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Abstract—Deterministic Finite Automatons (DFAs) and Non-
deterministic Finite Automatons (NFAs) are two typical automa-
tons used in the Network Intrusion Detection System (NIDS).
Although they both perform regular expression matching, they
have quite different performance and memory usage properties.
DFAs provide fast and deterministic matching performance but
suffer from the well-known state explosion problem. NFAs are
compact, but their matching performance is unpredictable and
with no worst case guarantee. In this paper, we propose a new
automaton representation of regular expressions, called Tunable
Finite Automaton (TFA), to resolve the DFAs’ state explosion
problem and the NFAs’ unpredictable performance problem.
Different from a DFA, which has only one active state, a TFA
allows multiple concurrent active states. Thus, the total number
of states required by the TFA to track the matching status is
much smaller than that required by the DFA. Different from
an NFA, a TFA guarantees that the number of concurrent
active states is bounded by a bound factor b that can be tuned
during the construction of the TFA according to the needs of the
application for speed and storage. Simulation results based on
regular expression rule sets from Snort and Bro show that with
only two concurrent active states, a TFA can achieve significant
reductions in the number of states and memory usage, e.g., a
98% reduction in the number of states and a 95% reduction in
memory space.

I. INTRODUCTION

Deep Packet Inspection (DPI) is a crucial technique in
today’s Network Intrusion Detection System (NIDS), where
it compares incoming packets byte-by-byte against patterns
stored in a database to identify specific viruses, attacks and
protocols. Early DPI methods rely on exact string matching
[1] [2] [3] [4] for attack detection, whereas recent DPI meth-
ods use regular expression matching [5] [6] [7] [8] because
the latter provides better flexibility in representing the ever-
evolving attacks [9]. Regular expression matching has been
widely used in many NIDSes such as Snort [10], Bro [11], and
several network security appliances from Cisco systems [12]
and has become the de facto standard for content inspection.

Despite its flexible attack representation, regular expression
matching introduces significant computational and storage
challenges. Deterministic Finite Automatons (DFAs) and Non-
deterministic Finite Automatons (NFAs) are two typical rep-
resentations of regular expressions. Given a set of regular
expressions, we can easily construct the corresponding NFA,
from which the DFA can be further constructed using subset
construction scheme [13]. DFAs and NFAs have quite different
performance and memory usage characteristics. A DFA has at
most one active state during the entire matching and, therefore,

requires only one state traversal for each character processing,
resulting in a deterministic memory bandwidth requirement.
The main problem of using a DFA to represent regular
expressions is the DFA’s severe state explosion problem [5],
which often leads to a prohibitively large memory requirement.
In contrast, an NFA represents regular expressions with much
less memory storage. However, this memory reduction comes
with the price of a high and unpredictable memory bandwidth
requirement. This is because the number of concurrent active
states in an NFA is unpredictable during the matching. Pro-
cessing a single character in a packet with an NFA may induce
a large number of state traversals, which translate into a large
number of memory accesses and limit the matching speed.

Recently, many research works have been proposed in litera-
ture pursuing a tradeoff between the computational complexity
and storage complexity for the regular expression matching
[51 [6] [7] [8] [9] [14]. Among these proposed solutions,
some [8] [9] have a motivation similar to ours, i.e., to design
a hybrid finite automaton fitting between DFAs and NFAs.
These automatons, though compact and fast when processing
common traffic, suffer from poor performance in the worst
cases. This is because none of them can guarantee an upper
bound on the number of active states during the matching
processing. This weakness can potentially be exploited by
attackers to construct a worst-case traffic that can slow down
the NIDS and cause malicious traffic to escape from the
inspection.

In fact, the design of a finite automaton with a small (larger
than one) but bounded number of active states remains an open
and challenging problem. In this paper, we propose Tunable
Finite Automaton (TFA), a new automaton representation, for
regular expression matching to resolve the DFAs’ state explo-
sion problem and NFAs’ unpredictable performance problem.
The main idea of TFA is to use a few TFA states to remember
the matching status traditionally tracked by a single DFA state.
As a result, the number of TFA states required to represent
the information stored on the counterpart DFA is much smaller
than that of DFA states. Unlike an NFA, a TFA has the number
of concurrent active states strictly bounded by a bound factor b,
which is a parameter that can be tuned during the construction
of the TFA according to the needs for speed and storage.

Our main contributions in this paper are summarized below.

(1) We introduce TFA, which to the best of our knowledge,
is the first finite automaton model with a clear and tunable
bound on the number of concurrent active states (more than
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one) independent of the number and patterns of regular expres-
sions. TFA is a general finite automaton model, which covers
DFA and NFA as two special cases. It becomes DFA when the
bound factor b is set to 1 and NFA when b is set to infinite.
In addition, a TFA can be equivalently constructed from any
NFAs and therefore supports all regular expressions.

(2) A mathematical model is built to analyze the set split
problem (SSP), the most critical step in the TFA construction.
We prove that the SSP problem is NP-hard and propose a
heuristic algorithm to approximately solve it.

(3) We develop a novel state encoding scheme to facilitate
the implementation of a TFA. With the state encoding, a
TFA can be stored in a compacted memory, and the run-time
overheads of TFA operations are significantly reduced.

(4) The proposed TFA is evaluated using regular expression
sets from Snort and Bro. Simulation results show that a TFA
can achieve significant reductions in the number of states
and memory usage even with the simplest TFA (only two
concurrent active states).

