
TreeCAM: Decoupling Updates and Lookups in Packet

Classification
Balajee Vamanan and T. N. Vijaykumar

School of Electrical and Computer Engineering, Purdue University

{bvamanan, vijay}@ecn.purdue.edu

ABSTRACT
Packet Classification is a key functionality provided by

modern routers. Previous approaches — TCAM and algo-

rithmic — perform well in either lookup efficiency (power

and number of accesses) or update effort but not both. To

perform well in both, we propose TreeCAM, which employs

three novel ideas. (1) Dual versions of TreeCAM’s decision

tree to decouple lookups and updates: A coarse version with

a few thousand rules per leaf achieves efficient lookups and

a fine version with a few tens of rules per leaf reduces

update effort. (2) Interleaved layout of the rules in the

TCAM: Combined with the fine version’s few rules per leaf,

the layout enables us to bound our worst-case update effort.

(3) Path-by-path updates to enable update work to be inter-

spersed with packet lookups (i.e., non-atomic updates),

eliminating packet buffering or packet drops during update.

Using simulations of 100,000-rule classifiers, we show that

TreeCAM performs well in both lookups and updates: (1) 6-

8 TCAM subarray accesses per packet, matching modern

TCAMs. (2) close to an idealized TCAM in worst-case

update effort while requiring little buffering of packets.

Categories and Subject Descriptors:
C.2.6 [Internetworking]: Routers—Packet Classification

General Terms:
Algorithms, Design, Performance

Keywords:
Packet Classification, Updates

1 INTRODUCTION
Packet classification involves determining the highest-

priority rule to which each network packet matches out of a

set of rules (i.e., a classifier). Each rule specifies a desired

action on matching packets identified by a combination of

the packet fields (e.g., source/destination IP, source/destina-

tion port, and protocol). Packet classification is vital for

QoS, security, and traffic monitoring and analysis. While

line rates continue to improve, classifiers also grow in size

due to rule customization for virtual private networks

(VPNs) and quality of service (QoS). Thus, larger classifiers

need to be searched at higher rates (e.g., several tens of

thousands of rules every few nanoseconds).

The key metrics for packet classification schemes are

number of accesses needed per packet (a proxy for packet

throughput), power, and update effort. While the first two

metrics are self-evident, we elaborate on update effort by

extrapolating from [2]. Updates add or remove either (1) a

few thousands of rules as virtual interfaces are created or

destroyed (e.g., ten interfaces per minute with 5000 rules

per interface), or (2) a handful of rules at time granularities

of flows for access control or QoS (e.g., 10 rules every ms).

Though either update flavor’s net rates are much lower than

packet rates (ms versus ns), most schemes move or change a

large fraction of the rules for at least a small fraction of the

updates, leading to three problems: (1) significant loss of

memory bandwidth to updates; (2) long hold-ups of mem-

ory to achieve a consistent state, causing packet drops or

incurring cost and complexity for buffering packets; and (3)

failure to meet latency requirements of a few milliseconds

for QoS (e.g., to stay well below human perception times).

For example, assume that the update rate is 10 per ms

(either flavor), packet rate is 1 per 10 ns (~40Gbps), and

20% of 100,000 rules are moved (read and written) for 5%

of the updates. Then, updates overall would impose 20%

bandwidth overhead, and those 5% of the updates would

each (1) require 40,000 packets to be buffered and (2) take 1

ms assuming each move takes 50 ns. Moreover, current

trends of OpenFlow [7] and on-line classification require

updates at flow granularities (i.e., milliseconds), potentially

increasing the update rates in the future.

Previous packet classification schemes, which fall in two

broad categories — TCAM and algorithmic, perform well

in either lookup efficiency (power and number of accesses)

or update effort but not both. In unoptimized TCAMs, each

packet searches all rules in one fast access at the cost of high

power. Modern TCAMs reduce power by partitioning rules

into smaller subarrays (e.g., 4K rules), and searching only a

small subset of rules instead of searching all the rules.

Because partitioned TCAM details are not publicly avail-

able, we consider the Extended TCAM [12] as a representa-

tive. While partitioning reduces power, modern TCAMs still

suffer from high update complexity. Because TCAMs phys-

ically order the rules based on priority for fast determination

of the highest-priority match, updates require moving rules

to achieve proper ordering. Previous optimizations reduce

update effort either (1) only in some favorable cases while

resorting to moving or changing all the rules in the other

cases [9], or (2) in many cases but may require significant

Permission to make digital or hard copies of all or part of this work for per-

sonal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior spe-

cific permission and/or a fee.

ACM CoNEXT 2011, December 6-9, 2011, Tokyo, Japan.

Copyright 2011 ACM 978-1-4503-1041-3/11/0012...$10.00.

effort in finding and maintaining [18], and updating [11] the

rules’ relative priority. While the Extended TCAM paper

does not address updates, the approach inherits TCAM’s

update overheads. The update effort may be reduced by

using finer distribution which would substantially increase

the number of accesses for each lookup, as our results show.

As such, modern TCAMs incur high update effort.

Algorithmic schemes, such as HiCuts [4], HyperCuts

[10], and EffiCuts [17], build a decision tree to prune the

search by partitioning the rules into small subsets. However,

there are two problems: (1) Lookup requires many tens of

accesses per packet which degrades throughput (e.g., 80

accesses for 100,000 rules). (2) None of the decision tree

papers address updates. Nevertheless, the algorithms do not

order the rules to determine the highest-priority match and

instead sequentially compare all the rules in the matching

leaf, avoiding the rule re-ordering effort incurred by

TCAMs. However, updates would deepen the tree in an

unbalanced manner and increase lookup accesses, requiring

high re-balancing effort. Other approaches [1] [3] support

fast updates but require prohibitively large memory. In sum-

mary, the previous schemes do not perform well in both

lookups and updates.

To address this limitation, we propose TreeCAM, which

employs three novel ideas.

(1) Dual Tree Versions: To reconcile the tension

between lookups and updates, we propose our central idea

of dual versions of TreeCAM’s decision tree to decouple

lookups and updates: a coarse tree version with a few thou-

sands of rules per leaf (e.g., 4K) which reduces the number

of accesses per packet and power; and a fine tree version

with a few tens of rules per leaf (e.g., 16) which reduces the

update effort. Our coarse tree is similar to a partitioned

TCAM where each leaf in the tree maps to a TCAM subar-

ray, and our fine tree is similar to those in previous algorith-

mic schemes. Because lookup rates are high and update

rates are low, and the coarse tree is for lookups and the fine

tree is for updates, we maintain the coarse tree in TCAM

and the fine tree in slow control memory. The fine tree is

logically superimposed on the coarse tree to keep the trees

consistent upon updates. While Extended TCAM with

smaller partitions to reduce the update effort would require

considerably more accesses, TreeCAMs’ dual tree versions

avoid this problem by decoupling lookups and updates.

(2) Interleaved Rule Layout in TCAM: TreeCAM

inherits the update overheads of both TCAMs and decision

trees: TCAM’s rule re-ordering and decision trees’ re-bal-

ancing. We address this challenge by reducing the overhead

of one part by leveraging the other. For the first overhead,

we exploit the well-known idea that because a packet cannot

match non-overlapping rules, only the overlapping rules

need to be priority-ordered in the TCAM [9]. We combine

this idea with decision trees via the key observation that the

rules in a leaf may overlap with each other but not with rules

in other leaves because leaves cover non-overlapping sub-

spaces. Consequently, a leaf’s rules have to be ordered only

among each other but not with other leaves’ rules. With only

a few rules per leaf, the fine tree significantly reduces the

per-leaf ordering effort. While previous work on decision

trees reduce packet lookup effort, this paper is the first to

exploit decision trees for reducing update effort.

