system,
maximum-minimum intersection partitioning, contention resolver.

˙

1 INTRODUCTION

1.1 Background

PACKET classification, in general, refers to finding the best
matching filter containing multiple fields in a filter (also

called rule) set for a given packet. The standard five-tuple
fields include the source address, destination address,
protocol, source port, and destination port [1]. Among
these fields, source and destination address fields are
prefixes and often require the longest prefix match (LPM)
methods. Protocol field can be wildcards or exact values.
Source and destination port numbers are typically intro-
duced as ranges. Packet classification is a multidimensional
(multifield) search in contrast to packet forwarding that
only involves search in one dimension, (i.e., the destination
IP address).

Packet classification performs searching the table of
filters to assign a flow identifier for the highest priority filter
that matches the packet in all fields. The returning flow ID
indicates the action that is next applied to the packet. An
example of a packet filter set is shown in Table 1. The
standard five-tuple fields are shown in separate columns for
the purpose of clarity. This table illustrates a small sample
packet filter set with a very few bits for simplicity. Filters
are usually sorted in the order of priority in the filter set. In
this table, x indicates wildcards inserted in any location of
the fields. When a packet arrives, the first (which is
generally the best) matching filter in the set is to be found
in packet classifiers. The matching filter should match the
filter in all five fields. The address (index) of the matching
filter is used to point to the action that needs to be applied to

the packet. Most packet classifiers store the index to indicate
the action that is going to be processed on the packet
afterward. For example, if a packet consisting source
address of 0101, destination address of 0011, source port
of 4, destination port of 6, and protocol field of TCP is
received, the packet classifier should report the second filter
as the matching filter and, hence, would forward the packet
to output port 5. It is obvious that arriving packets may
result in multiple filters matching the packet in the set. In
this example, the arriving packet matches the seventh filter
in addition to the second one. The general packet classifica-
tion process only reports one filter (which is the highest
priority filter) in case of multiple matches. However, we
elaborate why some networking applications require find-
ing multiple matches in the packet filter set.

Filter fields are combination of prefixes, wildcards, and
exact values. Hence, Ternary Content Addressable Mem-
ories (TCAMs) that have the ability to store don’t-care values
in addition to 1’s and 0’s are often utilized to store filters
and perform the parallel search in packet classification. A
traditional packet classifier assigns one TCAM entry for
each filter and finds the index of the highest priority
matching filter in the database (Fig. 1). Range fields are
often translated to multiple entries [1], [2]. Overall, each
filter fi ð0 � i � n � 1Þ contains multiple fields (e.g., in the
standard five-tuple), and also, the filter database often may
have up to 100,000 filters. Therefore, wide TCAM devices
both in terms of bits and entries are used for packet
classification applications.

1.2 Importance of Multimatch Packet Classification
New emerging networking applications such as Network
Intrusion Detection Systems (NIDSs) and load balancers
require finding all or the first few matching filters in packet
classification. Malicious intrusions and denial-of-service
attacks, which are expected to grow rapidly, can be
monitored and detected by NIDS. Once all the matching
filter headers are found, a detection system such as Snort [3]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 1, JANUARY 2009 5

. The authors are with the Department of Electrical Engineering, University
of Texas at Dallas, Richardson, TX 75083.
E-mail: {mxf042000, nourani}@utdallas.edu.

Manuscript received 6 June 2007; revised 23 June 2008; accepted 16 July 2008;
published online 22 Aug. 2008.
Recommended for acceptance by S. Nikoletseas.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2007-06-0208.
Digital Object Identifier no. 10.1109/TC.2008.159.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

scans the packet payload for existing worms. The concept of
Multimatch Classification (MMC) for NIDS is becoming a
major stream of research in the near future, since there is a
great demand for network worm detections [2], [4].

Packet level accounting, transparent monitoring, and
the Programmable Network Element (PNE) are other
networking applications that demand MMC. Specifically,
PNE is the general platform for packet processing in
layers 2-4 in the edge. Packets entering PNEs are classified
to identify the relevant functions. Multimatching classifi-
cation can be utilized to support multiple functions in
PNEs [4].

