
Stochastic Pre-Classification for SDN
Data Plane Matching

Luke McHale, Student Member, IEEE, Jasson Casey, Student Member, IEEE,
Paul V. Gratz, Member, IEEE, and Alex Sprintson Member, IEEE

�

Abstract—The Software Defined Networking (SDN) approach has nu-
merous advantages, including the ability to program the network through
simple abstractions, provide a centralized view of network state, and
respond to changing network conditions. One of the main challenges in
designing SDN enabled switches is efficient packet classification in the
data plane. As the complexity of SDN applications increases, the data
plane becomes more susceptible to Denial of Service (DoS) attacks,
which can result in increased delays and packet loss. Accordingly, there
is a strong need for network architectures that operate efficiently in the
presence of malicious traffic. In particular, there is a need to protect
authorized flows from DoS attacks.

In this work we utilize a probabilistic data structure to pre-classify traf-
fic with the aim of decoupling likely legitimate traffic from malicious traffic
by leveraging the locality of packet flows. We validate our approach by
examining a fundamental SDN application: software defined network
firewall. For this application, our architecture dramatically reduces the
impact of unknown/malicious flows on established/legitimate flows. We
explore the effect of stochastic pre-classification in prioritizing data plane
classification. We show how pre-classification can be used to increase
the effective Quality of Service (QoS) for established flows and reduce
the impact of adversarial traffic.

1 INTRODUCTION

Packet classification is a fundamental component of
network hardware. Generally, the problem of packet
classification expands in complexity as the number of
rules grow. For example, typical firewalls have access
control lists (ACLs) with thousands of matching rules.
It is well known that packet classification is expensive
and this is a well studied problem in the traditional
network hardware domain [8], [9], [12]. With the move
to Software Defined Networking (SDN), the complexity
of packet classification is expected to grow dramatically
due to the increased number of matching fields, the
push to support a large number of features, and the
larger degree of flexibility that SDNs encompass. While
brute force hardware approaches to improve matching

L. McHale, J. Casey, P. Gratz and A. Sprintson with the Department of
Electrical and Computer Engineering, Texas A&M University, College Sta-
tion, TX, 77843 USA e-mail: luke.mchale@tamu.edu, jasson.casey@tamu.edu,
pgratz@gratz1.com, spalex@tamu.edu.
J. Casey is also with Flowgrammable e-mail: jasson@flowgrammable.com.
This material is based upon work partially supported by the AFOSR under
contract No. FA9550-13-1-0008.

 0

 5

 10

 15

 20

 25

 30

0.0 200.0k 400.0k 600.0k 800.0k 1.0M 1.2M 1.4M

M
ill

io
n

Pa
ck

et
s

Flow # (sorted)

Fig. 1. CDF of unique flows in CAIDA trace: equinix-
sanjose.dirA.20120119-125903

throughput, such as techniques that leverage ternary
content addressable memories (TCAMs), can be used
to improve the throughput [4], these approaches incur
significant costs and result in increased power consump-
tion.

Increasing packet classification complexity increases
SDN data planes’ vulnerability to Denial of Service (DoS)
and, in particular, Distributed Denial of Service (DDoS)
attacks. Malicious packet flows, such as those seen dur-
ing a DDoS attack, interfere with authorized flows by
consuming valuable data plane resources. Accordingly
there is a critical need to explore architectures that
can decouple the impact of potentially low throughput
malicious traffic from high throughput authorized traffic
in SDN data planes. This malicious traffic may consist of
multiple well coordinated flows that come from a poten-
tially large number of sources and can cause significant
disruption (in terms of latency and packet loss) of the
authorized traffic.

The goal of this paper is to improve the throughput
and latency of packet classification for known/autho-
rized traffic within the SDN data plane. The main idea

2014 IEEE 22nd International Conference on Network Protocols

978-1-4799-6204-4/14 $31.00 © 2014 IEEE

DOI 10.1109/ICNP.2014.95

596

is to pre-classify known authorized traffic in SDN data
planes, separating them from unknown or malicious
traffic, thereby reducing the impact of malicious traffic
on known flows.

