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Packet classification is central among traffic classification techniques that categorize pack-
ets with a traffic descriptor or with user-defined criteria. This categorization may make
information accessible for quality of service or security handling on the network. To make
packet classification both fast and scalable, we propose a new algorithm that combines
cross-producting with linear search. The new algorithm, Controlled Cross-producting, could
improve the scalability of cross-producting significantly with respect to storage, while
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g(r;walls maintaining the search latency. In addition, we introduce several refinements and proce-
Forwarding dures for incremental update. We evaluate the performance of our scheme with filter dat-

abases of varying sizes and characteristics. Specifically, we experimented with 12 different
types of filter databases, whose sizes vary from 16 K to 128 K. The experimental results
demonstrate the feasibility and scalability of our scheme. A comparison with the promi-
nent existing schemes further indicates that the proposed scheme takes less time and

space.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Traffic classification is an enabling technique for various
applications, including security monitoring, accounting,
quality of service and intrusion detection and prevention.
The techniques of traffic classification can be divided into
two categories: statistical and explicit. Statistical tech-
niques classify the traffic according to its statistical proper-
ties, such as traffic load, packet size or packet inter-arrival
time [1]. While a statistical traffic classifier could classify
traffic with little or no prior knowledge, it is usually lim-
ited by scalability issues and the sustained probability of
false positives.

Explicit traffic classification techniques usually classify
traffic based on predefined filters or policies. These filters
can either be configured manually or generated automati-
cally by analyzing the statistical traffic classifier. Although
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the effectiveness of an explicit traffic classifier relies on the
quality of the predefined filters, it usually is more scalable
and accurate than statistical traffic classifier. Moreover,
predefined filters can let a definite traffic classifier adjust
its data structures for specific applications.

Packet classification is a specialized technique for expli-
cit traffic classification of field specifications of packet
headers. Packet classification can meet network applica-
tions’ requirements by applying consistent actions defined
in the filters to the applications’ incoming packets. The ac-
tions include queuing disciplines, access control, account-
ing and intrusion detection [2,3]. In addition, various
devices, such as routers, firewalls and network intrusion
detection systems, have used packet classification to prac-
tical effect. Thus, a wide range of network applications de-
pend on the performance of state-of-the-art packet
classification. Nevertheless, packet classification with a
large number of filters is complex and usually has poor
worst case performance [4-7].

The filters for packet classification consist of a set of
fields and an associated action. Each field, in turn,
corresponds to one field of the packet header. The value


mailto:pcwang@cs.nchu.edu.tw
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

822 P.-C. Wang/Computer Networks 53 (2009) 821-834

in each field could be a variable-length prefix, range, expli-
cit value or wild card. The most common fields include the
source and destination IP address prefixes, source and des-
tination port ranges of the transport protocol and the pro-
tocol type in the packet header. Formally, we define a filter
F with d fields as F = (f1,f>, .. .,fs). While classifying pack-
ets, we say that a packet header P matches a particular fil-
ter F if for all i, the ith field of the header satisfies f;. Each
action has a cost that defines its priority among the actions
of the matching filters: the classifier only applies the low-
est-cost action from the matching filters [3].

The problem of packet classification resembles the point
location problem in multidimensional space [5]. The point
location problem finds the enclosing region of a point with-
in a set of non-overlapping regions. The best upper bounds
for classifying packets on N filters with d fields are either
O(logN) time and O(N) space or 0(logd’1N) time and
O(N) space.

To improve the search performance, much effort has
been devoted to packet classification in recent years, yield-
ing a number of algorithms. Out of these, the algorithms
based on cross-producting (e.g., [4,5]) are usually regarded
as the fastest. These algorithms generate all possible com-
binations of the filter field specifications and pre-compute
the best matching filter for each combination. Each packet
classification starts from d one-dimensional searches for
the best matching prefix of each field. Then, the algorithm
finds the index of the best matching filter from the combi-
nation of these best matching prefixes. The search is effi-
cient because a one-dimensional search is much faster
than a multidimensional one. However, due to the exten-
sive pre-computation, these algorithms cannot support
incremental updates. Moreover, the storage consumption
of the cross-producting-based algorithms is usually unac-
ceptable with increasing sizes of filter databases.

In this paper, we propose a new cross-producting-based
algorithm with linear search to handle any filter databases
undergoing a size expansion as a result of new applica-
tions. The proposed algorithm, Controlled Cross-producting,
is inspired by the following observation. Prior to finding
the matching prefixes by cross-producting, we do d one-
dimensional searches for the best matching prefix of each
field. As the number of distinct prefixes in each field in-
creases, the search performance of the one-dimensional
searches degrades, and the cross-product table consumes
an exponentially increasing amount of storage. However,
an increasing number of distinct prefixes also indicates
that more filters can be distinguished simply by the spec-
ifications of one field. These distinguishable filters can be
searched with one-dimensional data structures and ex-
cluded from the cross-product table. As a result, the overall
storage performance improves by orders of magnitude.

The proposed scheme can adjust storage usage by con-
trolling the number of filters that are distinguishable
through one-dimensional searches. With more filters
searched by one-dimensional data structures, the storage
needed for the cross-product table could be further de-
creased while trading off search speed. Although cross-
producting-based algorithms are rarely regarded as updat-
able, our scheme supports incremental updates fully. In
our experiments, we evaluate the performance of our

scheme with filter databases of varying sizes and charac-
teristics. We use twelve different types of filter databases,
whose sizes vary from 16 K to 128 K. Our results show that
our scheme can provide superior search performance while
keeping the space requirement comparable with the prom-
inent existing schemes.