The rest of the paper is organized as follows. Section II
reviews the related work. Section III presents the motivation
and main idea of the paper. Section IV explains the tech-
nical details of the TFA, including its mathematical model,
construction scheme, and operation procedure. In section V,
we formalize an important problem in the TFA design: set
split, and propose a heuristic algorithm to solve it. Section VI
presents the state encoding scheme. Section VII presents the
simulation results. Finally, section VIII concludes the paper.

II. RELATED WORK

Most of the research today in regular expression matching
focuses on reducing the memory usage of DFAs and can be
classified into the following categories:

(1) Transition reduction

Schemes in this category reduce the memory usage of
a DFA by eliminating redundant transitions. The D?FA [6]
proposed by Kumar et al. is a representative method in this
category. It eliminates redundant transitions in a DFA by
introducing default transitions, and saves memory usage at
the cost of increasing the memory access times for each input
character. After the D2FA, many other schemes, such as the
CD?FA [14] and [15] were proposed to improve the D?FA’s
worst-case run-time performance and construction complexity.

(2) State reduction

Schemes in this category reduce the memory usage of a
DFA by alleviating its state explosion. Due to the fact that
many regular expressions interact with others, the composite
DFA for multiple regular expressions could possibly be ex-
tremely large (i.e., state explosion). Yu et al. [5] and Jiang et
al. [16] proposed to combine regular expressions into multiple
DFAs instead of one to eliminate the state explosion. This
scheme reduces the memory usage but usually requires much
more DFAs, which increases the memory bandwidth demand
linearly with the number of DFAs used. The XFA [7] [17] uses
auxiliary memory to achieve a significant memory reduction.
Unfortunately, the creation of XFA involves a lot of manual

work which is error-prone and inefficient and its performance
is non-deterministic.

In [18], Becchi proposed an algorithm to merge DFA states
by introducing labels on their input and output transitions. In
[19], Kumar et al. proposed history-based finite automatons
to record history information in matching which capture one
of the major reasons for DFA state explosion and reduce the
memory cost. However, to record history will increase the
worst case complexity and thus compromise scalability.

(3) Hybrid Finite Automaton

Schemes in this category aim at designing automatons fitted
into the middle ground between NFAs and DFAs so that the
strengths of both NFAs and DFAs can be obtained. Becchi et
al. proposed a hybrid finite automaton called Hybrid-FA [8],
which consists of a head DFA and multiple tail-NFAs/tail-
DFAs. Although a Hybrid-FA can achieve an average case
memory bandwidth requirement similar to that of a single
DFA with significantly reduced memory usage, its worst case
memory bandwidth requirement is unpredictable and varies
when the regular expression rule set is updated. Lazy DFA [9]
is another automaton used to leverage the advantages of both
NFAs and DFAs. Its main function is to store only frequently
used DFA states in memory, while leaving others in NFA
representation. In case an uncommon DFA state is required,
lazy DFA has to be extended at run-time from the NFA. So it
is no surprise that this automaton is fast and memory-efficient
in common cases, but in the worst case, the whole DFA needs
to be expanded, making it vulnerable to malicious traffic.

III. MOTIVATION

In this section, we first review the time-space tradeoff
between an NFA and its counterpart DFA by way of example,
and then demonstrate how a TFA combines both of their
strengths. In Figure 1(a) and (b), we show an NFA and a
DFA representing the same set of regular expressions, i.e.,
.xa.*xb["alxc, .xd.*e["d]*f, .*g.xh["g]*1, with
the alphabet ¥ = {a,b,...,i}. We can see that although the
NFA and DFA have the same functionality, the state number
in the DFA (54) is 5.4 times that in the NFA (10).

Although the NFA requires much less memory, its memory
bandwidth requirement is four times that of the DFA. This
is because the NFA may have up to four concurrent active
states while the DFA only has one. Consider an input string of
“adegf”. The initial active state combination of NFA is {O}.
The active state combinations of the NFA after the scanning
of each of these characters are {0, 2}, {0, A, D}, {0,A,E},
{0,A,E,G},and {0, A, F, G}. We can see that after character
“g” is read, there are four states: i.e., “0”, “A”, “E”, and
“G”, active simultaneously in the NFA. Unlike the NFA, the
DFA has only one state activated during the entire matching.
Consider the same input string “adegf”. The initial state of
DFA is “0”. The states visited by the DFA after each character
is scanned are “OA”, “OAD”, “OAE”, “OAEG”, and “OAFG’!.

UIn this paper, lowercase letters are used to denote input characters; single
capital letters denote NFA states, while the strings of capital letters denote
DFA and TFA states.
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(a) NFA
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(c) 2-TFA (only states )

(b) DFA (For simplicity, some less important transitions are omitted)

Fig. 1.
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Fig. 2. Distribution of sizes of NFA active state combinations.

In Figure 2, we show the distribution of sizes of NFA
active state combinations associated with two small regular
expression rule sets from Snort. The integral of the distribution
over the X-axis represents the size of the corresponding DFA.
From the figure, we have three observations that (1) the NFA
has many concurrent active states, even though its counterpart
DFA is not that big (as in Figure 2 (a), the NFA has up to 17
states activated simultaneously, even though the corresponding
DFA is very small with only 1876 states); (2) the integral of
the distribution over the X-axis is much larger than the NFA
size, resulting in the DFA state explosion (the sizes of NFA
and DFA for Figure 2 (b) are 398 and 1M+, respectively. The
rate of state explosion is more than 2.5K); (3) a larger state
explosion rate implies a slower NFA and a bigger DFA.