For the second overhead of tree re-balancing, we opti-

mize the rule layout in the TCAM. Our re-balancing simply

displaces excess rules from a leaf to its neighbor. While the

per-leaf priority-ordering effort is low, making room for an

incoming rule would require moving the rules in many fine-

tree leaves if each leaf’s rules are contiguous in the subarray

(e.g., 256 16-rule leaves in a 4k-entry subarray). Instead, we

propose an interleaved layout in which the rules at each pri-

ority level from all the leaves within a subarray are contigu-

ous. This interleaving achieves flexible sharing of a

subarray’s free entries among all its leaves, and is funda-

mental to bounding the update effort to moving the few

rules per leaf in the fine tree.

Assuming about 25 subarrays in a 100,000-entry TCAM,

TreeCAM would move around 500 rules in the worst case

for re-balancing as compared to conventional TCAMs

which would move a large fraction of the rules. Because of

its low update effort, TreeCAM does not require any batch-

ing to amortize the update effort as in [18], and therefore

does not incur the latency penalties of batching.

(3) Path-by-path Updates: Because holding up packet

lookups for the 500 moves in the worst case may be prob-

lematic, we make our updates non-atomic by performing

our tree re-balancing path-by-path which involves multiple

singleton rule movements which can be interspersed with

packet lookups. By updating the tree path corresponding to

the rule being moved, we ensure that the TreeCAM is in a

consistent state after each singleton movement. Because the

coarse tree’s paths are short, the path updates require mini-

mal effort. While CoPTUA [18] provides non-atomic

updates for conventional TCAMs, TreeCAM addresses

decision tree re-balancing. CoPTUA worsens the common-

case update effort (e.g., up to 50x more than conventional

TCAMs) to achieve non-atomic updates. In contrast, Tree-

CAM leverages the fine tree to enable non-atomic updates

without worsening the common-case effort.

To summarize, TreeCAM’s contributions are:

• Dual Tree Versions which decouple lookups and updates

to achieve both efficient lookups and low-effort updates;

• Interleaved Rule Layout which is fundamental to reduc-

ing update effort; and

• Path-by-path Updates which enable efficient, non-

atomic updates.

Using simulations of 100,000-rule classifiers, we show

that TreeCAM performs well in both lookups and updates:

6-8 TCAM subarray accesses per packet (matching modern

TCAMs) and close to the worst-case update effort of an ide-

alized TCAM while requiring little buffering of packets.

The rest of the paper is organized as follows: We

describe the coarse tree version for packet lookups and the

fine tree version for updates in Section and Section 3,

respectively. We present our experimental methodology in

Section 4 and our results in Section 5. We discuss related

work in Section 6 and conclude in Section 7.

2 COARSE TREE VERSION
We build a coarse tree that partitions the rules among

TCAM subarrays, similar to modern partitioned TCAMs.

Our coarse tree has a depth of only two, requiring two mem-

ory accesses per packet.

2.1 Decision Tree Algorithm
Decision tree algorithms [4][10][17] partition the multi-

dimensional rule space (e.g., source IP, destination IP,

source port, destination port, protocol) by building a deci-

sion tree so that the rules are separated evenly into the tree’s

leaves. The algorithms successively partition the resulting

subspaces to prune down to some binth [4]. For our coarse

tree, we choose a binth of a few thousands of rules so that

the entire leaf node can fit in a TCAM subarray.

Extended TCAM, our representative for partitioned

TCAMs, uses complicated heuristics to choose which

dimension(s) to cut at every tree node and how many cuts to

perform with the goal of reducing the tree depth without

prohibitively increasing rule replication. Because these heu-

ristics may need to be computed for a significant fraction of

the updates, such complicated heuristics significantly

increase update effort. Therefore, we opt for a simple sort-

based heuristic where we choose the dimension with the

most unique projections of the rules. We sort the start points

of the projections and evenly partition the rules by introduc-

ing cuts after a fixed number of the start points in the sorted

order (e.g., 4K rules). Each rule partition is placed in a leaf.

Figure 1 shows a two-dimensional rule space with rules R1

through R8 and the corresponding tree. Sorting the projec-

tions of the rules on the X dimension and equally partition-

ing the rules into two per leaf leads to cuts at X1 through X3.

Because our cuts are at the start points, our cuts naturally

reduce rule replication.

Naively applying our heuristic may result in considerable

rule replication which, as observed in EffiCuts [17], arises

mainly due to overlap between small and large rules. Fine

cuts to partition small rules (i.e., non-wildcard rules) need-

lessly cut and replicate large rules (i.e., wildcard rules). To

address this issue, we employ EffiCuts’ separable trees

which segregate small and large rules into distinct trees.

However, our sort-based heuristic is simpler than, and dif-

ferent from, equi-dense cuts used by EffiCuts. EffiCuts

groups rules with wildcards (or almost wildcards) in the

same dimensions into a separable tree. Though there could

be up to 31 trees for five dimensions, we obtain only 5-6

trees for our 100,000-rule classifiers while nearly avoiding

replication. Overall, TreeCAM requires 6-7 accesses per

packet for our classifiers (many trees contain only one node

which fits within a single subarray, requiring one access).

2.2 TCAM Organization
We first group rules into separable trees and then apply

our sort-based heuristic to each tree. Each of our coarse

trees is at most two deep with a root and leaves. The root

node holds the interval, or range, in the cut dimension corre-

sponding to each leaf while each leaf holds its rules. For

each separable tree, we map the root and each leaf into a

distinct TCAM subarray, similar to partitioned TCAMs.

Figure 2 shows two trees mapped to eight TCAM subarrays.

We place the rules in priority order in each subarray (we

describe the layout details in Section 3.2). TreeCAM incurs

some range expansion for the ranges in the root, as do all

TCAMs for the classifier fields that specify ranges (e.g., the

source port and protocol fields). Fortunately, because the

total number of ranges in the root, which equals the number

of leaves, is far fewer than the rules (e.g., 25 leaves for

100,000 rules assuming a binth of 4K), this expansion adds

little to the total space. Further, because our cuts are at the

start points. which fall at prefix boundaries, our cuts natu-

rally avoid further range expansion (thus, no compounding

of rule replication and range expansion).

An incoming packet looks up each tree’s root subarray

where the matching entry provides the corresponding leaf’s

subarray number (see Figure 2). The packet then looks up

the leaf’s subarray to find the highest-priority match in the

tree. An external hardware logic, then determines the high-

est-priority match over all the trees. Modern partitioned

TCAMs may pipeline the tree traversal for high bandwidth

and our approach does not hinder such pipelining.

Finally, using separable trees introduce some fragmenta-

tion in TreeCAM. The root of each separable tree typically

has far fewer entries than a subarray. However, to achieve

high packet throughput, multiple packets must be able to

lookup different trees at the same time. Therefore, we can-

not map multiple root nodes of different trees to the same

FIGURE 1. Sort-based Heuristic

X

Y

X1 X2 X3

Root
{X1,X2,X3}

{R3,R4} {R1,R5} {R6,R7} {R2,R8}

R8R6 R7
R5

R1R3

R4
R2

Cuts

FIGURE 2. TCAM Organization Example

Root1

Leaf1 Leaf2

Leaf3 Leaf4

Root2 Leaf2

Leaf1

Tree 1 Tree 2

TCAM with eight subarrays
1

2

3

4

5

6

7

8

TCAM subarray. Instead, we place each root node in a sepa-

rate subarray, and incur some modest internal fragmentation

in the subarrays (Section 5.3).

3 FINE TREE VERSION
While the coarse tree achieves lookups with only a few

accesses and low power, the fine tree reduces the update

effort. However, TreeCAM inherits the update overheads of

both the TCAM’s rule re-ordering and the decision tree’s

tree re-balancing. Recall that our strategy is to leverage the

fine tree to reduce the TCAM’s overheads and vice versa.

Also recall our key observation that because leaves and

rules in a leaf are non-overlapping, a leaf’s rules have to be

ordered in the TCAM only among each other but not with

other leaves’ rules. To exploit this idea, we build the fine

tree with only a small binth (e.g., 16).