Both single and multimatch packet classifications should
be ideally performed at the wire data rate. Pure software
solutions suffer from low speed, since they often require
several instructions and as a result several memory accesses
to find a single or multiple matches. To achieve wire-speed
classification, researchers in industry and academia offered
architectural solutions mostly using TCAM [5]. TCAMs are
well suited for performing high-speed parallel searches on
database with ternary entries, since they provide the match
results with deterministic throughput (i.e., one search per
cycle) and deterministic capacity. Hence, TCAM has
become quite popular for packet classification tasks [1],
[6], [7], [8]. While TCAMs perform packet classification at
high speed, they cannot directly report all possible matches
in a database. This is due to the native structure of a TCAM
cell design, which consists of a priority encoder, generating
only the highest priority match in each round. Other
drawbacks of using TCAM are high cost and high power
consumption.

1.3 Main Contribution
Complexity of conventional (software-based) classification
techniques linearly grows with number of filters. Our main
contribution is twofold. First, we propose a multimatching
packet classifier by modifying the prioritizer (PZ) circuit of
conventional TCAM. Since the TCAM entries (cells) remain
unchanged in our design, our multimatching hardware can
be easily adopted for IPv6 where the bit width of the TCAM
entries highly increases [9], [10]. Our system finds r
(predefined by a user) matches in at most r cycles
regardless of total number of filters. This approach has
zero-management (fixed-update) time and is highly effi-
cient when filters are updated regularly. Such properties
significantly improve the performance by one to two orders

of magnitude for large filter set. Second, we propose a
parallel architecture for multimatching packet classification
by efficiently partitioning the entire packet filter set into
disjoint subsets. Each subset is mapped to a relatively small
TCAM, which produces a match in one cycle. In this
technique, off-the-shelf TCAMs are used. Our system finds
r matches in exactly one cycle regardless of the total
number of filters and matches. Our partitioning scheme can
also be employed as a low-power solution to the conven-
tional single-match packet classification in general and
multimatch packet classification in particular. Each of these
two architectures, i.e., customized TCAM and partitioned
structure, can work as a multimatch classifier engine
independently. However, we will show that a tightly
coupled system that employs both architectures would
achieve the maximum performance.

1.4 Paper Organization
The rest of this paper is organized as follows: In Section 2,
we take a glance at prior work related to TCAM-based
multimatch packet classification. In Section 3, we first
derive the optimized logic equations and then elaborate on
our TCAM customized for multimatch tasks. Two config-
urations (i.e., cascaded and parallel) for a scalable design
are also introduced in this section. Section 4 describes our
novel intersection-based partitioning schemes. In Section 5,
the structural features and advantages of our system are
discussed. We summarize our experimental results in
Section 6. Finally, concluding remarks are given in Section 7.

2 PRIOR WORK

Some recent work focused on multimatch packet classifica-
tion using TCAMs. The Entry-invalidation scheme, de-
scribed in [2], is one of the earliest and simplest schemes. In
this method, a valid bit in addition to the header fields is
associated with each TCAM entry. Initially, all entries have
their valid bits set to 1. Searches are performed multiple
times to find all matching entries. Each time a match is
found, the valid bit is set to 0 for that matching entry. The
same search key is applied again until all matches are found.
This method, however, does not support the multithreading
feature, which requires multiple packet processing threads
to have access to the TCAM device at the same time.

The authors in [4] reorganize the TCAM entry filters in a
compatible order to report all matches. The authors use a
geometric intersection scheme to remove the overlaps and
negation among the intersecting filters placed in the TCAM.

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 1, JANUARY 2009

TABLE 1
Example of a Packet Filter Set

Fig. 1. TCAM structure as a single-match classifier.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

This approach may not be suitable for large databases since
it cannot be easily scaled to large tables.

The Set Splitting Algorithm (SSA) introduced in [11] and
[12] splits the filter set into two groups to remove at least
half of the intersections among filters. It then performs the
search on multiple groups in parallel. This method is based
on minimum intersections among filters; however, it adds
filters for partially overlapped filters in one set. In addition,
it performs the search on all sets generated; hence, it
increases the search time and power consumption.