We have seen the main reason for the DFA having far more
states than the corresponding NFA is that the DFA needs one
state for each NFA active state combination. If we want to
reduce the DFA size (denoted by Np), one possible solution
is to allow multiple automaton states (bounded by a given

Example of an NFA, a DFA and a 2-TFA associated with three regular expressions: .xa.xb["a]l*c, .xd.xe["d]*f and .xg.~h["g]*1i.

bound factor b) to represent each combination of NFA active
states.In other words, we allow up to b active states in the new
automaton, and name it Tunable Finite Automaton (TFA). For
simplicity, we use b-TFA to denote a TFA with up to b active
states.

To see the potential of a TFA, let N1 be the number of TFA
states; the number of all possible statuses (denoted by P) that
can be represented by at most b active states of the b-TFA is
(normally, b < N7/2)

P—i(]\;T>—O(NTb) (1)

Thus, a TFA with Nr = O (log;, (Np) ) states can represent
a DFA with Np states.

A. TFA States

The main idea of TFA is illustrated with an example.
Suppose we want to design a 2-TFA based on the NFA
in Figure 1(a). We first generate the corresponding DFA,
which provides us with all valid combinations of NFA active
states (Figure 1(b)). Then, we split each combination of NFA
active states into two subsets, with the aim of minimizing
the number of distinct subsets, and generate one 2-TFA state
for each distinct subset. For instance, the NFA active state
combination {O, A, D, G} can be split into {0, G} and {A, D},
and represented by two 2-TFA states “OG” and “AD”.

Figure 1(c) shows a 2-TFA with only 18 states (only the
2-TFA states are given. The details of how it works will be
provided shortly). It is easy to see that any valid combination
of NFA active states can always be exactly covered by (at
most) two 2-TFA states. The 2-TFA (18 states, at most 2
active) achieves a significant reduction in the number of
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(a) A TFA structure with b=2.
The architecture of a sample TFA (b = 2) associated with the NFA in Figure 1(a).

Fig. 3.

states compared to the corresponding DFA (54 states) and a
significant reduction in the memory bandwidth requirement
compared to the NFA (4 active states in the worst case).

B. TFA Transitions

The most challenging part of designing a TFA is to connect
TFA states with the proper transitions and let the TFA emulate
the corresponding NFA and DFA. Recall that when an NFA
scans an input string, the real-time matching status is tracked
by its concurrent active states. To let a TFA emulate an NFA,
we just need to guarantee that the active states of the NFA
can be recovered from the active states of the TFA after each
character is processed.

Consider the NFA in Figure 1(a) again and suppose that
we have a 2-TFA as in Figure 1(c) that can emulate the NFA
until time slot?> ¢. At the end of time slot ¢, suppose there are
two active states in the 2-TFA (“OD” and “0OG”) and the active
state combination in the corresponding NFA is {0, D, G}. Now
assume that the character read in time slot ¢t + 1 is “a”. It is
easy to see that the active state combination of NFA at the
end of time slot ¢ + 1 would be {0, A, D, G}. The problem
is how we could operate the 2-TFA to make it work exactly
as the NFA does in time slot ¢ + 1?7 If we run the two active
states “OD” and “OG” separately, their next active states should
be “OAD” and “OAG”, respectively, which clearly are not in
the state set given in Figure 1(c). Adding new state “OAD”
and “OAG” into the state set of 2-TFA will cause a bigger
automaton than we expected.

In this paper, we propose a novel way to operate a TFA.
Rather than running TFA active states individually in each
time slot to get the next TFA active states, we first recover the
active state combination of the NFA by combining the results
obtained by the individual TFA states. Then we access a table
called Ser Split Table (SST) to find out the next TFA active
states whose combination is equal to this NFA active state
combination. This way, no extra TFA states need to be added.

20ne time slot is defined as the time period required to process a character.
It is a constant (or variable) if the automaton has a deterministic (or non-
deterministic) performance.

{0} &0 NULL
{A,0} [&0A NULL
{B,0} [&0B NULL

{AD,O} |&0 &AD
{AE,O} [&0A &AE
{AE,G,0} |&0G &AE
{AF,G,0} |&0G &AF

(b) Set Split Table (SST)

IV. TUNABLE FINITE AUTOMMATON(TFA)

A TFA can be generated from any NFA. In this section, we
first give the formal definitions of NFAs, DFAs, and TFAs, and
then present the procedure to generate the TFA based on an
NFA. After that, we show how to operate the TFA to emulate
the operation of the NFA.

A. Definition of TFAs

Remember that an NFA can be represented formally by a
5-tuple <@Qn, X%, dn, qN, F'n>, consisting of

o A finite set of NFA states Qn;

« A finite set of input symbols ;

o A transition function dy : Qn X X — P(Qn);

e An initial state qu;

o A set of accept states Fiy C Qn;

where P(Qy) denotes the power set of Q.

To be deterministic, a DFA consists of the similar 5-tuple
< ®p,%,9p,qp, Fp > but with a transition function ép :
®@p X X — Qp that transfers the current state to only one
next state if any symbol is read.

A b-TFA extends the 5-tuple definition of DFA/NFA, by
introducing the set split function SS. Formally, a b-TFA is a
6-tuple < Qr, %, 67,1, Fr, SS >, consisting of

o A finite set of TFA states Qr;

o A finite set of input symbols X;

o A transition function 67 : Qr X X — P(Qn);

o A set of initial states I C Qr, |I| < b;

e A set of accept states Frr C Qr;

« A set split function S5 : Qp — (Qr)"U...U(Qn)".