As a means to accelerate packet classification, we
propose to leverage the locality of known, authorized
flows to enable a pre-classification stage within the
SDN data plane. For example, Figure 1 is a Cumulative
Distribution Function (CDF) of packets per flow from
a one minute CAIDA trace [2]. As the figure shows,
approximately 80% of all packets come from flows with
greater than 5x106 packets. There is significant locality
to be leveraged in packet classification. Some traditional
approaches to accelerating packet classification, such as
ACL caching [6], [9], [10] leverage this locality, however
these approaches neither provide the matching speed,
nor the flow match capacity to truly decouple actions
on known authorized flows from the effects of highly
defuse malicious traffic. To address these challenges,
we propose to use a stochastic data structure, a Bloom
filter [5], as a pre-classification stage, decoupling known
authorized traffic from unknown and/or malicious traf-
fic.

Our goal in this work to enable a decoupling of known
authorized traffic from unknown and/or malicious traf-
fic within the SDN data plane. The contributions of this
paper are as follows:

• First work to examine accelerating packet classifica-
tion within the SDN data plane.

• Novel use of stochastic data structures to decou-
pling the impact of unknown/malicious traffic on
known authorized traffic within the SDN data
plane.

• A detailed hardware architecture that protects the
existing flows from DoS/DDoS attacks.

• A comprehensive simulation study to evaluate the
performance of an SDN forwarding data plane un-
der attack.

The remainder of the paper is organized as follows:
Section 2 discusses the background on hardware data
planes for use in SDNs. It also examines prior work in
packet classification. Section 3 introduces our proposed
hardware design. Section 4 evaluates our design for its
ability to achieve our goal of decoupling malicious traf-
fic’s effect on known good traffic. Finally, in Section 5 we
present conclusions and directions for future research.

2 BACKGROUND

In this work we start with a baseline OpenFlow data
plane architecture and explore design permutations fo-
cused on improving overall data plane performance
while under heavy and potentially malicious traffic. The

baseline OpenFlow architecture and protocols are main-
tained by the Open Networking Foundation (ONF) [3].
These specifications outline semantics for an abstract
packet processing machine. While these documents are
not precise, they have been successful in outlining a basic
packet processing pipeline along with a control interface
for manipulating the pipeline’s state.

Switch

packet packet
Packet
Arrival

Key
Extraction

Table
Selection

Flow
Selection

Action
Application

packet

Fig. 2. OpenFlow Data Plane

OpenFlow: OpenFlow describes a simplified data plane
for packet processing, this data plane pipeline is pic-
tured in Figure 2. Packet processing happens in five
stages. The first stage, packet arrival, is concerned with
writing a packet to memory and sending certain bits
of metadata about the packet into the pipeline such as:
address in memory, packet size in bytes, arrival port id,
etc. The second stage involves decoding enough of the
packet’s header to construct a key. The packet key is
a tuple formed from a subset of packet header fields.
The third stage, table selection, selects the appropriate
flow table for indexing the packet’s key. The first time
a packet transits the pipeline, it always selects the first
flow table; however, subsequent traversals can choose
different tables. The fourth stage, flow selection, will
use the packet’s key to choose a specific entry in the
flow table. The entry will contain a policy, or set of
actions, to be applied to all matching packets. Finally,
the fifth stage applies the selected policy to the packet.
This could result in the modification of data within the
packet, copying the packet, traversing the pipeline again,
directing the packet towards the controller, or egressing
the system.
Packet Classification: Packet classification is a funda-
mental activity in the core of any packet processing
data plane. The basic process of classification involves
forming a key that represents a packet and finding an
entry in a classifier table that matches. The key is formed
by extracting a set of values from a packet’s protocol
header fields. These values are concatenated to form
a bit string that represents the packet. Classifier tables
usually match the key bit string against a pair of bit
strings, where the first element of the pair is a value to
be matched and the second element masks bits that are
important to the table entry.

There are several techniques for addressing matching
problems: hash tables, tries, hierarchical tries, etc. [9],
[13], but once you move to two or more dimension prefix
bit string matching solutions become expensive in terms

597

miss

hit

Flow
Cache

packet
Table

Selection
Flow

Selection
Action

Application

packet

packethit

miss

Priority
Scheduler

Bloom
Filter

packet
Key

Extraction

Known Flows

Unknown Flows
update

update

Hi
Lo

Fig. 3. Resilient OpenFlow Data Plane

of time or memory. Varghese [13] provides a compre-
hensive survey of the classification problems as well as
approaches for their solution. For our discussion we are
interested in software and low cost hardware solutions,
which are likely constraints on low cost pervasive net-
working devices supporting SDN protocols. To further
complicate the problem certain types of attack traffic can
drastically reduce the performance of the classification
stage in a data plane pipeline. The simple reason is that
DoS/DDoS traffic cannot be classified as malicious until
the classification activities have completed. Attackers
have shown their ability to generate large volumes of
attack traffic, in excess of 300 Gbps, congesting major
Internet links [1]. Performing multidimensional classi-
fication in software is expensive, therefore it would
be highly desirable to prevent malicious traffic from
consuming classification resources.