The authors in [2] address the problem of finding
multiple matches in a TCAM by proposing the multimatch
using discriminators (MUD) algorithm. In this algorithm,
the extra bits per TCAM entry are used for the required
encoding. The MUD algorithm provides multiple matches
at high speed. However, it deploys sophisticated encoding
on TCAM entry databases, making it difficult to decode the
data to their original values.

The BV-TCAM architecture introduced in [8] combines
the TCAM and the Bit Vector (BV) algorithm to address the
problem of packet classification for network intrusion
detection. While this approach improves the search
mechanism and the cost by compressing the data repre-
sentation, it does not effectively differentiate the multiple
matches found.

3 MMC USING RENOVATED TCAMS

A TCAM includes a priority encoder. One widely used
implementation of the priority encoder is shown in Fig. 1 by
splitting it into a PZ and a conventional encoder [13]. A
valid log2 n-bit address out of the encoder is generated only
if at most one of its n inputs is high at a time. Thus, the
PZ unit, which provides the encoder input lines, should be
designed carefully. Our main idea is to modify the single-
match PZ unit to a Multimatch PZ (MPZ), as shown in Fig. 2
so that the encoder would generate all matching indices,
one per cycle.

A power-optimized priority encoder cell introduced in
[13] is used as our reference model for the PZ unit. The logic
equation1 for the PZ circuit can be written as

EPi …
en � Di; i … 0;
en �

Qi�1
k…0 Dk

� �
� Di; 1 � i � n � 1:

(

ð1Þ

Equation (1) indicates that the PZ circuit has n inputs
and n outputs, where EPi denotes the ith output, Di’s are
the input lines, and en is the enable line.

3.1 MPZ Structure
We add a control logic circuitry to the PZ circuit to report
all matches in a prioritized sequence. The MPZ circuit,
shown in Fig. 3, functions in response to a counter that
counts from 0 to n, where n is the highest possible number
of matches. In other words, n can be assumed as the
number of inputs in the worst case. On the first clock cycle,
the MPZ should function as a single-PZ unit, reporting the
highest priority match. On the next clock cycle, the next
highest priority match should be provided at the output.
This procedure should be followed in all other clock cycles
until the counter has reached counting up to n. In each
clock cycle, a function of the original inputs and the higher
priority outputs of the PZ circuit in the previous clock cycle
should be fed through the PZ circuit. In each clock cycle, a
new set of inputs should be fed through the PZ. These
inputs are based on a function of the original inputs and
the higher priority PZ outputs in the previous clock cycle.
Let mi denote the original input lines (i.e., match lines from
TCAM words), epi denote the EPi outputs of the PZ after
one clock cycle, Mi be the set of inputs that should be given
to the PZ circuit, and EN be the enable line. The logic
equation for the MPZ circuit can be derived as follows:

EPi …
EN � Mi; i … 0;
EN �

Qi�1
k…0 Mk

� �
� Mi; 1 � i � n � 1;

(

ð2Þ

where Mi in (2) can be computed as

Mi …
s � mi; i … 0;
s � mi þ s � mi � epi�1; i … 1;
s � mi þ s � mi �

Pi�1
k…0 epk

� �
; 2 � i � n � 1:

8
><

>:
ð3Þ

FAEZIPOUR AND NOURANI: WIRE-SPEED TCAM-BASED ARCHITECTURES FOR MULTIMATCH PACKET CLASSIFICATION 7

1. Throughout this section, symbols þ, �,
Q

, and
P

stand for Boolean
notations.

Fig. 2. Conceptual block diagram of our design.

Fig. 3. The MPZ architectural design.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

Signal s …
Plog2n�1

k…0 ck is the select line of the multi-
plexers that control which data should be chosen for the
corresponding Mi. This select line should be low for the
first clock cycle and high for the rest. Thus, s can be
implemented by simply ORing all the counter outputs ci.
The MPZ unit functions in an efficient manner; in essence,
it reports all r matches in exactly r cycles. This implies that
in case of the need to report the first r matches instead of
all possible matches, a comparator unit could be added to
the MPZ design wherein the count value c and the r value
are compared. Once the count exceeds r, the enable line
EN is set to zero, hence disabling the MPZ unit.