The rest of the paper is organized as follows: Section 2
addresses related work. Section 3 presents our novel algo-
rithm and data structure. Section 4 describes our approach
to incremental updates. Section 5 explains the experimen-
tal setup and evaluates our scheme in detail. Finally, Sec-
tion 6 concludes.

2. Related works

Algorithms aimed at a fast and efficient packet classifier
have appeared in the recent literature [5,8,4,6,9,10,7,11-
20]. These existing algorithms can be divided into six cat-
egories. The following subsections provide a brief descrip-
tion of these categories.

2.1. Hardware-based solutions

There are two categories of hardware-based solutions:
ternary content addressable memory (TCAM) and bit vec-
tor. The TCAM cell stores an extra “Don’t Care” state to
achieve arbitrary bit mask matches, such as IP address
lookup and packet classification. TCAMs have been proven
effective for packet classification with a high degree of par-
allelism [2]. The drawbacks of TCAMs include their smaller
density, power dissipation and extra entries due to the
range-to-prefix transformation [12,13]. Much effort has
gone into improving the power and storage efficiency of
TCAMs [14,16,15,17-20].

Another scheme, Lucent Bit Vectors (LBV), does d one-
dimensional searches to derive d lists of filters with at least
one matching field. Since each list is in the form of a bit vec-
tor, LBV is suitable for hardware implementation. The main
drawback s its memory consumption: O(dN?). Further work
in [13] introducing aggregate bit-vectors has demonstrated
dramatic improvement in the speed performance of LBV.

2.2. Decision-tree-based solutions

The decision-tree-based algorithms include works pre-
sented in [11,7]. Both schemes divide the filters into multi-
ple groups with a decision tree. Each group corresponds to
a leaf node of the decision tree, and the algorithms traverse
the group with a linear search. The number of filters in
each group is limited by a predefined value. The cut rule
at each node may either be a value [11] or a bit [7] of
any field. An optimized set of cut rules would minimize
the required storage and search time. HyperCuts [21] fur-
ther extends the one-dimensional cut rules to multidimen-
sional ones.

2.3. Cross-producting-based solutions

Cross-producting is a general mechanism that looks up
best matching prefixes on individual fields and combines
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the results of individual prefix lookups with a pre-com-
puted table [4]. However, this scheme suffers from an
O(N“) memory blowup for d-field filters. Gupta and McKe-
own [5] present an algorithm, Recursive Flow Classification,
that can be seen as a generalization of cross-producting: it
does cross-producting recursively. In each iteration, the
algorithm generates a cross-producting table with only a
subset of the inspected fields, saving storage by eliminat-
ing unmatched entries. The algorithm lowers storage usage
significantly, but its space complexity remains O(NY). Like-
wise, in the case of two-field filters, this scheme is identical
to the cross-producting scheme and requires O(N?) space.
In a recent work, Distributed Cross-producting of Field Labels
(DCFL) [22] further improves the representation of cross-
producting entries in [5] with efficient set membership
data structures and reduces storage usage greatly,
although it relies heavily on hardware parallelism.

2.4. Extended grid-of-tries with path compression

The algorithm of Extended Grid-of-Tries with Path Com-
pression (EGT-PC) evolves from Grid-of-Tries (GT) in [4] to
support filters with more than two fields [12]. The algo-
rithm combines an enhanced data structure of GT with
the filter lists of linear search. Its search performance
may not be comparable to other schemes, since it queries
at most O(W?) combinations of source and destination ad-
dress prefixes [3].

2.5. Independent sets

The idea behind Independent Sets is to categorize multi-
dimensional filters according to the specifications of one
field [23]. The filters in each independent set are mutually
disjoint; therefore, the algorithm can derive the matching
filter in each independent set with binary search. Exactly
one independent set stores each filter, which reduces
memory consumption. The search performance is thus tied
to the number of independent sets.

2.6. Hash-based solutions

The hash-based idea [8] has given rise to multidimen-
sional filters in a previous study [24]. A hash table stores
filters with identical prefix length combinations, and creat-
ing a hash key just means concatenating the prefixes. For
example, the two-dimensional filters F = (10%,110«) and

= (11%,001%) both belong to the tuple T, 3. When search-
ing for T, 3, the algorithm makes a hash key by concatenat-
ing two bits of the source field with three bits of the
destination field. It can find the matching filters by probing
each tuple alternately. Rectangle search and pruned tuple
space search improve the performance of tuple space
search. In [25,26], the speed and storage performance of
the rectangle search are improved by reducing the number
of tuples. In [27], Entry Pruned Tuple Search (EPTS) enhances
the pruned tuple space search by storing pruning informa-
tion in each filter in the form of a bitmap of tuples contain-
ing non-conflicting filters. However, inserting a new tuple
might cause all tuple bitmaps in the filters to be updated.
In addition, EPTS requires an amount of storage propor-

Table 1

A comparison of time and space complexity.

Algorithm Time Space
Ternary CAM 0o(1) O(N)

O(dlogN+N/B)  O(dN?)
dlogN+N/B)  O(dN?)