B. Constructing A TFA

The implementation of a TFA, based on its definition,
logically consists of two components: a TFA structure that
implements Qr,, 61, I, Fr; and a Set Split Table (SST) that
implements SS. Figure 3(a) and (b) show the TFA structure
(with 18 isolated states) and SST table associated with the
NFA in Figure 1(a). Each entry of the SST table corresponds
to one combination of NFA active states (i.e., a DFA state)
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Split each valid NFA active
state combination to up to b
subsets; obtain TFA state set

Decide the
transition
Function of

Step 3

—

Step 4

Q7 and set split function SS TFA &
TT Step 2 TT NFA
info | Decide the set of
Generate DFA Step 1 /—\ initial states (/)
states; obtain all :> and the set of
valid NFA active <: < 0w, 8n, qu, F accept states (F'r)
state combinations ’ P of the TFA

Fig. 4. The flowchart for generating a TFA.

recording how to split the combination into multiple TFA
states (the memory addresses of the TFA states are stored).

The main flowchart for generating a equivalent b-TFA from
an NFA is given in Figure 4, which consists of four steps:

(1) Generate the DFA states using the subset construction
scheme [13]. The obtained DFA states provide us with all valid
NFA active state combinations;

(2) Split each NFA active state combination into up to
b subsets, with the objective of minimizing the number of
distinct subsets, and generate one TFA state for each distinct
subset. After this step, we obtain the TFA state set Q7 and
the set split function SS;

(3) Decide the transition function d7. Different from tradi-
tional automatons, outgoing transitions of TFA states do not
point to other TFA states. Instead, they point to a data structure
called state label, which contains a set of NFA state IDs.
Given a TFA state s, its state label associated with character
“c” includes all NFA states that can be reached via character
“c” from the NFA states associated with TFA state s. For
instance, consider TFA state “AD” in Figure 3(a); its state
label associated with character “b” is {B, D}, which can be
obtained by running state “A” and “D” using “b” in the NFA.

(4) Decide the set of initial states (I) and the set of accept
states (Fr). Set I includes TFA states split from the initial
state of the counterpart DFA (i.e., ¢p). Set Fr includes TFA
states associated with at least one NFA accept state.

Note that although the construction of a TFA requires
obtaining all DFA states via subset construction, it does not
require the generation of a complete DFA since no DFA
transition is computed or stored. In our experiments, the total
memory usage during this procedure is only 1% of that for
compiling the complete DFA.

C. Operating A TFA

Algorithm 1 describes the operations of a b-TFA in each
time slot. Consider the TFA in Figure 3 and assume the input
string is “adegf”. After reading in the first character “a”, the
initial active state of TFA “O” returns a state label {Z—\, 0}.
We use {A, O} to run a set query in the SST table, which
returns the memory address of the next active TFA state (i.e.,
&OA in this case). With the next character “d”, active state
“oA” will return state label {2, D, O}. After searching the SST
table using {A, D, O}, we get two active states (&0 and &AD).
With the third input character “e”, active state “O” returns state

label {0} and active state “AD” returns state label {2, E}. The
union of the two labels (i.e., {A, E, 0}) is sent to the SST
table to find the next active states (¢OA and &AE). The above
procedure repeats in every time slot until the entire input string
is scanned.

It should be noted that the scheme of TFA is essentially
different from the DFA grouping scheme proposed in [5]. The
DFA grouping scheme cannot be applied or performs badly
under certain circumstances, such as the situations in which the
rule set has only one regular expression, or has multiple regular
expressions but one of them is extremely complex. Consider
the NFA and DFA shown in Figure 5(a) and 5(b), which
represent a single regular expression .xab.{3}cd used in
[8]. Apparently the DFA grouping scheme cannot be used in
this single-rule case; however, the TFA can still be adopted
to reduce the memory cost. Consider the 2-TFA with only 9
states shown in Figure 5(c); we can always use (at most) two 2-
TFA states to exactly cover a valid combination of NFA active
states. This example also shows the efficiency of TFAs when
handling regular expressions with repetitions (i.e., counting).

In Section V and VI, we will address two critical issues in
the implementation of a TFA: (1) How to split the NFA active
state combinations to obtain a small TFA; (2) How to store
TFA and SST table efficiently to facilitate the TFA operation.

V. SPLITTING NFA ACTIVE STATE COMBINATIONS
A. Set Split Problem (SSP)

The SSP problem is to split each NFA active state com-
bination into up to b non-empty subsets (overlaps among
the subsets are allowed). To get a small TFA, the number
of distinct subsets after the set split should be minimized.
The SSP problem can also be rephrased to a special set
covering problem; i.e., to find a minimal number of subsets
from the NFA state set, so that for any valid NFA active state
combination, we can always find up to b subsets to exactly
cover it. We denote the SSP problem with a bound factor of
b as b-SSP problem, and formalize it in Table II based on
notations in Table I.

We have proved that the b-SSP problem is an NP-hard
problem for any b > 1 (please refer to the proof in the

Algorithm 1 Operations of b-TFA in each time slot

1: Input:

2: s (s <b); > no. of active states in current time slot
3: Aljl(G=1,...,s); > current active states
4: G > input character
5. Output:

6: s’ (s <b); > no. of active states in next time slot
7: A [j]l(7=1,...,s); > active states in next time slot
8:

9. T=NULL;

10: for (j=1,...,s) do

11: T = TU state label on state A[j] labeled with c;

12: end for

—_
(95}

: use T to access SST table, returning s’ and A’ [j] (j =
1,...,8")
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(a) NFA (8 states; 4 active states in the worst case)

o} {OF } (OAE} (OE

(b) DFA (19 states; some less important transitions are omitted)

ONCHONONONONONONO

(c) 2-TFA (9 states; at most 2 active states)

Fig. 5. Automatons representing a single regular expression . +ab.{3}cd.