3.2 Scalability
The MPZ unit can be designed for any number of n inputs.
However, the synthesized MPZ design for a real database
that requires up to thousands of TCAM entries would be
very costly. Hence, a modular design that could scale up to
the required n inputs is essential.

IPv6 has much longer fields in the header of packets. Our
design does not alter the filters placed in the TCAM.
Moreover, the MPZ approach processes the match lines
coming from the TCAM words. Therefore, it can efficiently
be scaled to IPv6 classifiers that use large TCAMs or
multiple parallel TCAMs for packet classification.

3.2.1 Cascaded MPZ Architecture
To achieve a modular design with cascaded blocks, we
define an output enable (OE) line, which indicates when all
the matches have been provided at the output [14]. This
signal is activated when any number of matches are found
at the output, and deactivated when all the matching results
have been provided. It also highly depends on the EN line.
The OE line is an active low signal used for activating lower
priority MPZ units. The OE line in an MPZ can be
expressed as follows:

OE … EN þ
Xn�1

i…0
EPi: ð4Þ

Similar to the multilevel look-ahead architectures [15],
[16], we cascade v w-bit MPZ units to design an n … v � w
bit MPZ block. Fig. 4 shows the concept of cascading eight
8-bit MPZ modules to design a 64-bit MPZ. In this figure,
higher priority stages are placed at the left. By connecting
the OE line of each stage to the EN (enable line) of the next
stage, we assure that each block would be enabled only if all
the higher priority blocks have completed reporting their
matches at the output. The cascaded design would have at
most two additional clock cycle delays for any mismatching
MPZ unit. The authors in [2] claimed that the number of

multimatch results could reach up to 153 when considering
the two header fields, source and destination IP addresses
only. It is clear that when considering all five header fields,
the number of multimatch results would drop dramatically.
The authors of the SSA paper stated that a packet can match
up to only 12 unique filters for the SNORT rule sets in the
worst case [11]. Moreover, as authors in [2] stated, the
maximum degree of matches (number of matches) often
requested in real-world ACL filters including router
databases and SNORT rule sets is statistically around 8.
Considering these facts, an 8-bit MPZ unit seems to be an
optimum size choice for a basic MPZ cell. Therefore, the
counter used in any MPZ unit can be designed to count up
to 8. This implies that only log2 8 … 3 lines are required for
the counter, and the comparator can be designed to
compare the count value and r … 8. The modularity of our
design allows the user to easily redesign MPZ for r > 8
when needed.

3.2.2 Parallel MPZ Architecture
Due to the complexity of the connections among the
cascaded cells in the multilevel folding architecture [15],
we have not scaled the design using this method.
Furthermore, the parallel priority look-ahead architecture
discussed in [13] would not be directly applicable for the
multimatch design. This is because each MPZ unit in the
second stage should remain enabled for at least eight clock
cycles to report multiple matches at the output. Multiple
matches may occur at any MPZ cell in the second stage. The
ORed output of the corresponding set of inputs would cause
the initial MPZ unit outputs to remain high for only one
clock cycle, hence enabling the matching unit for only one
clock period. This would result in reporting only one match
from that unit and not other matches. However, by using a
slower clock for the counter of the first stage MPZ
comparing to the second stage MPZ units, finding multiple
matches would become possible. The first stage MPZ unit
would maintain each matching output for a longer period of
time, enabling the second stage MPZ units to report all the
matches.

In case of a 64-bit multimatch design, the first MPZ unit
should have a clock period of at least eight times slower
than the eight MPZ units in the second stage. In addition to
the frequency of Clk that is eight times faster than Clk0, the
rising edge of Clk should be delayed by one TClk=2 for
proper functionality. This is because the second stage MPZ
units should see their enable lines at the rising edge of the
clock Clk. The first stage MPZ unit provides its outputs at
the rising edge of the clock Clk0; therefore, a delay between
the rising edge of the two clocks is needed to ensure proper
functionality. This delay does not affect the overall
performance. Fig. 5 shows the scalable multimatching
design using the concept of the parallel priority look-ahead
architecture.