Lucent bit vector [6]
Aggregate bit vector [13]

O(
HiCuts [11] 0(d) O(N%)
HyperCuts [21] 0(d) O(NY)
Cross-producting [4] O(dlogN + 1) O(N%)
REC [5] 0(d) O(N%)
DCFL [22] o(d O(dNW)
Grid of tries [4] O(Wd D) O(dNW)
EGT-PC [12] ow: ) O(dNW)
Independent sets [23] O(dlogN +1) O(IN)
Rectangle search [8] ozw-1) O(NW)
Pruned tuple space search [8] O(dlogN + Wd) O(N)
Controlled cross-producting O(dlogN +1) o((W — I)N/W)d)

B: memory width, d: number of fields, I: number of independent sets, N:
number of filters, T: number of hash tables, W: field length, dlog N: one-
dimensional search time.

tional to the number of tuples. Hence, the EPTS scheme
may not be scalable with respect to the size of tuple space.

In summary, we compare the time and space complex-
ity of the different algorithms in Table 1. Theoretically, the
schemes based on decision trees [11,21] and cross-pro-
ducting [4,5] achieve the best search performance, while
Pruned Tuple Space Search [8] and Independent Sets [23] re-
quire minimal storage. However, these schemes also have
some drawbacks. For example, the schemes in [8,23] do
not seem to bound search latency [8,2], and the schemes
in [4,5] may not update or scale for large filter databases
[2,3]. We are aware of the trade-off between time and
space complexity in the existing schemes and attempt to
make packet classification more scalable. We propose sev-
eral new ideas to increase the storage efficiency of the data
structures for storing filters. As shown in Table 1, the per-
formance of the proposed scheme varies between that of
Independent Sets and cross-producting schemes. The next
section derives the derivation of time and space complex-
ity of our scheme.

3. Our scheme

Before introducing our scheme, we will discuss the
cross-producting-based schemes in terms of their impor-
tant properties that lead to the inspiration of the proposed
scheme.

Srinivasan et al. introduced the seminal technique of
cross-producting [4]. The Cross-producting scheme is moti-
vated by the observation that the number of unique field
specifications is usually significantly less than that the
number of filters in the filter databases. Therefore, the
Cross-producting scheme pre-computes the best matching
filter for each combination of the d field specifications in
the cross-product table. To classify packets, the algorithm
does d one-dimensional searches to find the best matching
prefix of each field. Next, it retrieves the combination cor-
responding to the best matching prefixes to derive the in-
dex of the best matching filter from the cross-product
table.
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Table 2 uses a filter database with 12 filters and five
fields as an example. Table 3 lists the distinct specifications
of each field. There are 720 different combinations in total,
which means there are 60 combinations for each filter on
average. Table 4 shows the generated cross-product table.
In the worst case, every filter has different a field specifica-
tion; hence, N filters would result in N combinations.

There are several approaches to improving the storage
performance of the original cross-producting scheme. The
Recursive Flow Classification (RFC) scheme [5] eliminates
unused combinations by gradually cross-producting a sub-
set of the inspected fields. Although the RFC scheme could
reduce storage requirements significantly as compared
with the original cross-producting scheme, it is still not
feasible to support filter databases with more than 15 K fil-
ters [5].

Another approach to reducing the number of combina-
tions is to use a hash-based cross-product table. In [4,5],
the cross-product table is assumed to be implemented
with a direct-access table, in which each combination cor-
responds to one entry of the table. However, there are usu-

Table 2
An example with 12 filters on five fields.
Filter fi f f3 fa fs Action
Fo 000+ 111x [10:10] * uDP acty
Fq 000+ 111x [01:01] [10:10] uDP acty
Fy 000+ 10+ 2 [10:10] TCP act,
F3 000+ 10+ [00:10] [01:01] TCP act,
F4 000x 10+ [10:10] [11:11] TCP acty
Fs 0x 111+ [10:10] [01:01] ubDP acty
Fs 0x 111 [10:10] [10:10] uDP acty
F; 0% 1% * * TCcP act,
Fs * 01+ [00:10] * TCP act,
Fo * 0« * [01:01] ubpP acty
Fio * * * * ubP acts
Fi1 * * * [01:11] TCP acty
Table 3
The distinct specifications of each field.
hi f f3 fa fs
000+ 111x [10:10] * ubP
0% 10+ [01:01] [10:10] TCP
* 1x [00:10] [01:01]

01 * [11:11]

0x [01:11]

*
Table 4

The cross-product table of the filters in Table 2.

Index Crossproduct entry Matching filter
0 000%,111%,[10 : 10], x, UDP Fo
1 000+, 111x,[10 : 10], , TCP F;
2 000%,111%,[10 : 10],[10 : 10], UDP Fo
3 000%,111%,[10: 10],[10 : 10], TCP F;
4 000x,111x,[10 : 10],[01 : O1], UDP Fo
5 000%,111%,[10 : 10],[01 : 01], TCP F;
L] L] L]
L] L] L]
718 *,,%, (01 : 11], UDP Fio
719 *, %, %,[01 : 11], TCP Fi1

ally several combinations that do not match any filter. In
the previous example, the combination, C = (x,1x,
[10:10],%,TCP), which  partially overlaps  with
F,,F3,F;,F;; and completely covers Fg4, is disjoint with
the other filters. However, the incoming packet header that
matches combination C may not match these overlapping
filters since none of them completely cover the space of
combination C. As a result, combination C is useless, since
it does not match any filters. In the extreme case of an N-
filter database in which the field specifications of the filters
are either completely disjoint or completely overlapping,
the size of the cross-product table can be lowered to N
by removing the redundant combinations.