3 DESIGN

In this section, we describe a phenomenon inherent in
network traffic. We further suggest two techniques that
provide unique advantages to classification.

3.1 Motivation

Network packet classification is difficult, in part, due
to the inherit randomness in packet arrival. In order
to ensure no packets are discarded during classification,
the network node must be able to process all packets at
line rate. However, there are many circumstances where
this is not possible due to classification complexity,
throughput requirements, and available computational
capability.
Pre-Classification: Our goal is to treat classification as
a finite resource and prioritize packets for classification
based on whether or not the packet belongs to a known,
trusted flow. By partitioning incoming packets thus, we
isolate the consumption of classification resources from
malicious traffic. We propose to place a pre-classification
stage before flow selection in the SDN data plane. The
aim of this pre-classification stage is to leverage the
locality in known, authorized flows in order to isolate

performance of known flows from adverse effects caused
by large bursts of unknown traffic.
Flow Locality: Within a period of time, old flows retire
and new flows are established. The number of active
flows, while highly variable, is finite and at worst equal
to the number of packets. However, the number of flows
is often much less than the total number of packets. This
trend can be observed in Figure 1. Over this particular
trace, there exists 1.4 million unique flows contained
within 27.3 million packets – an order of magnitude
difference in flow count versus packet count. When look-
ing at received bytes, 95% of the aggregate throughput
occurs from just 35% of the 1.4 million flows. We refer
to this phenomenon as flow locality. We further define
the active-flow window as a measure of flow locality over
a given period of time. In this work we leverage flow
locality within the given active-flow window to improve
classification throughput via active flow action caching.

We propose to leverage both pre-classification and
flow locality in our proposed design. As we will show
in our results, techniques that take advantage of these
properties provide orthogonal benefit and their effect is
additive.

3.2 Architecture

Figure 3 depicts the block diagram of our general ar-
chitecture for an OpenFlow data plane which leverages
both pre-classification and flow locality. As shown, the
OpenFlow abstractions from Figure 2 exist in this design
as well. Differing from Figure 2, we first note that packets
are partitioned by the Bloom Filter into two queues:
Known Flows and Unknown Flows – corresponding to
the desired pre-classification traffic classes. These flows
are scheduled for processing in the remainder of the
data plane by the Priority Scheduler, with Known Flows
always processed ahead of Unknown Flows (i.e., packets
in the Unknown Flows queue will wait for processing
until no packets remain in the Known Flow queue). The
final addition to this data plane is the Flow Cache, which
exploits flow locality within the active-flow window to
cache the desired actions for a given flow. The remainder
of the data plane correspond to the baseline architecture

598

of Figure 2. We now discuss each of the proposed
components in detail.
Flow-Identifiers and the Bloom Filter: The Bloom Fil-
ter [5], a constant time stochastic containment data struc-
ture, is the critical component enabling quick and effi-
cient pre-classification. Bloom Filters are a well-known,
space-efficient, data structure which approximates the
behavior of a conventional hash table for testing whether
an element is within a set. In hardware, Bloom Filters
store up to 10X more elements in the same space, and/or
are many times faster to access than a traditional hash
table. In our proposed design, the Bloom Filter serves
as a space-efficient container to track flow identifiers.
The Bloom Filter provides the ability to quickly and ar-
bitrarily segregate packets, effectively decoupling flows
into two logical partitions – Known Flows and Unknown
Flows. Once incoming flows have been partitioned, they
are fed into two different queues prior to proceeding
through the rest of the data plane. The Known Flows
queue has a higher priority than the Unknown Flows
queue, decoupling classification performance of known
flows from the effect of potentially large numbers of
packets from previously unclassified, unknown flows.