Appendix). Thus, no optimal solution can be found to solve it
in polynomial time. We present here a heuristic algorithm to
solve the b-SSP problem.

B. A Heuristic Algorithm for SSP Problem

To simplify the problem, we add another constraint (called
isolation constraint) on the model of the b-SSP problem, which
is shown in (5).

TABLE I
NOTATIONS USED IN b-SSP PROBLEM

Notations Descriptions
QN The set of all NFA states
Np The number of different combinations of NFA active states
(i.e., the number of states in the corresponding DFA,
Np = Qb))
S The ¢-th combination of NFA active states (i =
1. ND)
Si The j-th subset split from S; (j =1, ...,b)
Qr The union of S; ; (i=1,..,Np;j=1,...,b)
TABLE 11
SET SPLIT PROBLEM
Subject to.
JsSis =86 =1,Npij=1,..,0) @)
J
Qr ={Si;jli=1,..,Np;j=1,...,b} — {0} 3
Objective. Minimize: |Qr | @

Sii[)Sin=0 (Vj#k i=1,..,Np) (5)

The isolation constraint requires that there be no overlap
between the subsets split from the same NFA active state
combination.

B.1 2-SSP Problem

We first consider the -SSP problem with b = 2. Later we
consider more general situations with b > 2.

Let v; be the number of states in the ¢-th NFA active
state combination. The number of different ways to split the
combination (denoted as F;) under the 2-SSP problem can be
expressed as follows.

i =2 (6)

Since there are Np different NFA active state combinations,
the number of possibilities to split these state combinations is
Hf\;Dl F;. Obviously, the problem space is too large if we go
through every possibility of the split. To design a practical
algorithm, we need to reduce the problem space.

Given an NFA active state combination with v states, we
consider only two kinds of special splits:

(1) No split at all (i.e., one subset is empty);
(2) Splits that divide the combination into two subsets
whose sizes are 1 and v — 1, respectively.

This way, we can reduce the value of F; from that given in
(6) to v; + 1. The reason to use the second special split is that,
after analyzing the NFA active state combinations of many
rule sets, we find many combinations of NFA active states
differ from each other in only one NFA state. For instance,
combination {a,3B,C,D}, {&,B,C,E}, {A,B,C,F}, and
{a,B,C,G} differ from each other only in the last state.
Splitting {&, B, C} out from these combinations gives us five
subsets, i.e., {A,B,C}, {D}, {E}, {F}, {G}. It is very likely
that the four single-element subsets are already (or will be)
used in other splits, so the four splits produce only one distinct
subset {A, B, C}, resulting in a high reusability of subsets.

The main data structure used in the heuristic algorithm is
a tripartite graph, as shown in Figure 6. Each vertex in the
left partition (called a state-combination vertex) corresponds
to an NFA active state combination. Each vertex in the middle
partition (called a split-decision vertex) denotes a valid split
decision for one of the combinations. Each vertex in the
right partition (called a subset vertex) corresponds to a unique
subset obtained via the splits in the middle partition. Each
split-decision vertex is connected with its associated state-
combination vertex, as well as the subset vertices that can
be obtained from the split decision.

The heuristic algorithm runs in multiple iterations to find
a set of subsets ((Qr) which satisfies the constraints in the
2-SSP problem. Initially, Q@ is empty. In each iteration, the
algorithm starts with the subset vertices in the right partition,
from which we select the largest-degree subset (the number of
connected edges) among the subsets whose sizes and degrees
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state-combination split-decision
Subset vertex
vertex vertex
{O} {C} {A}

Iteration 3

Iteration 2
_{A, D, O}

Iteration 1

: {AL (.G, 0} '
{D}, {A, G, O} I
y ©.0.0.0

{C}. {A, D, G}

Fig. 6. Tripartite graph used in the heuristic algorithm.

are both larger than 1 3. If no such subset is found, we
select the largest-degree subset from among all the subsets.
The selected subset will be put into Q7. The split-decision
vertices connected with the selected subset vertices will also
be selected and stored in the SST table. Then we remove
those vertices that will not be used from the tripartite graph.
We remove (1) the state-combination vertices (including their
edges) connected with the selected split-decision vertices; (2)
the split-decision vertices (including their left and right edges)
previously connected with the just-removed state-combination
vertices; (3) the subset vertices whose degrees are zero. Now
one iteration is finished. The iteration repeats until all subset
vertices are removed or selected.

Consider the example in Figure 6. In the first iteration,
we select subset vertex {A, D, O}, and split-decision vertices
{a,D,0} and {G}, {a,D,0}. In the second iteration, we
select the subset vertex {O}, and split-decision vertices {0}
and {G}, {0O}. In the third iteration, we select the subset
vertex {G}. After running the heuristic algorithm, four NFA
active combinations are split into three TFA states.

B.2 b-SSP Problem

Given an arbitrary algorithm solving the 2-SSP problem, we
can easily expand it to support the b-SSP problem if b is equal
to the power of 2. We just need to run the algorithm of the
2-SSP problem recursively for log,b times, each time using
the output of the previous run as the input.

To solve the b-SSP problem when b is an arbitrary integer,
we can run the proposed heuristic algorithm for b — 1 times,
each time using the output of the previous run as the input.

3The reason that we first consider subsets with sizes larger than 1 is that
the second special split tends to generate many large-degree single-element
subset candidates (such as {0} in the figure). Selecting these subsets in the
very beginning will cause many unwanted splits.