The third approach is inspired by the correlation be-
tween the number of distinct field specifications and the
required storage of the cross-product table. While storage
performance depends on the number of distinct field spec-
ifications, the cross-producting-based schemes would suf-
fer from severe degradation on storage performance when
the size of filter database expands. Nevertheless, there are
some algorithms that perform well on the filter databases
with numerous field specifications. Take the decision-tree-
based algorithms as an example. The procedure of tree
construction usually picks the field with the most distinct
specifications for space decomposition. Since space decom-
position reduces the number of filters sharing the same
specification in the selected field, it could categorize filters
better. Hence, the decision-tree-based algorithms perform
better on the filter databases with miscellaneous field
specifications.

Another algorithm that could benefit from the miscella-
neous field specifications is the Independent Sets scheme
[23]. As mentioned above, the filters are categorized into
different independent sets, whose filters are disjoint on a
selected field. With more distinct field specifications, each
independent set could store more filters, which results in
fewer independent sets and yields better search
performance.

Based on the observation, we are motivated to combine
the cross-producting-based schemes with the decision-
tree-based algorithms or the Independent Sets scheme to
reach a better balance between storage and speed perfor-
mance. However, decision-tree-based algorithms do not
require one-dimensional searches. Hence, we optimize
the original cross-producting scheme by incorporating
the concept of independent sets into it. The union of the
two schemes only requires moderate modification, since
the search procedures of both schemes perform one-
dimensional searches.

Our crude idea to merge the two schemes is to divide
the filters into two groups. The first group includes filters
searched by one-dimensional search and the other group
includes those searched by cross-producting. The selection
procedure involves the use of field specifications. Take the
filters in Table 2 as an example. The filters Fy,F4, F7,Fs, Fo
and Fq; contain one field specification, which is not speci-
fied in the other filters. Therefore, we can categorize these
filters into the one-dimensional search group. After the
categorization, the rest of the filters would contribute to
at most 162(=3 x 3 x 3 x 3 x 2) combinations. As com-
pared to the original cross-producting scheme, which gen-
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erates 720 combinations, the new scheme could make
storage orders of magnitude more efficient. We can repeat
this procedure to achieve further reduction. For example,
filter F3 is put into the one-dimensional search group in
the second iteration, and filter Fq is selected in the third
iteration. Then, the number of combinations is further re-
duced to 72. Therefore, the proposed scheme can adjust
the required storage to fit into the available memory space.
Nevertheless, there is a trade-off in the proposed
scheme. Additional search cost is necessary since the origi-
nal cross-producting scheme needs one-dimensional
searches, the cost lies in making extra comparisons for
the filters in a one-dimensional search group. Although
this extra cost is a reasonable trade-off for storage savings,
it can be minimized further by taking the cost of extra
comparisons into account. We can model the problem of
minimizing the number of cross-product entries and the
number of filters in the group of one-dimensional search
as a maximum clique problem. Assume that we represent
the filters with a graph G = (V,E) in which each vertex in
Vrepresents a filter. Two vertices are connected by an edge
if the two filters are completely disjoint. To achieve opti-
mal filter categorization, we must find the largest clique
in the graph G. However, the maximum clique problem is
known to be NP-complete [28]. In the following, we pres-
ent a greedy algorithm to construct our data structures.

3.1. Controlled Cross-producting

The first step in constructing the data structures of our
scheme is to transform ranges of the filters to prefixes. In
the original cross-producting scheme, the ranges must be
divided into primitive ranges that are mutually disjoint
[15]. Consequently, the primitive ranges are not updatable
due to the new range insertion that might result in new
primitive ranges. To support incremental updates, we
transform the ranges into prefixes by splitting each range
into multiple subranges, where each subrange uniquely
corresponds to one prefix [4]. The main drawback of this
approach is an increase in the number of filters and distinct
field specifications.

Let us consider the example in Table 2. Each filter con-
tains two range fields, f; and f;, which must be converted
to the prefix form. For example, range [10:10] is converted
to prefix (10x), and range [00:10] is converted to two pre-
fixes, (0x) and (10x). Once the range is converted into more
than one prefix, the filter is duplicated as well. As shown in
Table 5, the original filter database is transformed into 15
filters after doing the basic range-to-prefix transformation.
In the worst case, 2(W — 1) prefixes are required to cover a
range, where W is the length of a range field. Therefore, a
single filter with two range fields could be transformed
into at most 4(W — 1)? filters with pure prefix fields. The
distinct field specifications might increase as well,
although that is not the case in this instance.

After doing the range-to-prefix transformation, the
algorithm constructs a prefix trie of each field based on
the field specifications of the new filters. The trie node cor-
responding to the field specification of the filter called the
“prefix node”. Each prefix node maintains a filter list for
the subsequent procedures. The filter is inserted into the

Table 5

The converted filters with the range-to-prefix transformation.