In a standard SDN data plane, a unique key is ex-
tracted from the incoming packet to be used in packet
classification. Typically, this key is then directly used by
the Table Selection and Flow Selection stages, shown in
Figure 2 to classify the packet. Here, we use this key first
as input to the Bloom Filter stage, as shown in Figure 4.

To map an arbitrary k-bit tuple (Key) to a w-bit flow
identifier used by both the Bloom Filter and Flow Cache
stages, the Key is reduced using an XOR tree as the hash
function (Hashn). Each of the n XOR trees fold the k-bit
Key into a w-bit flow identifier, where w is log2 of the
Bloom Filter table size. Each w-bit flow identifier is then
XOR’ed with a w-bit random number (seedn) to obfuscate
the hash, resulting in the Bloom Filter table index (idxn).
On every clearing interval, each seed is refreshed with a
new random number.

In order to avoid n read/write ports on a single table,
the Bloom Filter’s table is split into n sets. Each set is
managed by a single hash function. The resulting mem-
bership is simply the logical AND of the memberships
determined by each set. Even though each hash performs
essentially the same operation (reducing the k-bit Key to
a w-bit flow identifier), the XOR combination must be
unique to reduce collisions caused by compression.

In order to design a sufficient XOR tree, the binary
entropy was analyzed for each bit in the Key over the
length of the trace. In general, binary entropy decreases
from LSB to MSB of IP and Port fields. The payload
type field offers less entropy to the Key since the bits
are highly correlated due to the popularity of IPv4 and

UDP protocols.. The relative entropy of each bit in the
Key may vary depending on the type of network traffic.
In order to increase the entropy of the resulting flow
identifier, the XOR tree was constructed to avoid the
chance of combining bits that are highly correlated.

We segregated the bits from the Key (sorted by mea-
sured entropy) into w-bit levels. The order of the w

bits within each level was randomized for each of the
n hashes at design time. Finally, each of the w flow
identifier bits is the column compression (XOR) through
each level. This effectively randomizes the stride and
reduces the chance of combining bits that are highly
correlated.

eth.src

eth.dst

eth.type

eth.vlan_id

eth.vlan_p

ipv4.tos

proto.field

Key

...

next
stage

key

Table

Hash Lookupidx

seed

Table

Hash Lookupidx

seed

Table

Hash Lookupidx

seed

Bloom Filter

key

key

key

member

member

member

1

1
2
n

2

n

1

2

n

1

2

n

1

2

n

Fig. 4. Bloom Filter stage

Bloom Filters are stochastic data structures which have
a low, but non-zero probability of false positive matches.
In our design, false positives indicate the associated
packet is falsely classified as known. Too many false
positives will diminish the benefits of decoupling known
flows and thus can lead to some performance degrada-
tion should the occurrence be too high. The probability
of false positive classification increases as more items are
added to the Bloom Filter. To ensure that false positive
probability remains low, our design clears the Bloom
Filter after ICLR insertions. After clearing, the Bloom
Filter must effectively relearn the locality of flows, thus
the clearing interval ICLR must be infrequent enough
to reduce the likelihood of cold misses, yet frequent
enough to reduce the likelihood of false positives. Real-
time monitoring of false positives within the data plane
is possible, however we simply use a pre-determined
constant clearing interval. In our prior work involving
exploration of a software-implemented Bloom Filter in
a Linux system [7] showed that simply cold clearing is
effective, but more intelligent clearing mechanisms are
possible.
Flow Locality and the Flow Cache: As discussed in
Section 3.1 and demonstrated in Figure 1, within typical
packet traces there exists a high degree of flow locality.

599

Our design leverages this flow locality with the Flow
Cache, shown in Figure 3. Here, the purpose of the Flow
Cache is to cache the actions to be performed upon a
given flow, reducing the burden upon the Table Selection
and Flow Selection stages of the SDN data plane. In our
design, the Flow Cache is indexed with the same flow
identifier used to index the Bloom Filter stage (i.e., w-
bit identifier, XOR’ed down from the k-bit flow key). To
ensure a deterministic match, each entry in the cache
contains a full k-bit key for definitive tag match against
the flow in question, together with a 32-bit “action” field
for storing a pointer to the action-set associated with that
flow entry.
Flow Learning: Here we proceed to describe the learning
process for unknown flows. After key extraction, the
packet is first checked against the Bloom Filter. When a
miss occurs from the Bloom Filter, the packet enters the
Unknown Flows queue. When no packets are currently in
the Known Flows queue, the packet is then searched for
in the Flow Cache (note, while it is unlikely that a flow
would match in the Flow Cache after missing in the Bloom
Filter, it is not impossible given the clearing interval
ICLR of the Bloom Filter and the Flow Cache replacement
policy). Assuming no match in the Flow Cache, the packet
then proceeds through the Table Selection, Flow Selection,
and Action Application stages for packet classification and
action-set application.