3.1 Building and Mapping the Fine Tree
We apply our sort-based heuristic from Section 2.1 to

build the fine tree version of each separable coarse tree.

Because of overlapping rules, partitioning the rules just

once at the root, like the coarse tree, may result in the binth

being exceeded. In such cases, we partition once more, pos-

sibly in a dimension different than the first cut. In practice,

we found that two cuts are sufficient even for our 100,000-

rule classifiers due to EffiCuts’ separable trees.

The fine tree is used only for updates which occur at a

much lower rate than packet lookups — once every few mil-

liseconds versus once every few nanoseconds (Section 1).

Consequently, we maintain the fine tree details in the slow

control memory. To ensure that the coarse tree in the TCAM

is updated correctly, we logically superimpose the fine tree

on to the coarse tree in the TCAM ensuring that the fine

tree’s leaves are aligned with the coarse tree’s leaves in the

TCAM subarrays. Thus, each TCAM subarray, which corre-

sponds to a coarse tree leaf, holds a set of fine tree leaves

(i.e., fine tree leaves are not split across multiple coarse tree

leaves). Figure 3 shows a fine tree and its superimposition

on the coarse tree. Subarray1 is the coarse tree root and

Subarrays2-4 are the coarse tree leaves. Subarray2 holds

Leaf1 and Leaf2 of the fine tree; similarly, Subarray3 holds

Leaf3 and Leaf4, and Subarray4 holds Leaf5, Book-keeping

structures hold the range for each first-level node and leaf in

the fine tree (if the tree is 3-deep) and for each leaf, a pointer

to the TCAM subarray that holds the leaf.

A key point is that because of using separable trees, our

rule replication is low despite the fine cuts to achieve the

small binth. However, some rule replication is inevitable

which raises a correctness issue. All replications in the fine

tree must be reflected in the TCAM which has to hold the

replicas even if the fine-tree leaves causing the replication

map to the same TCAM subarray (in which case the replicas

would be present in the same subarray). Even though this

redundancy is unnecessary from the point of view of packet

lookups, the redundancy is needed for correct updates. This

correctness constraint follows from the fact that we assume

that rules in different leaves are non-overlapping and there-

fore, need not be ordered with respect to each other in the

TCAM. If the redundancy were eliminated resulting in only

one instance of a rule being stored, then the rule may over-

lap with other rules in many leaves, violating our assump-

tion and requiring the rule to be ordered with the rules of

many leaves. As part of re-balancing the tree, if a rule is

moved into a fine-tree leaf that already holds another rep-

lica, then the redundancy can be eliminated.

3.2 Interleaved Rule Layout in TCAM
Recall from Section 1, that conventional TCAMs physi-

cally order the rules based on priority for fast determination

of the highest priority match. Therefore, any newly-added

rule must be ordered correctly with respect to the other

rules. In conventional TCAMs, rules are placed contigu-

ously, leaving empty entries at the bottom. However, if we

contiguously place the rules belonging to each fine tree leaf

in a subarray, adding a rule may require as many moves as

there are rules in the entire subarray. The well-known opti-

mization [9] of placing some empty entries after every so

many rules reduces the number of moves as long as the

empty entries are not exhausted (e.g., free entries after every

10 rules would require at most 10 moves to gather one

empty entry). Upon exhaustion, however, the problem resur-

faces. Alternately, replenishing an empty entry as soon as it

is used up would also face the problem. Thus, contiguous

layout of the rules, as is done in today’s TCAMs, leads to

high update effort in the worst case.

We observe that contiguous layout forces many rules to

be moved under the pessimistic assumption that all the rules

in the subarray need to be ordered. Instead, we leverage the

fact that a packet cannot match non-overlapping rules and

that rules in different leaves cannot overlap. Therefore, only

the rules in the same leaf need to be ordered. Accordingly,

we interleave the rules from different leaves in the TCAM

subarray such that the rules with the highest priority in all

the leaves are in a contiguous batch before the batch of rules

with the next priority level, and so on. Figure 4 shows con-

tiguous and interleaved layouts for four leaves with two

FIGURE 3. Fine Tree Superimposed
on Coarse Tree in TCAM

Root

Node

Leaf1 Leaf2

Subarray3

Subarray1

Leaf3 Leaf4 Leaf5
Subarray2

Subarray4

Rules in Leaf1

Rules in Leaf3

Rules in Leaf2

Rules in Leaf4

Rule priority

Empty

FIGURE 4. Contiguous versus Interleaved Layout

Interleaved

Contiguous 1 2 1 2 1 2 1 2

1 1 1 1 2 2 2 2

rules each where each leaf’s rules are shaded differently.

The numbers show the relative priority of each rule in its

leaf. In interleaved layout, the four leaves result in a batch

size of 4. The book-keeping data structures hold pointers to

the start of each priority-level batch.

Making room in the interleaved layout for adding a rule

amounts to moving an empty entry to the right priority-level

batch. Assume that a new rule’s priority is higher than that

of an empty entry and that higher-priority rules are at the top

of the subarray. Accordingly, we move each empty entry to

the desired batch by first swapping the empty entry with the

top-most rule of the empty entry’s batch (such swapping is

well known [9]). Because the top-most rule stays in its

batch, in which all the rules are at the same priority level,

the swap does not violate the top-most rule’s priority. Then,

we successively swap the empty entry with the top-most

rule of every batch between the empty entry’s batch and the

desired batch. Continuing with Figure 4’s example, Figure 5

shows the addition of a rule to Leaf1 at priority 1 by succes-

sively swapping the top-most rules of priority 1 and priority

2 batches, and an empty entry. These swaps move the top-

most rule of a higher priority level to the top-most position

of the next lower priority level. The moved rule abuts its

batch from below, producing the effect of the rule moving

from the top of its batch to the bottom and of essentially

sliding the batch down by one position (as seen in Figure 5).

Because the rules in a batch are at the same priority level,

these swaps do not cause any priority inversion. At the same

time, the number of swaps for each empty entry is bound by

the number of batches i.e., binth. For the case where the new

rule’s priority is lower than that of an empty entry, we anal-

ogously swap the bottom-most rules of the relevant batches.

Thus, interleaving is fundamental to bounding the number

of rule movements to the small binth of the fine tree.

We briefly note that to prevent the accumulation of new

leaves to hold the displaced rules, we opportunistically

merge leaves that become empty upon rule deletions.

Because the new leaves are in the fine tree and are recorded

only in the book-keeping structures and not in the TCAM,

the merging of such leaves do not affect the TCAM.

3.3 Updating the TreeCAM
Updates add or delete rules (changing a rule can be emu-

lated by a delete followed by an add). Deletions simply

invalidate the TCAM entry or entries, if there are replicas.

Such invalidations leave empty entries scattered throughout

the TCAM and are tracked in the book-keeping structures.

We show our complete algorithm for adding a rule in

Figure 6. For additions, we first identify the separable tree

to which the new rule belongs. This identification is static

based on fields in which the rule has wildcards. We then

identify the coarse tree leaf in which the rule falls. We use a

similar process to identify the target fine tree leaf. While

these pre-processing steps are best done in software, we can

also leverage our TCAM to optimize the steps by querying

the root node in the TCAM to find the target subarray and

then comparing (in software) the rule with the fine-tree leaf

boundaries in the subarray (lines 1-3 in Figure 6). If the rule

falls in multiple leaves then we repeat the rest of the process

for each leaf. The simplicity of our sort-based heuristic

makes these pre-processing steps reasonably low in effort.

Once the target fine-tree leaf is known, there are three

cases in the order of increasing difficulty: (1) the target leaf

has some empty entries (i.e., no re-balancing), (2) the target

leaf is full but some other leaf within the same subarray has

some empty entries, requiring re-distribution of the rules

among the subarray’s leaves (i.e., local re-balancing), and

(3) the target leaf and its subarray are full but some other

subarray has some empty entries, requiring re-distribution

of the rules among the subarrays (i.e., global re-balancing).