VI. STATE ENCODING

A challenging issue involved in the TFA implementation is
the storage of state labels, since different state labels include
different numbers of NFA state IDs. A simple scheme is to
implement each state label as an array, including all associated
NFA state IDs. However, this scheme causes two problems:
(1) high storage cost and (2) TFA operation overhead.
Let us recall the operations of a TFA in one time slot
(Algorithm 1). After examining the outgoing transitions of
current active states, the TFA returns up to b state labels,
each containing a set of NFA state IDs. A union operation
is required on these ID sets, and the result is sent to the SST
table to search for the next active states. To achieve a constant
lookup performance, we implement the SST table as a perfect
hash table as proposed in [20] and [21]. However, the perfect
hashing implementation requires the set union operation to
return a deterministic and unique representation (i.e., hash key)
for each valid combination of NFA active states. If we were
to implement each state label as an array, two complicated
operations would be required after the set union operation:
o Redundancy elimination. Consider two state labels
{D, 0} and {G, O}. To get their union, we have to identify
and remove one redundant state “O”.

¢ Sorting. The unions of different state labels could result
in different representations for the same NFA active state
combination (for example, {0, D, G} and {D, G, O} are
logically the same). We have to sort state IDs in the result
set before performing the table lookup.

To overcome the problems above, we propose an efficient
state encoding scheme.

A. State Encoding Problem

The main idea of state encoding is to assign a bit vector
to each NFA state (as its ID), so that the union operation
on multiple NFA states can be replaced by a simple bitwise
OR operation. As a result, the redundancy elimination and
sorting operations are no longer needed to get a deterministic
representation for each NFA active state combination. Fur-
thermore, with state encoding, each state label in the TFA
structure no longer needs to store the IDs of all associated
NFA states (refer to Figure 3(a)). Instead, only the result of
the bitwise OR operation on these NFA state IDs needs to be
stored. Therefore, all state labels have the same length in bits.

In order to operate the TFA correctly, only one constraint
needs to be satisfied in the state encoding; that is, the bit vector
associated with each valid combination of NFA active states
(i.e., each DFA state) must be unique. We call it uniqueness
constraint.

The state encoding problem (SEP) can be formally de-
scribed as follows: find a way to assign each NFA state a
bit vector, so that (1) the uniqueness constraint is satisfied;
(2) the number of bits used in the bit vector is minimized.

B. State Encoding Algorithm

The state encoding problem is an NP-hard problem. Here
we propose a practical algorithm to solve it.
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(a) An independent graph
corresponding to the NFA in
Figure 1 (a).

(b) State encoding map
based on cliques in (a).

Fig. 7. Independent graph and state encoding map.

Given an NFA, we first construct an independent graph,
where each node corresponds to one NFA state. Two nodes in
the independent graph are connected by an edge, if and only if
their associated NFA states are never active together (i.e., never
together in one NFA active state combination). An example
of the independent graph is shown in Figure 7(a), which
corresponds to the NFA in Figure 1(a). We then divide nodes
of the independent graph into a small number of maximal
cliques, and denote these cliques by C; (j =1, ...,n), where
n is the number of cliques. Let m; be the size of clique Cj.
The state encoding scheme requires 7', [logy(m; 4 1)] bits
in total for the encoding. Nodes in clique C; are encoded
contiguously using bit position No.1 to No. [log, (m1 +1)],
with other bit positions left as “0”. Nodes in clique C, (k > 1)
are encoded using bit position No. Zf;ll [logy (m; +1)]+1
to No. Z?Zl [log, (m; 4+ 1)], with other bit positions left
as “0”. Consider the independent graph in Figure 7(a), from
which we can get four cliques. The first clique includes “A”,
“B”, and “C”, which are encoded consecutively using the first
two bit positions (as shown in the state encoding map in Figure
7(b)).

It is easy to prove that with the state encoding scheme, each
valid combination of NFA active states will have a unique bit
vector, because the NFA states in each valid combination are
always from different cliques and use different bit positions.

VII. PERFORMANCE EVALUATION

A. Evaluation Settings

The evaluation is made based on regular expression rule
sets from Snort and Bro. Each rule in Snort includes header
pattern, exact strings, and regular expressions. Since header

TABLE III
BASIC STATISTICS OF REGULAR EXPRESSION RULE SETS

#of Avg. ASCIl | % RegEx having | % RegEx having | % RegEx having
Rule set R OE length of | infinite repetitions, | finite repetitions, | char ranges, e.g.,
egEx RegEx eg., "™ "+" eg., {nm},"?" \s,"", [a-z]
Snort 1 17 38.6 88.2% 41.2% 94.1%
Snort 2 12 16.7 16.7% 83.3% 100.0%
Snort 3 1 19.0 100.0% 100.0% 100.0%
Snort4| 34 29.7 32.4% 58.8% 82.4%
Bro 63 14.6 11.1% 12.7% 23.8%

pattern matching and exact string matching have been well-
studied and are not the focus of this paper, we consider
only regular expressions in the evaluation process. We cluster
regular expressions with common header patterns together and
evaluate them using traffic traces collected from our campus
network at different time points. The regular expression rule
sets selected include all major characteristics appearing in
Snort and Bro rules, such as infinite repetitions, finite rep-
etitions, and character ranges. Table III gives the statistics of
these regular expression sets.

We compare the TFA against the NFA, DFA and two other
state-of-the-art DFA-based solutions: DFA grouping [5] and
Hybrid-FA [8]. The latter two schemes are selected because
they have a similar motivation to ours, i.e., to trade off the
storage with the number of active states.