The update path to the Bloom Filter and Flow Cache
can potentially be definable by the application. Appli-
cations could decide that certain flows should not be
pre-classified using a pre-classification bit and/or cached
using a cacheable bit.

Additionally, a cacheable or priority instruction could
be integrated to offer more fine-grained control. Upon
classification, the Action Application stage may prioritize
the flow by inserting it into the Bloom Filter and/or
improve classification performance by inserting it into
the Flow Cache. Once the flow has been prioritized,
all future packets matching the flow-identifier are pre-
classified are then forwarded to the Known Flow queue.
The action execution stage may also choose to process
the packet without updating the Bloom Filter/Flow Cache
selectively or only after a threshold is reached. While we
always update the Bloom Filter and Flow Cache for every
flow in our test application, configurable behavior may
be desirable for low-throughput or low-priority flows.

4 EVALUATION

In this section we first describe our experimental
methodology and design implementation details. We
then examine the performance of our design for varying
combinations of malicious traffic and interface speeds.

Data Plane Frequency 2 GHz
Data Plane Queue Depth 2 high, 2 low
Bloom Filter Size 320Kb (5 arrays, each 64Kb)
Bloom Filter Clearing Interval
(ICLR)

60K insertions

Flow Cache Size 69Kb (512 138-bit entries)
Flow Cache Organization 2-way set associative, LRU
Flow Selection 8,000 entries

TABLE 1
Summary of Architecture Details

4.1 Methodology

All experiments presented were performed using a cycle
accurate SDN data plane simulator developed in-house
using C++. SDN data plane models were developed for
the following architectures:

• Baseline: Basic data plane architecture shown in
Figure 2.

• Partition+Caching: Proposed architecture shown in
Figure 3.

• Partition: Data Plane architecture with Bloom Filter
and Priority Scheduler stages, but no Flow Cache.

• Caching: Data Plane architecture with a Flow Cache
stage, but no Bloom Filter and Priority Scheduler.

Table 1 shows the microarchitectural implementation
details for the designs under test (except where noted
elsewhere). The Bloom Filter and Flow Cache sizes
and clearing interval were set at the size empirically
determined to be the point of diminishing returns in
performance benefit. The data plane frequency was set
to be equal to the access time of the slowest memory
array defined within the system as determined by the
SRAM array modeling tool, Cacti [11].

The workload examined here consists of captured
traffic through an internet core switch provided by
CAIDA [2]. These traces were captured on a 10 Gbps
line card with a median 3 Gbps throughput during a
60 second time window. For privacy reasons, the trace
was anonymized by CAIDA. The the associated ports,
protocols, and relative flows were left intact. In order to
observe how each architecture scales with throughput
requirements, the packet-arrival time was expanded or
compressed linearly to emulate 1 Gbps, 40 Gpbs, and
100 Gbps line cards.

For flow classification, using the CAIDA trace, we
synthesized a set of eight-thousand classification rules
utilizing protocol, IP, and port fields for both source
and destination. In these experiments, the only action
was either accept or drop, emulating a basic firewall
application. To generate the rules we implemented a
heuristic rule generator to synthesize a set of rules (8,000
in this case) for an arbitrary PCAP trace with a target rate

600

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 10 40 100

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Interface Speed (Gbps)

Baseline - 95%
Baseline - 60%
Baseline - 20%

Caching - 95%
Caching - 60%
Caching - 20%

Partition - 95%
Partition - 60%
Partition - 20%

Partition+Caching - 95%
Partition+Caching - 60%
Partition+Caching - 20%

Fig. 5. Throughput of Acceptedauth normalized to Totalauth

for each classification architecture.

of authorized (Totalauth) versus unauthorized (Totalreject)
traffic. The generator distributes matches evenly across
all 8,000 rules (as much as possible). Rule sets were
generated for the following three scenarios (labeled ac-
cordingly in the experimental figures):

95% 95% authorized traffic, representing a network
under nominal conditions.