These cases can be ascertained by examining the book-

keeping structures. The case where there are no empty

entries in the entire TCAM requires a larger TCAM and

cannot be addressed by re-balancing (line 4 in Figure 6).

3.3.1 No Re-balancing

In the first case, even if there are some empty entries in

the leaf, the newly added rule has to be placed in a position

that correctly orders the rule with respect to the other rules

FIGURE 5. Rule Addition in Interleaved Layout

Rule priority

After

Before

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2 3

New highest-
priority rule

Rules in Leaf1

Rules in Leaf3

Rules in Leaf2

Rules in Leaf4
Empty

[1] Identify separable tree

[2] Query TCAM to get matching coarse tree leaf nodes and target

subarrays

[3] For each target subarray, identify fine tree leaf nodes by com-

paring rule boundaries with those of fine tree nodes

[4] If there is no space in the entire TCAM, rule cannot be added,

else there are 3 cases:

Case I: No re-balancing: space in the target leaf

[5] Create space for the new rule by repeated swaps to move

empty entry in to the desired batch for the new rule

[6] Add the new rule at the newly created batch

[7] Update batch boundaries

Case II: Local re-balancing: space in the target subarray

[8] Create a new leaf node for the added rule

[9] Adjust boundaries of the neighboring node and identify rules

that are to be removed from the neighboring node

[10] Repeat steps [5] - [7] for each added rule in the new leaf and

delete the rule from the neighboring leaf

Case III: Global re-balancing: space in some other subarray

[11] Identify subarray with empty entries and adjust boundaries

of its neighbor that is closer to the target subarray to create

space; Repeat [8] - [10] to add rules into the subarray

[12] Repeat [11] until there is space in the target subarray

[13] Repeat [8] - [10] at the target subarray

FIGURE 6. Update Algorithm for Rule Addition

in the target leaf. We employ repeated swaps to move an

empty entry to the desired batch as described in Section 3.2

(lines 5-7 in Figure 6). As discussed before, the number of

swaps in this case is bound by the binth. Because each swap

with an empty entry entails a read and a write, the update

effort in this case is bound by 2*binth TCAM operations.

3.3.2 Local Re-balancing

In the second case of local re-balancing, to make room

for the newly-added rule in the target leaf, we choose to dis-

place the rule closest to a boundary of the target leaf to a

neighboring leaf (i.e., adjacent in the sorted order). If any

other rules in the target leaf fully or partially overlap with

the displaced rule then those rules are also displaced (par-

tially overlapping rules are replicated in the new leaf). Our

simulations showed that at most only two rules are dis-

placed. Because the subspace covered by a leaf must be

contiguous, the displaced rule(s) must be added to a neigh-

boring leaf and not to an arbitrary, non-neighboring leaf that

is not full. However, if we were to move the rule(s) into a

neighboring leaf, then in case the neighbor is full then we

would have to ripple more displacements all the way to the

leaf with some empty entries. Such rippling would incur

many moves because there are many fine-tree leaves per

subarray (256 16-rule leaves in a 4K-entry subarray).

We avoid such high effort based on the key observation

that despite all the displacements the rules stay within the

subarray and, as such, packets accessing the subarray are

guaranteed to search the rules. Therefore, instead of displac-

ing the rules from the target leaf to its pre-existing neighbor,

we create a new leaf adjacent to the target leaf to hold the

displaced rules. This creation involves updating the fine

trees to adjust the boundaries of the target leaf and create the

new leaf. In Figure 7, we add Rnew by creating Leafnew

which corresponds to the new cut at Xnew, and displacing R2

to Leafnew.

One may think that because of our above observation,

there is no need to create the new leaf and even this book-

keeping effort can be avoided because packet lookups

would occur correctly even without the new leaf. Such an

approach, however, would essentially imply that the target

leaf now has rules in excess of its capacity. The excess

would grow unboundedly with future updates, forcing

update effort to grow unboundedly even for the simple first

case of no re-balancing. Therefore, creating the new leaf is

important for bounding the update effort.

To adjust the target leaf’s boundaries in the fine trees, we

shrink the leaf’s boundary, vacating some subspace, and

create the new leaf covering the vacated subspace. In

Figure 7, Leaf1’s boundary shrinks from X1 to Xnew and

Leafnew covers the vacated space containing R2. All of these

changes are restricted to the fine trees whereas the TCAM

remains unaffected because the coarse-tree leaf boundaries

have not changed. There is, however, one change to the

TCAM: To avoid unbounded increase in update effort as

described above, the rules belonging to new leaf should be

moved from TCAM entries corresponding to the target leaf

to the entries corresponding to the new leaf. In doing so, we

need to ensure that the rules are ordered correctly with

respect to the other rules in the entire subarray. Fortunately,

because the new leaf covers the subspace vacated by the

original target leaf, the new leaf does not overlap with (1)

the modified target leaf or (2) any other leaf in the subarray.

While the first part of this claim is obvious, the second part

is true because the other leaves do not overlap with the orig-

inal target leaf which fully contains the new leaf. Therefore,

the rules in the new leaf need be ordered only with respect

to each other but not with rules in the other leaves (lines 8-

10 in Figure 6). This ordering effort is low because our

interleaved layout bounds the number of swaps needed for

one rule to the binth which is small. Because we find that at

most only two rules are displaced in our simulations, we

require 2*binth swaps to add the displaced rules in the new

leaf, and another binth swaps to add the new rule. Further,

we require two TCAM invalidations (two writes) to remove

the displaced rules from the target leaf. Therefore, the

update effort in this case is 6*binth+2.

3.3.3 Global Re-balancing

The third case of global re-balancing, where both the tar-

get leaf for the newly added rule and the target leaf’s subar-

ray are full but another subarray has some empty entries,

requires the empty entries to be rippled to the target subar-

ray. To this end, we displace rules from one subarray to the

next, working backwards from the subarray with the empty

entries to the target subarray. In Figure 8, to add Rnew to

subarray2, we displace rules from subarray2 to subarray3

and so on. Similar to the second case, we displace rules

closest to the boundaries of each subarray.At each subarray,

we apply our second case to add the displaced rules (lines

11-13 in Figure 6).

The update effort in the third case is bound by update

effort per subarray times the number of subarrays. Thanks

to our interleaved layout, the first term depends only on

binth which is small for our fine tree. The second term

grows slowly with classifier size because larger TCAMs

employ larger subarrays to reduce area and power overhead.

Recall from Section 3.3.2 that update effort per subarray is

6*binth+2 (= 50 for binth of 8). Assuming 25 subarrays for

FIGURE 7. Local Re-balancing

X

Y

Xnew X1 X2

Root
{Xnew,X1,X2}

{Rnew,R1} {R2} {R3,R4} {R5,R6}

R1

R2

R3

R4

R5

R6

Rnew

Leaf1 Leaf2 Leaf3Leafnew

100,000 rules, the overall update effort in the case of global

re-balancing is 1250 TCAM operations. Thus, for a

100,000-rule classifier, both the common-case effort (first

two cases) and the worst-case effort (third case) are low.

As we show in Section 5.2, TreeCAM’s low update effort

implies that lookup bandwidth lost to updates and the

update latency are low (Section 1). We show in Section 5.3

that the storage overhead of our fine trees is low. In

Section 3.3.5, we address the hold-up of the lookup

accesses into the TCAM during the TCAM moves for

updates.