For a given regular expression set, the DFA grouping
scheme [5] minimizes the number of DFAs subject to either
of the two storage constraints: (1) the size of each DFA is
limited and (2) the total size of DFAs is limited. Since our
objective is different, which is to minimize the storage with a
bounded number of active states, we need to modify the DFA
grouping scheme for a straight comparison. A bound factor b
implies that we can use b DFAs in the DFA grouping scheme.
The modified DFA grouping scheme still uses the interaction
concept proposed in [5]. It first creates b empty groups, and
then recursively inserts each regular expression into the group
that has the least interactions with the regular expression un-
dergoing. Hybrid-FA is another effective solution to achieve a
tradeoff between storage complexity and run-time complexity.
To get a better worst-case run-time performance, we generate
Hybrid-FA with tail-DFAs. To make fair comparisons, we use
states rather than counters to implement the finite repetitions
in all automatons in the evaluation.

B. Storage Complexity

The storage of a TFA consists of two parts: a TFA structure
and an SST table.

B.1 Storage of SST Table

The storage of the SST table is a fixed expense for a
TFA. Consider that (1) the number of entries in the SST
table is equal to the DFA state number, and (2) each entry
in the SST table stores the addresses of b states. The SST
table for a b-TFA requires b/256 times the memory required
by the corresponding DFA. Normally, a practical TFA takes
b between 2 and 4, so the storage cost of the SST table
is about 0.78% ~ 1.5% that of the DFA. Perfect hashing
implementation of the SST table provides O(1) run-time
performance but requires extra entries to facilitate the table
construction. In this paper, we use cuckoo hashing [20] to
build the SST table. In our experiment, an SST table with
millions of entries can be constructed with a load factor of
0.7 in 5 minutes. The storage cost of the SST table including
the extra entries for perfect hashing implementation is about
1.11% ~ 2.14% of that required by a DFA.

B.2 Storage of TFA Structure
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TABLE IV
STATE NUMBERS OF AUTOMATONS UNDER DIFFERENT REGULAR EXPRESSION SETS

Ruleset | NFA | DFA [Hybrid-FA DFA Grouping : TFA : :
b=2 b=3 b=4 b=2 % reduction [ b=3 % reduction]| b=4 % reduction
Snort 1 385 369870 7167 63637 | 10166 | 1857 6563 98.23% 1461 99.60% 871 99.76%
Snort 2 191 100697 7955 16851 8396 3816 5986 94.06% 805 99.20% 284 99.72%
Snort 3 38 363154 63443 |363154| 363154 | 363154 | 62133 82.89% 22418 93.83% 14668 95.96%
Snort 4 417 158060 11714 11459 | 6181 2434 10846 93.14% 3005 98.10% 1597 98.99%
Bro 567 407677 22305 |148665| 6890 2316 16576 95.93% 3685 99.10% 2000 99.51%
TABLE V TABLE VI
STATISTICS OF STATE ENCODINGS IN THE TFA MEMORY COSTS OF AUTOMATONS
b=2 b=3 b=4 reset | DFA (M) | HYPrie-FA [DFA Grouping TFA(b=2)
# of bits in % of % of % of (MB) (b=2) (MB) MB % reduction
rule set| state | #of state | distinct |# of state| distinct | # of state| distinct Snort 1 379 7.34 65.16 9.68 97.44%
encoding| lables | state | lables | state | lables | state Snort 2 103 8.15 17.26 6.94 93.27%
lables lables lables Snort 3 372 64.97 371.87 66.53 82.11%
Snort1| 40 | 1680128 | 0.87% | 374016 | 0.98% | 222976 | 0.88% Snort 4 162 12.00 173 9.59 94.07%
Snort2| 28 | 1532416 | 0.52% | 206080 | 0.56% | 72704 | 0.68% Bro A17 2284 152.23 2024 | 9515%
Snort 3 38 15906048 | 0.48% | 5739008 | 0.42% | 3755008 | 0.46%
Snort 4 61 2776576 | 0.69% | 769280 | 0.60% | 408832 | 0.63%
Bro 55 4243456 | 0.64% | 943360 | 0.77% | 512000 | 0.90%

The memory cost of a TFA structure depends on two factors:
(1) TFA state number and (2) the number of bits used in state
encoding.

Table IV compares the state numbers of finite automatons
under different rule sets. We can see that with only two active
states, a TFA can significantly reduce the number of states
required by a DFA (the reduction rates are more than 93%
under all tested rule sets except “Snort 3”, which will be
discussed shortly.) The reduction rates are above 98% when
three active states are used. Allowing more active states leads
to an even higher reduction. The DFA grouping scheme is
inferior to the TFA scheme when b is small. When b is large
enough, the difference between them becomes smaller. “Snort
3” is a single-rule rule set including nested character ranges
and finite repetitions. From Table IV we can see that the
DFA grouping scheme cannot handle those cases with single
complex regular expression, whereas the TFA scheme is still
in effect and can achieve a 96% reduction when b = 4.

To make a straight comparison, the head-DFA and tail-DFAs
of the Hybrid-FA are adjusted so that their total state number
is close to the state number of the TFA with b = 2. (A
smaller Hybrid-FA can always be achieved by moving more
states from the head-DFA to tail-DFAs, a process, however,
that results in an even worse run-time performance.) Later we
will compare the run-time performance between the Hybrid-
FA and the TFA under this condition.