60% 60% authorized traffic, representing a network
with a moderately high load of unauthorized
traffic.

20% 20% authorized traffic, representing a network
under a DDoS attack.

4.2 Experimental Results

In this section, we compare the three classification
architectures, Partition, Caching, and combined Parti-
tion+Caching, against a baseline SDN data plane con-
figuration. We evaluate the effect of each approach on
data plane performance by analyzing throughput, mean
latency, and jitter (mean standard deviation of latency)
for a range of interface speeds and authorized to unau-
thorized traffic ratios.
Throughput: Figure 5 shows classification throughput
for each architecture. Here, throughput is measured
as authorized packets accepted (Acceptedauth) normal-
ized against the total number of authorized packets
(Totalauth).

Generally for interface speeds above 10 Gbps, the
baseline classifier is no longer able to keep up with
the packet arrival rate. Since baseline is indiscriminately
dropping packets, the throughput is further reduced
proportional to the ratio of adversarial traffic. The effect
of each architecture is revealed as the classifier is further
stressed with 40 Gbps.

Interestingly, we find that both architectures which

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 10 40 100

M
ea

n
La

te
nc

y
(μ

s)

Interface Speed (Gbps)

Baseline - 95%
Baseline - 60%
Baseline - 20%

Caching - 95%
Caching - 60%
Caching - 20%

Partition - 95%
Partition - 60%
Partition - 20%

Partition+Caching - 95%
Partition+Caching - 60%
Partition+Caching - 20%

Fig. 6. Mean Latency of Acceptedauth for each classifica-
tion architecture compared to baseline.

contain pre-classification (Partition and Partition+Cache)
actually achieve higher relative throughput when the
volume of unauthorized traffic is high as opposed to
nominal (i.e., 95% authorized). This is as opposed to
the Baseline and Cache architectures where a higher ratio
of unauthorized traffic leads to worse throughput. This
highlights the pre-classifier’s effective quality of service
toward known flows.

Generally, in the figure we see that the Caching ar-
chitecture provides a significant boost to classification
throughput over baseline. Similar to the baseline ar-
chitecture, throughput is reduced proportional to ad-
versarial traffic. By combining both components, the
Partition+Caching architecture leverages the benefits of
both pre-classification and flow locality to provide con-
sistent classification throughput in both nominal and
adversarial network conditions. In addition, the Parti-
tion+Caching architecture scales much better compared to
the baseline as interface speed, or similarly, classification
requirements increase.
Latency: Figure 6 shows the mean latency through the
SDN data plane for each of the architectures evaluated.
In the figure we see that the latency results roughly
map to the throughput results above. Generally, the data
plane becomes stressed at 10 Gbps and saturated at 40
Gbps. Notice the Partition architecture behaves identical
to the baseline when queues are rarely full (1 Gbps);
however, the Partition mechanism maintains consistent
behavior at 10 Gbps even when classifier resources are
stressed.

The increase in mean latency for the Partition archi-
tecture under nominal traffic conditions is caused by a
longer delay-until-service for authorized packets in the
unknown flow queue. The Partition+Caching architecture
is able to achieve a consistent average latency, even when

601

 0

 5

 10

 15

 20

 25

 30

 35

1 10 40 100

Jit
te

r (
μs

)

Interface Speed (Gbps)

Baseline - 95%
Baseline - 60%
Baseline - 20%

Caching - 95%
Caching - 60%
Caching - 20%

Partition - 95%
Partition - 60%
Partition - 20%

Partition+Caching - 95%
Partition+Caching - 60%
Partition+Caching - 20%

Fig. 7. Jitter - Mean Standard Deviation of Latency
(Acceptedauth) for each classification architecture com-
pared to baseline.

faced with adversarial traffic.
Latency Jitter: Figure 7 shows the latency jitter (i.e.,
Standard Deviation of Latency) for each architecture.
While the Partition architecture provides increased pro-
tection from DDoS attacks, it shows some increase in
jitter, due to the priority mechanism. Note that jitter here
is averaged across all flows and the increase is caused
by the longer time-to-service of packets in the unknown
flow queue. Once the flow is learned, however, the flow’s
jitter will be consistent with the Caching architecture.