3.2.3 Cascaded versus Parallel Architecture
In the parallel architecture, each matching MPZ unit in the
second stage would add a latency of 8 � TClk to report
matches in the other matching MPZ units. However, if there
are r matches only in the last eight inputs, the parallel

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 1, JANUARY 2009

Fig. 4. Cascaded MPZ architecture for a 64-bit MPZ design.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

design would have a latency of only 8 � TClk to enable the
last MPZ unit in the second stage and would take another
r � 1 clock cycles to report the matches at the output. In this
particular case, the parallel architecture performs faster
compared to the 8-bit cascaded architecture mentioned
earlier that would have a latency of ð2 � 8 � 1Þ … 15 clock
cycles to enable the last MPZ stage. The clock period of the
cascaded architecture is assumed to be the same clock
period of the MPZ units in the second stage of the parallel
architecture.

The speed of our scaled multimatch circuits highly
depends on the location of the matches. The cascaded
architecture would perform more efficiently if matches are
distributed uniformly among MPZ units. The parallel
configuration would perform faster if the matches are
concentrated within one MPZ unit at lower priority
locations.

Area is another concern for the two scalable configura-
tions. The parallel architecture would have an additional
MPZ unit plus a few OR gates, compared to the cascaded
architecture. More details on cascaded and parallel archi-
tectures can be found in [17].

3.2.4 Applications and Limitations of MPZ
One main advantage of the MPZ architecture is that it has
fixed update complexity. This is due to the fact that no
filter management (e.g., sort, split, duplicate) is required
when filters are updated in the set (e.g., added or deleted).
Our customized PZ is a hardware engine capable of
finding all matches, regardless of the location of matching
filters. This feature makes the MPZ architecture highly
efficient for applications where frequent updates are
needed in MMC.

As for limitation of MPZ, performance of the scaled MPZ
in large filter databases depends on the locations of the

matches (see Section 3.2.3). A sorting mechanism to
rearrange filters based on their priority would be costly.
Instead, partitioning schemes that reorganize the filters
based on matches and intersecting filters are introduced in
the next section. Efficient partitioning can further improve
the MPZ performance in terms of speed, since it allows
potential matching filters to be gathered in small TCAMs.
This technique may, however, require larger update time
due to partitioning. The partitioning schemes are quite cost-
effective, as they can be complemented to the MPZ unit and
other architectures for finding all matching filters in only
one cycle.

In addition, TCAMs are complex devices and architec-
tural changes that modify TCAMs involve large amount of
investment and long development time [2]. Hence, algo-
rithmic approaches that utilize off-the-shelf TCAMs to solve
the problem may be preferred.

4 MMC USING OFF-THE-SHELF TCAMS

The methods explained in [2], [4], and [11] are schemes
that utilize off-the-shelf TCAMs for multimatching packet
classification. Our strategy would be to design a hardware
engine consisting a filter processing unit and the conven-
tional TCAM cell for reporting multiple matches. As we
proceed further, we will also see that the regular (instead
of priority) encoder can be used. Replacing the priority
encoder is a huge benefit in terms of cost, delay, and
power.

4.1 Partitioning Rule
Intersection among filters in the database mainly results in
multiple matches. Informally speaking, intersection is
defined as having filters that are subset of one another,
such that some filters completely overlap others. The filter
processing unit applies the partitioning schemes on the
packet filter set and conventional TCAMs are used to
accommodate the filters of each partition [18].

Let fi‰w � 1 : 0� and fj‰w � 1 : 0� denote two filters of
bit-width w. We define the term distance between the two
filters as

di;j …
Xw�1

k…0
fi‰k� � fj‰k�; ð5Þ

where � in (5) is a three-valued operation, defined using
XOR operation, as follows:

a � b … 0; if at least one of a or b is a don0t-care;
a � b; otherwise:

�
ð6Þ

In the partitioning schemes that follow, performing the
TCAM search on one partition can significantly improve
performance.