3.3.4 Contrast to Other Schemes

Because of the lack of rule overlap information readily

implied by decision trees (i.e., leaves do not overlap), previ-

ous TCAM schemes incur high update effort. As we dis-

cussed before, simply placing empty entries without

exploiting rule overlap incurs numerous moves in the worst

case of empty-entry exhaustion. While a previous TCAM

scheme [11] exploits rule overlap, it requires significant

effort — quadratic in the number of rules — to maintain and

update overlap information. More importantly, being a

TCAM-only scheme, it does not have the benefit of small,

non-overlapping leaves afforded by the fine tree part of our

scheme. Consequently, the sets of overlapping rules tend to

be large in the scheme, which increases both the update

effort in keeping the rules ordered and the book-keeping

effort in maintaining overlap information. As mentioned

before, Extended TCAM partitions the classifier space to

reduce TCAM power but does not address updates. Apply-

ing our idea of fine partitioning (i.e., the fine tree) to reduce

the scheme’s update effort results in increased lookup

accesses due to using the same partitioning for both lookups

and updates (see Section 5.2). In contrast, our dual trees

decouple lookups from updates to achieve low update effort

without worsening lookup efficiency. Further, because Tree-

CAM does not require any batching of updates to amortize

the update effort [18], TreeCAM does not incur the latency

penalties of batching.

3.3.5 Path-by-path Updates

The remaining issue is that even though the update effort

is low, a large classifier may incur enough TCAM moves to

hold up packet lookups (e.g., 1250 TCAM operations in the

worst case of global re-balancing across 25 subarrays with a

binth of 8 for 100,000 rules). To address this issue, we make

our updates non-atomic by balancing our tree path-by-path

which involves multiple singleton rule movements with

which packet lookups can be interspersed in time. To ensure

that the TreeCAM is in a consistent state after each single-

ton movement, we update the tree path corresponding to the

rule being moved.

We describe making non-atomic updates using our third

case of global re-balancing, as the first two cases are sub-

sumed by the third. In the third case, rules are displaced

from one subarray to the next, rippling over multiple subar-

rays. We ensure that the TreeCAM is consistent after every

set of rule displacements between a pair of subarrays

(source and destination). We use a small, back-up TCAM to

hold the set of to-be-displaced rules so that interspersed

packets always search the back-up TCAM to avoid omitting

the in-flight rules. The back-up TCAM holds at most as

many rules as the binth though our simulations show that

only two rules are displaced (Section 3.3.2). For each set of

displacements, we perform the following steps one rule at a

time:

(1) place the to-be-displaced rule into the back-up TCAM;

(2) shrink the boundary of the source subarray;

(3) remove (invalidate) the rule from the source;

(4) add the rule to the destination subarray;

(5) expand the boundary of the destination subarray; and

(6) invalidate the back-up TCAM.

Step 1 must occur first so that, because the rules have not

been removed from the tree, the backing up of the rules may

occur non-atomically one at a time (i.e., interspersed with

packet lookups). Steps 2-3 fix the coarse tree path for the

source subarray and Steps 4-5 for the destination subarray.

Because the in-flight rules are backed up in Step 1, Steps 2-

5 can occur in any order. Step 6 must occur after Steps 2-5.

Thanks to the back-up TCAM, most of the TCAM opera-

tions in these steps can be performed non-atomically, inter-

spersed with packet lookups. The only atomic operations

are in Step 4 where adding a rule may require moving an

empty entry into the batch corresponding to the rule’s prior-

ity level. This move requires a series of swaps of the empty

entry and some rules in the subarray. The swapped rules are

some arbitrary rules in the subarray, different from the dis-

placed rules, and have not been backed up. Therefore, each

such swap, entailing a TCAM read, a TCAM write, and a

TCAM invalidation, must be atomic (i.e., cannot be inter-

spersed with a packet lookup). Because the swaps comprise

only three TCAM operations, this atomicity constraint can

be satisfied easily by buffering the small number of inter-

vening packets to avoid packet drops.

As mentioned before, CoPTUA provides non-atomic

updates for conventional TCAMs. However, to provide non-

atomic updates, CoPTUA worsens the common-case update

effort (e.g., up to 50x more TCAM moves than conventional

TCAMs). In contrast, TreeCAM leverages the fine tree to

reduce the update effort enabling non-atomic updates with-

out sacrificing the common case.

FIGURE 8. Global Re-balancing

Root

Subarray1

Leaf1 Leaf2

Subarray2

Leaf3 Leaf4

Subarray3

Rnew

Leaf5 Leaf6

Subarray4

4 EXPERIMENTAL METHODOLOGY
Because TreeCAM uses both TCAMs and decision trees,

we compare TreeCAM against modern partitioned TCAMs,

and a recent decision tree proposal (EffiCuts). Because Effi-

Cuts outperforms prior algorithmic schemes, we do not

compare to those schemes. We use Extended TCAMs as our

representative of partitioned TCAMs. We also show unopti-

mized TCAM (all the subarrays are accessed for every

packet lookup) to validate our Extended TCAM implemen-

tation. We use software simulation for our evaluation. We

implement EffiCuts capturing all the optimizations and heu-

ristics. We set the parameters as per [17]: binth 16,

space_factor 8, and largeness_fraction 0.5 for all fields

except source IP and destination IP which use 0.05.

We convert the source- and destination-port fields to pre-

fixes in all the TCAM schemes (unoptimized TCAMs, Tree-

CAM, and Extended TCAM) using simple range expansion.

To save implementation effort, we do not include other tech-

niques to reduce range expansion [6]. However, our compar-

isons are fair because all TCAM schemes would benefit

similarly from the techniques. The TCAM schemes use 4K-

entry subarrays (1K-8K are common in today’s products).

In Extended TCAM, a rule-grouping algorithm distrib-

utes rules to different TCAM subarrays to reduce the num-

ber of subarray accesses. We implement the algorithm and

set α to 0.8 and β to 2.0, as per [12]. In addition, Extended

TCAM provides support for range comparison in the

TCAM cells to eliminate range expansion. Because such

support will likely increase area power, and cost, we do not

include this support in any of the TCAM schemes, and

instead use simple range expansion. Because unoptimized

TCAMs and TreeCAM would also be benefitted similar to

Extended TCAM, our comparisons are fair.

We employ EffiCuts’ separable trees and selective tree

merging in TreeCAM. We expand the port fields during tree

building. We use the same largeness_fraction as EffiCuts.

We set binth to 8 in our fine trees to achieve a good trade-off

between update effort and rule replication, as we show in

Section 5.4. Recall that fine-tree binth does not affect the

number of accesses in TreeCAM, unlike EffiCuts.

Because we do not have access to large real-world classi-

fiers, we use ClassBench [16] which generates representa-

tive classifiers. We generate classifiers for all the types,

namely, access control (ACL), firewall (FW) and IP chain

(IPC). To study the effect of classifier size, we generate

10,000-and 100,000-rule classifiers.

5 EXPERIMENTAL RESULTS
Recall from Section 1 that the key metrics for packet

classification are number of lookup accesses (a proxy for

packet throughput), power, and update effort. We begin by

comparing the number of lookup accesses per packet in

TreeCAM, EffiCuts, unoptimized TCAM and Extended

TCAM (Section 5.1). We use the number of accesses to

compare the schemes’ power. We compare the update

efforts of TreeCAM and the other TCAM schemes using the

number of TCAM operations per rule update (Section 5.2).

To analyse the storage efficiency of TreeCAM, we present a

breakdown of TreeCAM’s storage overhead and compare

those of with unoptimized TCAM and Extended TCAM

(Section 5.3). Finally, we study TreeCAM’s sensitivity to

binth and subarray size (Section 5.4).

5.1 Lookup Accesses
Figure 9 compares TreeCAM against EffiCuts, unopti-

mized TCAM, and Extended TCAM in terms of the worst-

case number of lookup accesses per packet. In the X axis,

we show twelve classifiers — five ACL, five FW, and two

IPC. We vary the classifier sizes as 10,000 and 100,000

within each category. The Y axis shows the worst-case num-

ber of lookup accesses per packet. For each classifier of a

specific size, we show four bars, from left to right, one each

for EffiCuts, unoptimized TCAM, Extended TCAM and

TreeCAM. EffiCuts’ and TreeCAM’s lookup accesses are

for all the separable trees (Section 2.1). We also show the

average across the classifiers for each classifier size.