Table V shows the number of bits required by state encoding
of the TFA under different rule sets. It also shows the number
of state labels and the fraction of distinct state labels under
each tested rule set. It can be seen that the fraction of unique
state labels is very low (lower than 1% under all tested rule
sets). This characteristic can be potentially exploited to further
compress the memory usage.

Table VI compares the overall memory usages of different
finite automatons. When calculating the memory usage of the
TFA, we consider the cost of both the SST table and TFA
structure. The TFA scheme with b = 2 can achieve a memory
reduction between 93.27% and 97.44% in all tested rule sets,
except the single-rule set “Snort 3”, under which a reduction
rate of 82.11% is achieved.

C. Memory Bandwidth Requirement

The memory bandwidth requirement (or the run-time speed)
of an automaton can be expressed by the number of states
which are activated during the processing of a character.
Unlike the NFA and Hybrid-FA, a TFA can have the number of
active states strictly bounded by the bound factor b; therefore it
has a deterministic matching speed independent of the regular
expression rule sets and traffic patterns.

Table VII shows the numbers of active states of the NFA,
Hybrid-FA and TFA. The third and sixth columns give the
theoretically worst case scenarios for the NFA and Hybrid-
FA respectively. Note that when a tail-DFA of the Hybrid-FA
includes a finite repetition, it might be triggered multiple times,
resulting in a large number of active states in the tail-DFA [8].
It is discussed in [8] that with the use of a counter, the number
of active states in such a tail-DFA can be limited to 2. In Table
VII, we use a conservative way to calculate the worst-case
active state number for the Hybrid-FA. We count only one
active state for each tail-DFA. So the number of active state
in the Hybrid-FA in the worst case is equal to the number of
tail-DFAs plus one. The second and fourth columns of Table
VII give the maximal numbers of active states we observed
in the inspection of two million packets using the NFA and
Hybrid-FA.

VIII. CONCLUSION

Given the fact that the rule sets of many NIDSes (such
as Snort and Bro) are available online, cyber criminals can



TABLE VII
NUMBER OF ACTIVE STATES

rule set NFA Hybrid-FA TFA (b=2)
Max [ Worst case| Max [ #tail-FA [Worst case| Worst case
Snort 1 10 16 3 12 13+ 2
Snort 2 3 8 3 5 6+ 2
Snort 3 3 33 3 1 2+ 2
Snort 4 8 18 5 15 16+ 2
Bro 21 25 10 22 23+ 2

easily construct a worst-case traffic pattern after carefully
studying the rule sets for ways to slow down the NIDS and
let malicious traffic escape from the inspection. Therefore,
the worst-case run-time performance is critical to an NIDS
if it is to survive under the network attack. In this paper, we
have proposed a new finite automaton representation, TFA,
for regular expression matching. It combines the strengths of
both NFAs and DFAs by allowing a small bounded number of
active states during the matching processing, so that the worst-
case performance of a TFA is guaranteed. The construction
of the TFA relies on an efficient solution to the Set Split
Problem (SSP). Although an efficient heuristic algorithm has
been proposed for the SSP problem in this paper, we believe
that better solutions for the problem are still available, which
may further bring down the storage cost of a TFA. Moreover,
other related ideas, such as using counters to represent finite
repetitions in regular expressions, can also be applied to the
TFA to achieve even more compact finite automatons.
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APPENDIX
A. Complexity of b-SSP Problem

We have proved that the b-SSP problem is an NP-hard
problem for any b > 1. Due to space limitations, we briefly
describe the reductions that prove b-SSP problem is in NP-
hard. The reductions are done to the decision problem of b-
SSP called b-SSPD, and prove that b-SSPD is in NP-complete.
Given a threshold r of the objective (i.e., |Qr]|), b-SSPD asks
if |Qr| can be less than r. We only provide the construction
and reductions. The correctness proof is ignored due to space
limitations.

First of all, 5-SSPD is in NP, because any solution of b-
SSPD which is the partition on each S; can be verified whether
|Qr| < r in polynomial time.

Second, we prove that bH-SSPD is in NP-complete

when b=2 by reducing 3SAT to 2-SSPD. For a 3SAT
instance of n variables and m clauses, we create
3n + Tm + 2 sets as follows. For any variablex;,
create three sets {z;,T,F}, {z;T,F},{z;,7; T, F}.
For any clause Cj = g1 V lg2 V I3, create
seven sets: {up,1 vk 2 b {ur s 1 {Ck, lk.1, lk2, Uk 3},
{Cryli1 ez, uk 21 {Ck, L2, lk3, Uk 1}
{Ck, U1,k 2, k3, T} The reduction statement is following.
There is a solution (i.e., a satisfying assignment) to the 3SAT
instance, if and only if there is a solution to the corresponding
2-SSPD instance with 2 + 2n + 6m subsets.

With 2-SSPD in NP-complete, we only need to recursively
reduce b-SSPD to (b-1)-SSPD and finally to 2-SSPD, proving
that »-SSPD is in NP-complete for any b > 1. Consider a (b-
1)-SSPD instance of n sets {5, }, ... ,{S,} and decide whether
any partition can produce no more than m distinct subsets. We
create the b-SSPD instance by appending n different elements
(which do not appear in any set of (b-1)-SSPD instance) to
each {S;}, creating n sets. The n elements appended to {S;}
will be used to create (g) 2-element sets. In sum, a b-SSPD
instance of n? + n(}) sets is created for (b-1)-SS instance
of n sets. The reduction is following. There is a solution to
the (b-1)-SSPD instance with m distinct subsets if and only if
there is a solution to the corresponding b-SSPD instance with
m + n2 subsets, where m < n.