4.2 First-Level (Maximum) Intersection Partitioning
The Maximum Intersection Partitioning (MXIP) scheme,
which is explained in this section, partitions the filters in the
database such that each partition would hold the maximum
number of intersections among its filters. This way all
possible matches for a packet will be concentrated within
one partition only. In addition, partitions will be disjoint,

FAEZIPOUR AND NOURANI: WIRE-SPEED TCAM-BASED ARCHITECTURES FOR MULTIMATCH PACKET CLASSIFICATION 9

Fig. 5. A 64-bit multimatching design using parallel architecture.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

i.e., any pair of partitions do not have any overlap in the
filters that they contain. Since there would always be a
number of filters that do not have any intersection with any
other filter, one last partition is needed in which all these
distinct filters can be placed.

The pseudocode for generating the partitions based on
the concept of maximum intersection is shown in Fig. 6. In
this pseudocode, F refers to the set of all filters, and Pm
denotes the mth partition. Since distance computation has
commutative and associative properties, any filter could be
the seed of partition. For simplicity, we chose the seed to
be the first element remaining in the original set F (i.e., f1)
in every iteration. The for loop grows the partition around
the seed based on the MXIP heuristic. Lines 16-20 indicate
that all distinct filters (that make no intersection with other
filters) will be chosen to be assigned to a separate
partition. Np would be the total number of partitions
generated based on the MXIP scheme. In line 21, nm is the
total number of filters in partition Pm. Hence, Np partitions
ðP1; P2; . . . ; Pm; . . . ; PNpÞ will be formed, from which the
last partition (PNp) is a collection of all distinct filters.

We apply the main loop of MXIP on the entire filter
set ðF Þ until the set is empty. The main loop is shown on
lines 8 to 15. We choose a filter from F (the first filter) and
add all zero distance filters from F to the first partition.
Inside the partition generated, we add all zero distance
filters from F to any filter in the partition generated. All
filters that are placed in partitions are removed from the
initial F set. After set F is emptied, and filters are placed in
partitions, if any partition only contains one filter (it had no

zero distance with any other filter), that filter is placed in
partition Ptemp. All distinct filters are placed in Ptemp. Np
would be the number of partitions generated by MXIP, and
since the distinct filter set is the last partition, PNp would be
the last partition.

Fig. 7a illustrates a small example of a set of 10 filters
partitioned based on maximum intersections. Filters are
assumed to be 8 bits long for simplicity. Filters f1, f4, and
f10 have zero distance, hence they can form one partition,
i.e., P1. Also, filters f8 and f9 have zero distance with
filter f10; therefore, they are also placed in P1. Filters f5 and
f6 make a zero distance with filter f2 and form partition P2.
Finally, filters f3 and f7, which have no zero distance with
any other filters, form the distinct filter collection and are
placed in a separate partition ðP3Þ.

MXIP would ensure that all possible matches for a given
search key are located in one partition. One possible
architecture of a multimatch packet classifier using the
MXIP approach is illustrated in Fig. 7b. All filters in each
partition are placed in one TCAM module. The single-
match priority encoder unit is replaced by an MPZ circuit
along with an address encoder. The MPZ unit (as described
in Section 3.1) is a customized PZ circuit that gives all the
match lines in a prioritized sequence. The MPZ and encoder
circuit connected to the TCAM provide the addresses of the
r matches in at most r cycles. Performance of MPZ structure
is not adversely affected by the location of matching filters
as discussed in Section 3.2, since potential matching filters
are grouped as closely as possible by the partitioning
scheme. Note that the last partition ðPNpÞ does not need an
MPZ unit since it would result in at most one match, and
therefore, an address encoder is sufficient. No contention
resolver (CR) in this architecture is required because all
partitions can be searched in parallel. However, as we
discuss in Section 5, having such resolver will significantly
reduce the power consumption. In this example, if the
search key “11010010” arrives, partition P1 contains the
matches, and the system would provide the three matching
results f1, f4, and f10 in exactly three clock cycles.

4.3 Second-Level (Minimum) Intersection
Partitioning

A classifier engine using MXIP finds all r matches in
r cycles. By further partitioning the maximum intersected

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 1, JANUARY 2009

Fig. 6. Pseudocode for MXIP.

Fig. 7. Application of MXIP to a small example. (a) Partitioning.
(b) The classifier engine.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