We see that EffiCuts requires many more lookup

accesses than the TCAM schemes. Though SRAMs (used

by EffiCuts) can achieve higher throughput and lower power

than TCAMs, the sheer high number of accesses is likely to

degrade EffiCuts’ packet throughput and power without

aggressive, customized pipelining which may increase com-

plexity and cost. The number of lookup accesses in unopti-

mized TCAM increases linearly with the number of rules. In

some of the 100K-rule classifiers, unoptimized TCAM

requires as many lookup accesses as EffiCuts due to range

expansion. In contrast, Extended TCAM and TreeCAM

FIGURE 9. Lookup accesses for EffiCuts, Unoptimized TCAM, Extended TCAM, and TreeCAM

0
10
20
30
40
50
60
70
80
90

100
110
120
130

L
o
o
k
u
p
 A

c
c
e
s
s
e
s

10K 100K 10KACL 100K 10K 100K 10K 100KFW IPC Average

EffiCuts Unoptimized TCAM
Extended TCAM TreeCAM

require at most 8 accesses even for large classifiers

(Extended TCAM’s accesses relative to those of unopti-

mized TCAM are in line with [12]). These low numbers are

due to the search pruning of TreeCAM’s coarse tree and

Extended TCAM’s partitioning. While Extended TCAM is

slightly better than TreeCAM on average, this difference is

not significant as both schemes achieve low number of

accesses. Both TreeCAM and Extended TCAM achieve 2x

and 8x fewer accesses compared to unoptimized TCAM in

classifiers with 10,000 rules and 100,000 rules respectively.

Because TCAM power is directly proportional to the num-

ber of subarray accesses, TreeCAM and Extended TCAM

achieve similar factors of power reduction over unoptimized

TCAM. Because all the TCAM schemes pipeline the

accesses across subarrays (Section 2.2) and employ the

same subarray sizes for fair comparison, all of them would

achieve the same packet throughput. While TreeCAM and

Extended TCAM achieve similar number of accesses, the

next section shows that reducing Extended TCAM’s update

effort results in high number of accesses. In contrast, both

update effort and number of accesses remain low in Tree-

CAM.

5.2 Update Effort
We compare TreeCAM to two TCAM update schemes

— TCAM-basic and TCAM-ideal. TCAM-basic places a set

of empty entries for every so many non-empty entries.

Because TreeCAM incurs some storage overhead over

unoptimized TCAMs (Section 2.1), we include enough

empty entries to make the total storage of TCAM-basic and

TreeCAM equal. In TCAM-ideal, we adapt CAO_OPT

which avoids TCAM priority-ordering for non-overlapping

prefixes in longest prefix match [9]. We apply CAO_OPT to

packet classification by using the algorithm from [11] to

identify chains of overlapping rules. However, we make two

ideal assumptions in TCAM-ideal: (1) Enough empty

entries are always available at the end of every chain; and

(2) Updates do not cause chains to merge (such merges

would require all the merged chains’ rules to be reordered in

the TCAM which may move more rules than the longest

chain [11]). While Extended TCAM does not discuss

updates (the rule-grouping algorithm is not incremental), we

configure the algorithm to use fine partitioning to reduce

Extended TCAM’s update effort (similar to our fine tree).

We do not compare to EffiCuts for updates because the

paper does not discuss updates and re-balancing EffiCuts’

large trees is not straightforward. We do not compare to

CoPTUA due to its high update effort.

Because of the lack of publicly-available typical update

streams, we generate a worst-case rule update stream for a

given classifier and update scheme. The worst-case update

stream for TreeCAM adds rules to the left-most leaf of the

largest separable tree (Section 2.1) and removes rules from

the right-most leaf of the tree. The worst-case update stream

for TCAM-basic adds high-priority rules and removes low-

priority rules. The sizes of sets of empty and non-empty

entries in TCAM-basic do not impact the update effort for

such a stream [9]. The worst-case update stream for TCAM-

ideal adds rules to the smallest chain of overlapping rules,

and removes rules from the longest chain. For each stream,

we compute the maximum and average number of TCAM

operations per rule update.

In Table 1, we compare TCAM-basic, TCAM-ideal, and

TreeCAM in terms of maximum and average number of

TCAM operations per rule update for the worst-case update

stream. In addition, we show the number of empty entries

for TCAM-basic, the length of the longest chain of overlap-

ping rules which is relevant for TCAM-ideal, and the num-

ber of subarrays in the largest tree for TreeCAM. All the

schemes incur two operations (a read and a write) to move a

rule. In TCAM-basic, (1) the average number of moves

equals the length of contiguous non-empty entries and (2)

the maximum number of moves equals the total number of

rules with range expansion (as stated in [9]). In TCAM-

ideal, (1) the average number of moves equals half of the

longest chain length and (2) the maximum number of moves

equals the longest chain length. Note that the maximum

chain length is high in TCAM-ideal due to transitive depen-

dencies (i.e., if rule R1 overlaps with a lower-priority rule

R2, and if R2 overlaps with a much lower priority rule R3,

Table 1: Update Effort of TCAM-basic, TCAM-ideal and TreeCAM for respective Worst-case Update Stream
C

la
ss

ifi
er

 T
y
p

e

C
la

ss
ifi

er
 S

iz
e

TCAM-basic TCAM-ideal TreeCAM

#
 E

m
p

ty

S
lo

ts

A
v
g
 #

T
C

A
M

 O
p

s

M
a
x
 #

T
C

A
M

 O
p

s

M
a
x
.
C

h
a
in

L
en

g
th

A
v
g
 #

T
C

A
M

 O
p

s

M
a
x
 #

T
C

A
M

 O
p

s

#
S

u
b

-a
rr

a
y
s

A
v
g
 #

T
C

A
M

 O
p

s

M
a
x
 #

T
C

A
M

 O
p

s

 A
v
g
 r

el
.

T
C

A
M

-b
a
si

c

M
a
x
 r

el
.

T
C

A
M

-b
a
si

c

A
v
g
.
re

l.

T
C

A
M

-i
d

ea
l

M
a
x
 r

el
.

T
C

A
M

-i
d

ea
l

ACL 10K 44K 954 30K 67 68 134 3 19 91 0.02 0.003 0.3 0.7

100K 60K 5914 276K 166 166 332 19 179 684 0.03 0.002 1.0 2.5

FW 10K 68K 906 64K 90 90 180 3 25 112 0.03 0.002 0.3 0.6

100K 82K 6774 567K 295 294 590 29 282 1069 0.04 0.002 1.0 1.7

IPC 10K 43K 582 22K 62 62 124 1 8 24 0.01 0.001 0.1 0.2

100K 46K 6148 236K 137 134 274 11 99 385 0.02 0.002 0.7 1.3

then R1 needs to be ordered with R3, even though R1 does

not overlap with R3). In TreeCAM, we compute the average

number of moves by adding one rule which causes one rule

to be displaced at each subarray for half the subarrays. Sim-

ilarly, we compute the maximum number of moves by add-

ing as many rules as the replication factor, which is two for

TreeCAM, resulting in two rules to be displaced at each

subarray for all the subarrays. In each subarray, a new or

displaced rule takes at most 17 operations (8 swaps and 1

invalidation) (Section 3.3.2). At the right end of the table,

we show TreeCAM’s number of operations relative to those

of TCAM-basic and TCAM-ideal.

Because TCAM-basic does not leverage non-overlapping

rules, it incurs significantly more operations than TCAM-

ideal and TreeCAM (see Avg # TCAM Ops and Max #

TCAM Ops for TCAM-basic, TCAM-ideal, and TreeCAM

in Table 1). TreeCAM performs close to TCAM-ideal,

showing that TreeCAM’s fine tree fully exploits non-over-

lapping rules (in some cases TreeCAM is better because of

limiting the chain of overlapping rules to the binth).