Filter fi fa fi fa fs Action
Fq 000x 111 10 * ubP actp
Fp 000 111 01 10x ubP acty
F. 000 10« * 10% TCcP act;
Fq 000x 10« 0 01 TCcP act,
Fe 000 10 10x 01 TCcP acty
Ff 000% 10% 10% 11x TCcP acty
Fg 0x 111 10% 01 uDP acty
Fp 0 111« 10x 10x ubpP actp
F; 0% 1 * * TCP act;
Fj * 01 0% * TCP act,
i * 01 10x * TCP acty
F, * 0x * 01 ubP acty
B * * * * ubDP acts
F, * * * 01 TCP acty
F, * * * 1% TCP acty

filter list of the prefix node to which its field specification
corresponds. A filter that is put into the one-dimensional
search group is removed from the filter list. When the filter
list length of a prefix node reaches zero, the field specifica-
tion corresponding to the prefix node can be removed to
diminish the number of cross-producting combinations.
Accordingly, the proposed algorithm tries to maximize
the number of prefix nodes with an empty filter list while
minimizing the number of extra comparisons for the filters
in the one-dimensional search group.

In the following, we describe the procedure for filter
selection on each iteration. First, the algorithm selects
the filters to be searched in the one-dimensional data
structure with the prefix trie with the maximal number
of leaf nodes. The purpose of this step is to maximize the
number of filters put into the one-dimensional search
group in this iteration. As the number of distinct field spec-
ification increases, the number of leaf nodes usually multi-
plies as well. As a result, the algorithm could lower the
number of cross-product entries further by selecting the
filters associated with these leaf nodes. Note that there
might be more than one associated filter in a leaf node.
In this case, we select the filter such that one of the corre-
sponding prefix nodes has the shortest filter list.

After removing the selected filters, all prefix tries are
recomputed based on the field specifications of the rest
of the filters. The algorithm finds the number of cross-
product entries of the remaining filters to decide whether
the required storage is below a predefined threshold. If
not, the above steps, including selecting the prefix trie with
maximal leaf nodes and selecting another set of filters, are
repeated before the procedure of filter categorization is
complete.

We note that the filters selected in each iteration must
be disjoint in at least one field. Therefore, these filters can
belong to an independent set, and the one-dimensional
search group could be treated as a set of independent sets.
Since each independent set would result in at most one ex-
tra filter comparison, we can rephrase the goal of the pro-
posed algorithm as maximizing the number of prefix nodes
with empty filter lists while minimizing the number of
independent sets in the one-dimensional search group.
Therefore, the proposed algorithm is different from the
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algorithm in [23] that focuses on minimizing the number
of independent sets.

We illustrate the procedure of filter selection with the
previous example. Fig. 1 shows the prefix tries of five fields.
For an established binary trie, each prefix node has a unique
identifier to simplify the following description. We also list
the associated filters of each prefix node. The number in
parentheses denotes the number of associated filters.

The first step selects a prefix trie with the maximal
number of leaf nodes. This step can select either the prefix
trie of f, or of f;, and we randomly choose the former. Next,
for the prefix trie of f,, the filters in the filter list of each
leaf node are the candidate selected filters. Among these
candidates, one filter is put into the corresponding inde-
pendent set for each leaf node. In the prefix trie of f,, there
are two candidates, F; and Fy, in node C. For filter F;, its
third field specification corresponds to node B of prefix trie
of f; which is associated to two filters. Since the corre-
sponding nodes of Fy associate with at least five filters, F;
is selected and removed from the all corresponding prefix
nodes, including node A of f;, node C of f,, and so on.

Similarly, the filter Fy is selected in node E, and F, is se-
lected in node F. After dissociating these selected filters
from their corresponding nodes, both the numbers of dis-
tinct field specifications on f; and f; are decreased by
one, and the number of the cross-product entries is re-

duced from 720 to 432. The resulting prefix tries are shown
in Fig. 2, where the newly generated independent set is
listed in the shaded grid.

Until the number of distinct cross-producting combina-
tions decreases to less than a predefined threshold (for
example, 100), the above steps are repeated. In the second
and third iterations, the prefix trie of f, is still selected.
Three filters, Fy, F;, and Fy, are taken in the second iteration
and another three filters, F.,F; and F;, are picked in the
third one. After three iterations of filter selection, three
independent sets are generated, and the number of cross-
producting combinations is reduced to 144. Fig. 3 shows
the resulting prefix tries.

The fourth iteration adopts another prefix trie of f, and
chooses two filters, F. and F,. After the fourth iteration, the
number of cross-producting combinations drops to 72,
which causes the procedure to stop. Fig. 4 shows the
resulting prefix tries, where the ratio of storage reduction
is 90%. There are four independent sets with nine filters.
To classify packets, the algorithm inserts the filters of the
independent sets into the one-dimensional data structure
and inserts the rest into the cross-product table. In the fol-
lowing, we present the search procedure and the data
structures of the proposed scheme.

The search procedure consists of two parts: d one-
dimensional searches and one access to the cross-product

*

10
01

fy f f3 fa fs
Prefixes Prefixes Prefixes Prefixes Prefixes
* * * * * UDP
0 0 10 TCP P
000 01 0 01 e

| ” ®

10 1

111 G

UbP TCP

A1 F;- F,(6) A:F,-F,(3) A F, Fi,Fi-F,(6) |A: Fo, Fi- Fi, Fiu (5) A Fy Fy, Fo, Fi, Fi, F, (6)
B: F,- Fi(3) B: Fi(1) B: Fy, Fi(2) B: Fy,F.,Fy, F,F,(5) |B: F- Fp Fi- Fy, F,, F, (9)
C: F,- F;(6) C: Fj- Fr(2) C: F,(1) C: F,(1)

D: Fi(1) D: Fy, Fe- Fi, Fi(6) |D: Fiy- Fe, Fi, (3)