The Partition+Caching architecture significantly re-
duces the observed jitter compared to the Partition ar-
chitecture; maintaining jitter comparable to the baseline.
This self-metering attribute of the Partition+Caching ar-
chitecture allows the data plane to provide higher effec-
tive quality-of-service to known flows, avoiding over-
commitment of data plane resources in addition to and
improving performance overall.

We kept queue depth small to minimize the chance
of packet reordering by the priority mechanism. While
raw packet reordering could occur whenever a priority
mechanism is implemented, we observed zero actual
packet reorders within a flow.

5 CONCLUSION

While SDNs provide many advantages, they dramati-
cally change the design of network hardware. As the
complexity of SDN applications increase, data planes are
becoming more susceptible to DoS attacks which can
result in increased packet delays and loss. Thus, there
is a strong need for SDN data plane architectures that
operate efficiently in the presence of malicious traffic.

In this paper, we present a new approach to SDN
data plane classification, utilizing a probabilistic data

structure to pre-classify traffic, decoupling likely legit-
imate traffic from malicious traffic. We validated our
approach by examining an SDN network firewall appli-
cation. For this application, our architecture dramatically
reduces the impact of unknown/malicious flows on
established/legitimate flows.

For future work, exploring intelligent Bloom Filter
clearing strategies would help reduce the impact of re-
learning flows immediately following a cold clear. In
addition, supporting arbitrary Keys for protocol inde-
pendence would further improve the generality of this
architecture. The Partition and Caching techniques pre-
sented in this paper can be integrated into an OpenFlow
data plane without requiring specification extensions;
however, software-defined control over pre-classification
and caching would require extension support. While the
focus of this work is centered around OpenFlow, the
approach presented in this paper is general enough for
many packet processing data plane architectures.

REFERENCES

[1] Biggest DDoS Attack’ Did Not Hurt The Global
Internet – This Time. Retrieved June 15, 2014 from
http://www.techweekeurope.co.uk/news/biggest-cyber-attack-
ddos-spamhaus-security-networks-111690.

[2] The CAIDA Anonymized 2012 Internet Traces - 2012, kc claffy,
Dan Andersen, Paul Hick. http://www.caida.org/data/passive/
passive 2012 dataset.xml.

[3] Open Networking Foundation. Retrieved June 15, 2014 from
https://www.opennetworking.org.

[4] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N.McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz. Forwarding metamorphosis:
Fast programmable match-action processing in hardware for sdn.
In Proceedings of the ACM SIGCOMM 2013 Conference on SIG-
COMM, SIGCOMM ’13, pages 99–110, New York, NY, USA, 2013.
ACM.

[5] A. Broder, M. Mitzenmacher, and A. Broder, and M. Mitzen-
macher. Network applications of bloom filters: A survey. In
Internet Mathematics, pages 636–646, 2002.

[6] I.L. Chvets and M.H. MacGregor. Multi-zone caches for acceler-
ating ip routing table lookups. In Workshop on High Performance
Switching and Routing, Merging Optical and IP Technologies, pages
121 – 126, 2002.

[7] P. Ghoshal, C Jasson Casey, Paul V Gratz, and Alex Sprintson.
Stochastic pre-classification for software defined firewalls. In
Computer Communications and Networks (ICCCN), 2013 22nd Inter-
national Conference on, pages 1–8. IEEE, 2013.

[8] P. Gupta and N. McKeown. Classifying packets with hierarchical
intelligent cuttings. In Micro, IEEE, volume 20, pages 34 –41,
Jan/Feb 2000.

[9] P. Gupta and N. McKeown. Algorithms for packet classification.
In IEEE Network, volume 15, pages 24 –32, Mar/Apr 2001.

[10] K. Li, F. Chang, D. Berger, and W. Feng. Architectures for packet
classification caching. In Proceedings of the 11th IEEE International
Conference on Networks (ICON), pages 111 – 117, Sept/Oct 2003.

[11] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI
6.0: a tool to model large caches. Technical report, HP Laborato-
ries, 2009.

[12] V. Srinivasan, S. Suri, and G. Varghese. Packet classification using
tuple space search. In SIGCOMM Computer Communication Review,
volume 29, pages 135–146, New York, USA, August 1999.

[13] G Varghese. Network Algorithmics: an Interdisciplinary Approach to
Designing Fast Networked Devices. Morgan Kaufmann, 2005.

602