Assuming update rate of 10 per ms and packet rate of 1

per 10 ns (Section 1) where each packet lookup makes 8

accesses in TreeCAM (Section 5.1) and each update makes

1069 TCAM operations (the highest among Max # TCAM

Ops for TreeCAM in Table 1), TreeCAM consumes less

than 2% of TCAM bandwidth for updates. Assuming each

TCAM operation takes 25 ns, update latency is less than 40

µs. Because our non-atomic updates require only a single

swap to be atomic (Section 3.3.5), TreeCAM requires only a

few packets to be buffered.

The above analysis does not include processing over-

head, including accesses to TreeCAM’s fine trees. We show

TreeCAM’s processing overhead per rule addition for

100,000-rule classifiers of each type in Table 2. We run our

update algorithm on AMD Opteron machines with 12 MB

of L2 cache, and 8G of memory. After cache warm up, our

fine trees easily fit in today’s CPU caches (We show the

storage overhead of our fine trees in Section 5.3). Also,

because of the close correpondence between individual

coarse tree (TCAM) and fine tree operations, the fine tree

accesses are similar in number to TCAM operations in

Table 1. Overall, our processing overhead fits well within

the update interval of 100 µs (10 updates per 1 ms).

Finally, we run Extended TCAM’s rule-grouping algo-

rithm with a subarray size (and binth) of 8 rules, which lim-

its makes the update effort same as that for TreeCAM.

However, the finer partitions result in more accesses per

packet. In Table 3, we show the number of accesses for this

Extended TCAM variant and TreeCAM (repeated from

Figure 9) averaged over 100,000-rule classifiers of each

type. Because Extended TCAM’s single partitioning for

both lookups and updates does not decouple the two, reduc-

ing the update effort ends up degrading lookup efficiency. In

contrast, TreeCAM’s dual tree versions enable this decou-

pling to perform well in both lookups and updates.

5.3 Storage Overhead
We compare the storage overheads of TreeCAM and

Extended TCAM over unoptimized TCAM. There are three

sources of storage overhead in any TCAM scheme: range

expansion, rule replication, and fragmentation of TCAM

subarrays due to coarse-tree roots in TreeCAM

(Section 2.2) and the index tables in Extended TCAM.

While range expansion is common to all the TCAM

schemes, rule replication and fragmentation occur only in

Extended TCAM and TreeCAM. The overall overhead is

the product of these three components. In Table 4, the col-

umns show the relevant components for each scheme and

the overall overhead of Extended TCAM and TreeCAM rel-

ative to unoptimized TCAM. The rows show the average

across the classifiers of a type and size. At the bottom, we

also show the average (geometric mean) across classifiers of

the same size.

From Table 4, we observe that firewall classifiers incur

higher range expansion than the other classifier types. All

the schemes incur the same range expansion. Specifically,

TreeCAM does not incur additional expansion because our

sort-based heuristic aligns the cuts with prefix boundaries

(Section 2.1). We see that both Extended TCAM and Tree-

CAM incur modest rule replication. Extended TCAM’s

rule-grouping algorithm and TreeCAM’s separable trees

reduce overlapping rules, thereby eliminating rule replica-

tion. Both Extended TCAM and TreeCAM incur higher

fragmentation overhead in 10,000-rule classifiers than in

100,000-rule classifiers. TreeCAM’s sort-based heuristic

partitions the rules equally among subarrays without adding

fragmentation overhead beyond that of Extended TCAM.

The overhead is lower in 100,000 rule classifiers because

the additional subarrays are a smaller fraction of all the sub-

arrays. Lower overheads for larger classifiers is a good trend

because the absolute TCAM sizes are larger for larger clas-

sifiers which is where overhead matters. Both Extended

TCAM and TreeCAM incur 35% average storage overhead

over unoptimized TCAM, which is reasonable given their

8x fewer accesses (lower power).

We show the storage overhead of TreeCAM’s fine trees

in Table 5 for 100,000-rule classifiers of each type. We

require 16 bytes per rule, and 64 bytes per internal node for

node boundaries and pointers. Assuming no rule replication

and no range expansion, the size of our fine trees with 125

Table 2: Processing Overhead per Rule Addition

ACL (µs) FW (µs) IPC (µs)

37 57 38

Table 3: Lookup Accesses in Finely Partitioned

Extended TCAM and TreeCAM

Scheme ACL FW IPC Avg.

Ext. TCAM 35 43 15 35

TreeCAM 5 7 5 6

nodes for 100,000 rules with binth of 8 is

125*64+100,000*16 ~= 2 MB. Replication and range

expansion increase the overhead further, as shown in

Table 5. Firewall classifiers exhibit slightly higher overhead

than the others due to range expansion. However, overall

our fine tree sizes are small, and fit in the control memory of

today’s routers. The remaining overhead due to the book-

keeping data structures (for tracking empty entries and link-

ing fine tree leaves to subarrays) is negligible.

5.4 Sensitivity
We analyse TreeCAM’s sensitivity to binth and TCAM

subarray size. We observe that binth and subarray size do

not affect the number of accesses required for packet match.

Binth affects storage overhead (rule replication) and update

effort (number of overlapping rules). Smaller values of

binth reduce update effort at the cost of increased rule repli-

cation. Rule replication does not change for binth greater

than eight. However, there is a sharp increase in rule replica-

tion for binth less than eight. Subarray size affects update

effort, but does not significantly impact storage overhead.

In Figure 10, we show how update effort varies with sub-

array size. Because the update effort for smaller classifiers

is low, we only show the sensitivity results for 100,000-rule

classifier from each classifier type along the X-axis. We

vary subarray size as 2K, 4K and 8K. The Y-axis shows the

number of TCAM operations per rule update, normalized to

those for TreeCAM with 4K subarrays (default). We show

both the average and maximum number of TCAM opera-

tions for the worst-case update stream described in

Section 5.2. The number of operations decreases almost lin-

early with subarray size. Thus, the current trends of larger

classifiers and TCAMs are favorable for TreeCAM.

In Figure 11, we show how update effort varies with

binth. Along the X-axis, we show one typical 100,000-rule

classifier from each category. We vary binth as 8, 16 and 32.

Along the Y-axis, we show the number of TCAM operations

per rule update normalized to those for TreeCAM, with

binth = 8 (default). We show both the average and maxi-

mum number of operations. The number of operations

increases with larger binth. Because we assume that all the

rules in a fine-tree leaf are overlapping, increasing binth

increases the update effort.

6 RELATED WORK
A plethora of TCAM and algorithmic approaches have

been proposed for packet classification. Targeting updates,

Chain Ancestor Ordering [9] exploits non-overlapping rules

to reduce ordering overhead for longest prefix match.

Another scheme [11], which we have previously discussed,

proposes an algorithm to find chains of overlapping rules

and to assign priorities to the rules on the basis of the posi-

tion in the chain. During packet lookups, the scheme per-

forms a binary search over priority levels, looking up the

entire TCAM at each step, to find the highest-priority

match. However, long chains in large classifiers incur many

full-TCAM accesses per lookup. We have also discussed

CoPTUA which provides non-atomic updates. Other work

[6] reduces range expansion in TCAM by representing

ranges as ternary values instead of prefixes.

Among the partitioned TCAM schemes, we have previ-

ously discussed Extended TCAM. CoolCAM [20] reduces

power for longest prefix match by partitioning the classifier

via either bit selection or prefix tries. These schemes do not

address updates.