E: F.- F;(4) E: Fr(1)

F:F,- Fy ,F,- F;,(4)

Fig. 1. The prefix tries of the filters in Table 5.
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Prefixes Prefixes Prefixes Prefixes Prefixes

UDP O/O
TCP

- BEER

UDP TCP
A: Fi- F,(5) A:F,-F,(3) A:F,, F,F;- F,(6) |A: F,, Fi, Fy, F,y(4) A: FyyFoo Fi Fiy Fo(5)
B: F,- F;(3) B: Fi(1) B: F,(1) B: F4F,,Fo, FL,F,(5) |B: Fo- F,, Fi i o Fo (7)
C:F, F.-F,(4) C: Fi (1) D: F,,F,, F, - F), F;|C: F,(1)
D: F;(1) 5) D: F,F;(2)
E:F.-F,(3)
F: F,, F,- F,(3)

Fig. 2. The prefix tries with one independent set.
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f1 fz f3 f4 f5
Prefixes Prefixes Prefixes Prefixes Prefixes
* * * * UDP
0 1 10 01 TCP .
000 10 1 H
111
ubP TCP
A: Fy-Fy(3) A: Fy-Fy(3) A FuFp-F,(4)  |AF, FiFu(3) A Fo Fi(2)
B: Fi(1) D: Fi(1) D: F, Fe(2) B: F., F,(2) B:F,Fi, Fo, o (4)
C:F, F.(2) E:F.(1) C: F,(1)
F: F,(1)
fo: Fy, Fp, Fj
fa: Fa, Fy, Fye
fo: Fo, Fy, Fy
Fig. 3. The prefix tries with three independent sets.
fy fa f3 fa fs
Prefixes Prefixes Prefixes Prefixes Prefixes
* * * * UDP
0 1 10 01 * TCP
000 111 o E
.
01 (® (&)
UDP TCP
At Fy- F(2) A F,-Fy(2) A:F,Fy-F,(3)  |A:Fu FiFu(3) A Fo Fiu(2)
B: Fi(1) D: F;(1) D: F,(1) B: F,(1) B: F,F,(2)
C: F, (1) F: F,(1)

.;1 Fy, Ff'. F;

fo: Fa, Fy, Fy

fo: Foo For Fy

Fig. 4. The prefix tries with four independent sets.

table. The original cross-producting scheme differs from
the proposed one-dimensional search in that it requires
extra comparisons to the filters in the independent sets.
Therefore, the data structure for one-dimensional search
contains the necessary field specifications for indexing
the cross-product table and those for accessing the inde-
pendent sets.

In our example, there is no independent set on fi, f; and
fs. Hence, the data structures of these three fields can be
constructed from the corresponding field specifications of
the filters that are excluded from the independent sets.

For the field f,, the data structure includes the field speci-
fications of most filters, except for F, and F,. Fig. 5 shows
the prefix tries for one-dimensional searches. In the prefix
trie of f,, there are four nodes, B, C, E and F, which contain
the filters to be compared, and three nodes, A, D, F, which
are searched for the best matching prefixes. Since node F
has two purposes, it is shaded in light grey along with node
B in field f;.

One-dimensional search on the prefix trie must handle
three cases. In the first case, the best matching prefix node
is unshaded, meaning that there are no filters of indepen-

f1 fz f3

Prefixes Prefixes

*

10

Prefixes

f4 f5

Prefixes Prefixes

* UubDP
L3
L3

01 TCP

Fig. 5. The prefix tries for one-dimensional searches.
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dent sets to be compared. In this case, the prefix corre-
sponding to the best matching node is used only to calcu-
late the index of the cross-product table. In the second
case, if the best matching prefix node is shaded in dim
gray, the algorithm compares the associated filters sequen-
tially and cross-products with the prefix corresponding to
the last-retrieved, unshaded prefix node. In the last case,
the best matching node in light gray corresponds to the
best matching prefix for cross-producting and a filter buck-
et for linear search. In these two cases in which shaded
prefix nodes match, the algorithm must compare the asso-
ciated filters in the parent of the best matching node for
possible matching.

In Fig. 5, a specification of f>, “101”, matches to node E,
meaning that the best matching prefix for cross-product-
ing is (1x), and three filters, Fy, F; and F., are compared. An-
other f, specification “111” matches to node F, whose best
matching prefix is (111x), and another three filters, F,,Fj
and Fg, are compared. When node C is matched, the asso-
ciated filters of node C and node B are compared
sequentially.

We note that the prefix trie data structures can be re-
placed by other data structures to search for the best
matching prefix, such as hash tables [24] or multi-way
search trees [29]. In this work, we adopt the multi-way
search tree data structure for one-dimensional search.
Our main reason for choosing this data structure is its sca-
lability with respect to the number of prefixes and the pre-
fix lengths. Although the data structure only supports local
reconstruction, we can minimize this disadvantage be-
cause the filters usually share their field values [22,30].
The time complexity of the proposed scheme is thus equal
to O(dlogN + 1), where I is the number of independent
sets.

The space complexity depends on the storage that the
cross-product table uses. Assume that there are N distinct
field specifications in each field, among which at least
N/W specifications correspond to the leaf nodes. Hence,
there are N/W filters in the smallest independent set. After
generating I independent sets, the number of cross-pro-
ducting combinations thus equals (N—1Ix N/W)"=
O((W = DN/W)%).

3.2. Refinements

In the following, we present two techniques to improve
the search and storage performance. The first technique is
an approach of approximate range-to-prefix transforma-
tion. The other technique is cache line alignment for opti-
mizing linear search access speed. In the following, we
describe these two techniques in detail.

3.2.1. Approximate range-to-prefix transformation

As mentioned above, supporting incremental updates
requires transforming the range fields of a filter. However,
such an approach would create more field specifications
and increase the number of cross-product entries. In addi-
tion, the increasing number of filters would also create
more independent sets.

Several TCAM-based algorithms have been designed for
improving the storage efficiency of range representation

Table 6
The converted filters by using the approximate range-to-prefix
transformation.

Filter fi f fi fa fs Action
Fo 000x 111% 10% * ubP acty
Fy 000 111« 01x 10x ubDP acty
F, 000 10x * 10x TCP acty
F3 000 10x * 01 TCP acty
Fy 000 10x 10+ 11x TCP acty
Fs 0x 111« 10+ 01x uDP acty
Fs 0% 111% 10x 10x ubDP acty
F7 0% 1% * * TCP act;
Fg * 01x * * TCP act,
Fqy * O * 01 ubDP acty
Fio * * * * UDP acts
F11 * * * * TCP acty

significantly. These algorithms can be categorized into
those that encode ranges with mask extension? [15,17-
20] and those that generate extra fields [16]. Unfortunately,
these algorithms do not apply to our scheme. The algorithms
of the former category use the hardware support of three
states in TCAMs, and the extra field for the algorithm in
[16] would increase the number of cross-product entries.

We develop an efficient approach to range-to-prefix
transformation for our data structures. Our approach is to
represent a range by its smallest enclosure prefix. For the
filters in Table 2, the ranges [00:10] and [01:11] are both
transformed to prefix (x). Since one prefix represents each
range, our approach does not duplicate any filters. Table 6
lists the transformed filters. The algorithm then uses these
filters to generate the prefix tries for deriving the indepen-
dent sets. We note that the new approach is only used to
select filters. Therefore, the approach of approximate
range-to-prefix transformation only affects how the filters
are categorized. The construction of the cross-product ta-
ble and of the filters in the filter bucket for linear search
is still based on the original filters; that is, the filters with
range fields, for correctness.

Next, the algorithm generates three independent sets
on field f,. In the first iteration, it picks three filters, Fy, F4
and Fs, and in the second iteration, it picks another three
filters, F,, Fs and Fg. In the last iteration, it picks the filters
Fo and Fs. Then it generates the cross-product table with
the remaining four filters by doing the original range-to-
prefix transformation. Fig. 6 shows the prefix tries for
one-dimensional searches. In this example, there are only
three independent sets with 72 cross-producting combina-
tions. Therefore, the storage needed for the one-dimen-
sional data structures could be reduced while improving
search performance.

This approach has a potential drawback of increasing
the number of associated filters in each prefix node. This
drawback would increase linear search time. However,
our experiments show that most independent sets are gen-
erated on the fields of IP source and destination address
prefixes. Therefore, such effects can be minimized since

2 The technique of mask extension extends the prefix mask to be any
arbitrary combination of bits [31].
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fi f2 f3
Prefixes ° Prefixes Prefixes
*

*

° Of 01 0

f4 f5

Prefixes Prefixes

* ubpP

oG

ubP TCP

Fig. 6. The prefix tries for one-dimensional searches with approximate range-to-prefix transformation.

these fields are not affected by the proposed approach to
range-to-prefix transformation.

3.2.2. Cache line alignment

The other technique to improve search performance is
cache line alignment, which takes advantage of the fact
that processors fetch entire cache lines from dynamic ran-
dom access memory (DRAM) even when only a single word
is required [9]. The access time is dominated by the latency
of accessing the first word in the cache line; therefore, the
remaining words come at a very low cost [9]. This tech-
nique has been used to speed up several algorithms
[32,29,33,9]. We apply this technique to increase the rate
of accessing the linear-searched filters by fitting these fil-
ters into one or more cache lines. Currently, the size of
each cache line in a modern processor could be as large
as 64 or 128 bytes. Therefore, each cache line could hold
three filters (20 bytes per filter). With this technique, we
could merge several filter buckets to achieve better search
efficiency by re-associating filters from a node to its parent
node.

For the example in Fig. 6, the filter buckets of node B
and node C can be merged to adhere to the size limit of a
cache line. To achieve this, Fs is re-associated to node B
and node C is no longer needed. As a result, all filters of a
bucket can be read in a single cache line access.

4. Incremental updates

A filter update can either be an insertion or a deletion.
For our scheme, both types of updates would affect one
of the data structures (independent sets or a cross-product
table). These data structures also relate to the data struc-
ture of the best matching prefix search. Since the update
procedure on the best matching prefix data structure has
been studied extensively [34], we focus on the update pro-
cedure of the proposed data structures. Moreover, the
cross-product table can be implemented as a direct-access
array or a hash table, as mentioned above. The implemen-
tation using the direct-access array can increase the access
rate, but it is usually not updatable due to its consecutively
allocated entries. Therefore, our update procedure only ap-
plies to a hash-based cross-product table. In the following,
we present the procedures for each type of update and data
structure.