Previous algorithms to address this problem can be clas-

sified as being based on bit vectors, cross producting, tuple

search, and decision trees. Bit-vector approaches [5] pro-

duce large bit vectors encoding match on each dimension

which are then ANDed. Cross-producting approaches [3]

Table 4: Storage Overheads of Extended TCAM and TreeCAM

Classi-

fier

Size Range

Expansion

Replication Overhead Fragmentation Overhead Overhead over UnOpt. TCAM

Ext. TCAM TreeCAM Ext. TCAM TreeCAM Ext. TCAM TreeCAM

ACL 10K 1.61 1.05 1.21 3.30 2.99 3.47 3.62

100K 1.59 1.04 1.08 1.40 1.30 1.46 1.40

FW 10K 3.13 1.12 1.08 3.02 3.16 3.38 3.41

100K 3.32 1.13 1.04 1.40 1.24 1.58 1.29

IPC 10K 1.16 1.02 1.01 4.02 4.59 4.01 4.64

100K 1.17 1.01 1.00 1.29 1.36 1.30 1.36

Aver-

age

10K 1.80 1.06 1.10 3.42 3.51 3.63 3.86

100K 1.84 1.06 1.04 1.36 1.30 1.44 1.35

Table 5: Storage Overhead of TreeCAM’s Fine Trees

ACL (ΜΒ) FW (ΜΒ) IPC (ΜΒ)

4 8 3 FIGURE 10. Update Effort versus Subarray Size

0

1

2

3

N
o
rm

.
N

o
 T

C
A

M
 O

p
s

ACL FW IPC ACL FW IPC
Average Maximum.

2K 8K4K (default)

look up first per-dimension tables for all the dimensions in

parallel and then one or more cross-product tables to com-

bine the first step’s results. Grid-of-tries schemes [1]

employ tries to prune the cross product of source IP and

destination IP fields and then linearly searches the matching

rules. However, the bit vectors, the cross-product tables, and

the tries grow rapidly with classifier size (prohibitive for

100,000 rules) [15]. Another approach [14] compresses the

cross-product tables which requires them to be searched

instead of being indexed, increasing accesses. Tuple-search

[13] partitions the classifier based on prefix lengths. Packets

hash on the prefix bits to determine the matching partition

which is linearly searched, However, unconstrained parti-

tion size and hash collisions results in unpredictable perfor-

mance. We have previously discussed EffiCuts which builds

on HiCuts and HyperCuts. Other approaches [8][19] opti-

mize decision trees but do not address updates.

7 CONCLUSION
Previous TCAM-based and algorithmic schemes for

packet classification do not perform well in both lookup

efficiency (number of memory accesses and power) and

update effort. We proposed TreeCAM which performs well

in both lookups and updates via three novel ideas. Dual ver-

sions of TreeCAM’s decision tree decouple lookups and

updates. A coarse version with a few thousand rules per leaf

achieves efficient lookups and a fine version with a few tens

of rules per leaf reduces update effort. Combined with the

fine version’s few rules per leaf, interleaved layout of the

rules in the TCAM enables us to bound our worst-case

update effort. Path-by-path updates enables update work to

be interspersed with packet lookups (i.e, non-atomic

updates), eliminating packet buffering or packet drops dur-

ing updates.

Using simulations of 100,000-rule classifiers, we showed

that TreeCAM performs well in both lookups and updates:

(1) 6-8 TCAM subarray accesses per packet matching mod-

ern TCAMs, (2) close to the worst-case update effort of an

idealized TCAM while requiring little buffering of packets.

By performing well in both metrics of lookup efficiency and

update effort, TreeCAM provides a scalable approach to

packet classification. With increasing classifiers size and

line rates, TreeCAM will likely be an attractive option.

ACKNOWLEDGMENTS
We thank our shepherd, Simon Leinen, and the anony-

mous reviewers for their valuable comments.

REFERENCES
[1] F. Baboescu, S. Singh, and G. Varghese. Packet classification

for Core Routers: Is there an alternative to CAMs? In Proceed-

ings of IEEE INFOCOMM ’03, pages 53 – 63 vol.1, 2003.

[2] Cisco. Personal communication. Dec. 2010.

[3] P. Gupta and N. McKeown. Packet classification on multiple

fields. In Proceedings of ACM SIGCOMM ’99, pages 147 –

160, 1999.

[4] P. Gupta and N. McKeown. Classifying packets with hierar-

chical intelligent cuttings. Micro, IEEE, 20(1):34 – 41, 2000.

[5] T. V. Lakshman and D. Stiliadis. High-speed policy-based

packet forwarding using efficient multi-dimensional range

matching. In Proceedings of ACM SIGCOMM ’98 , pages 203

– 214, 1998.

[6] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary.

Algorithms for advanced packet classification with ternary

CAMs. In Proceedings of ACM SIGCOMM ’05, pages 193 –

204, 2005.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:

enabling innovation in campus networks. SIGCOMM Comput.

Commun. Rev., 38(2):69–74, 2008.

[8] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li. Packet classification

algorithms: From theory to practice. In Proceedings of IEEE

INFOCOMM ’09, pages 648 – 656, 2009.

[9] D. Shah and P. Gupta. Fast updating algorithms for TCAMs.

IEEE Micro, 21:36–47, 2001.

[10] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet clas-

sification using multidimensional cutting. In Proceedings of

ACM SIGCOMM ’03, pages 213 – 224, 2003.

[11] H. Song and J. Turner. Fast filter updates for packet classifica-

tion using TCAM. In Proceedings of IEEE GLOBECOM ’06,

pages 1 –5, 2006.

[12] E. Spitznagel, D. Taylor, and J. Turner. Packet classification

using extended TCAMs. In Proceedings of IEEE International

Conference on Network Protocols - 2003, pages 120 – 131,

2003.

[13] V. Srinivasan, S. Suri, and G. Varghese. Packet classification

using tuple space search. In Proceedings of ACM SIGCOMM

’99, pages 135 – 146, 1999.

[14] D. Taylor and J. Turner. Scalable packet classification using

distributed crossproducing of field labels. In Proceedings of

IEEE INFOCOMM ’05, pages 269 – 280 vol. 1, 2005.

[15] D. E. Taylor. Survey and taxonomy of packet classification

techniques. ACM Comput. Surv., 37:238–275, September

2005.

[16] D. E. Taylor and J. S. Turner. Classbench: a packet classifica-

tion benchmark. IEEE/ACM Transactions on Networking

(TON), 15(3):499 – 511, 2007.

[17] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar. Efficuts:

optimizing packet classification for memory and throughput.

In Proceedings of ACM SIGCOMM 2010, pages 207–218,

2010.

[18] Z. Wang, H. Che, M. Kumar, and S. Das. Coptua: Consistent

policy table update algorithm for TCAM without locking.

Computers, IEEE Transactions on, 53(12):1602 – 1614, 2004.

[19] T. Woo. A modular approach to packet classification: algo-

rithms and results. In Proceedings of IEEE INFOCOMM ’00,

pages 1213 – 1222 vol.3, 2000.

[20] F. Zane, G. Narlikar, and A. Basu. Coolcams: power-efficient

TCAMs for forwarding engines. In Proceedings of IEEE IN-

FOCOM 2003, pages 42 – 52 vol.1, 2003.

FIGURE 11. Update Effort versus binth

0

1

2

3

4

5

N
o
rm

.
N

o
.
T

C
A

M
 O

p
s

8 (default) 16 32

ACL FW IPC ACL FW IPC
Average Maximum

	1 Introduction
	2 Coarse Tree Version
	2.1 Decision Tree Algorithm
	2.2 TCAM Organization

	3 Fine Tree Version
	3.1 Building and Mapping the Fine Tree
	3.2 Interleaved Rule Layout in TCAM
	3.3 Updating the TreeCAM
	3.3.1 No Re-balancing
	3.3.2 Local Re-balancing
	3.3.3 Global Re-balancing
	3.3.4 Contrast to Other Schemes
	3.3.5 Path-by-path Updates

	4 Experimental Methodology
	5 Experimental Results
	5.1 Lookup Accesses
	5.2 Update Effort
	5.3 Storage Overhead
	5.4 Sensitivity

	6 Related Work
	7 Conclusion
	References