First, consider filter deletion. Since each filter can be
stored in either data structure of our scheme, the update
cost depends on where the deleted filter is located. If the

deleted filter is stored in the one-dimensional search
group, the filter can be removed directly. Otherwise, the
cross-product entries which only relate to the deleted filter
are removed. The deleted filter would overlap with the
other filters in the cross-product table in the worst case;
therefore, the update cost is M?, where M is the number
of filters stored in the cross-product table. The existing lit-
erature has reported that filter overlapping is quite rare
[5,12,13,22,30]; thus, the update cost is moderate in prac-
tice. In the case of updating a large number of cross-prod-
uct entries for a deleted filter, we can insert a new filter,
whose field specifications are identical to those of the de-
leted one, into the one-dimensional search group to signal
filter deletion. The packet matching the deleted filter
would also match the new filter, and the action of the de-
leted filter is ignored. The new filter will be eliminated
after the corresponding cross-product entries are removed
or updated.

Next, we introduce the update procedure for filter
insertion. Unlike the update procedure for filter deletion,
we can decide into which one of the data structures to in-
sert the new filter by considering space and time costs.
Subsequently, we will present the insertion procedures
for both data structures.

In the case of inserting a new filter into the one-dimen-
sional search group, the corresponding prefix node of each
field is derived first. The new filter can be inserted into the
linear search filter bucket, which corresponds to one of
these prefix nodes. Intuitively, we select the shortest one
to minimize search latency.

In the second case, we present how to insert a new filter
into the cross-product table cheaply. The major issue of
updating the cross-product table is how to handle the
new combinations caused by a newly inserted filter. When
a new filter is inserted, the cross-product table would have
to include (N + 1) — N% new combinations of new inter-
sections in the worst case.

To address this problem, we replace the new field spec-
ification of the inserted filter with its longest existing
enclosure prefix. After the replacement, there is at most
one new combination for the cross-product table. Yet, the
existing combination might have corresponded to a match-
ing filter. In this case, the new filter is appended to the
existing filter and searched linearly. The other existing en-
tries intersected by the new filter are also modified if nec-
essary. Although all entries are still modified in the worst
case, filter intersection is usually far less than in the worst
case [5,12,13,22,30]. Hence, the cost of inserting a new fil-
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ter can be reduced greatly with only moderate storage
overhead and few memory updates.

Let us consider the insertion of a new filter,
(01%,11%,[10: 10],[01 : 01], TCP), into our filter data struc-
ture from Table 2. Assume that the filter is inserted into
the cross-product table. According to Fig. 6, (01x) is a new
prefix of fi, and (11x) is a new prefix of f,. Therefore, the
number of new combinations could be as many as 72. With
the proposed approach, the new filter would be repre-
sented by (0x,1x,10x,01%, TCP). Since all field specifica-
tions exist, no new combination is inserted, and the cross-
product table need not be reconstructed.

Although the proposed insertion procedure for the cross-
product table could minimize the update cost, search per-
formance degrades if the inserted filter intersects with the
other filters. In this case, we could insert the new filter into
the one-dimensional search group for better storage usage.

In summary, the proposed procedures could minimize
filter update costs. The efficiency comes from the flexibility
of the unique design of hybrid data structures. As a result,
both search performance and storage efficiency could be
maintained at the same level without losing the accuracy
of our data structures.

5. Performance evaluation

In this section, we describe how our Controlled Cross-
producting scheme performs on both real and synthetic
databases in terms of its speed and storage. We use three
real databases in [35] and 52 synthetic databases, gener-
ated by a publicly available tool, ClassBench, [36] in the
experiments. We used the synthetic databases to test the
scalability of our scheme since the largest real database
contains only 1550 filters. Each synthetic database has dif-
ferent characteristics that are extracted from one of the 12
real databases [36]. Therefore, we can investigate the per-
formance of packet classification in different circum-
stances or devices, such as ISP peering routers, backbone
core routers, enterprise edge routers and firewalls [36]. Be-
sides synthetic databases, ClassBench can also generate the

tested packet trace for the designated filter databases. Our
experiments generate a packet trace that includes headers
with 50 times the number of filters along with each tested
filter database.

The performance evaluation has three parts. In the first
part, we demonstrate the effectiveness of our scheme by
presenting the trade-off between the required space and
speed. The second part focuses on relating the numerical
results of the proposed scheme to other existing schemes
in a performance study. In the last part, we evaluate per-
formance based on large synthetic databases to test the
scalability of our scheme with respect to the size of filter
database. In all parts, the performance metrics include
the required storage in kilobytes, and the numbers of
memory accesses in the average case (AMA) and the worst
case (WMA). The required storage includes space for d
multi-way search trees, filter buckets for linear search
and one cross-producting table. The values of AMA are de-
rived by dividing the total number of memory accesses for
classifying every packet header in the trace to the number
of classified packet headers.

5.1. Trade-off between speed and storage

We start the performance evaluation by presenting the
trade-off between the required amount of storage and the
number of memory accesses for classifying packets. We did
this evaluation on three real filter databases that are pub-
licly available in [35]. For each database, we adjust the
number of iterations for selecting filters into a one-dimen-
sional search group. Since the cross-product table based on
a direct-access array usually consumes much more space,
we only consider the case of hash-based cross-product ta-
ble. The refinement of approximate range-to-prefix trans-
formation is enabled, but we disable cache line alignment
to better illustrate the trade-off between required space
and speed.

As shown in Fig. 7, the required storage gradually de-
creases as the number of iterations increases. Since the
space used by one-dimensional search groups is propor-
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Fig. 7. Trade-off between the required storage and the number of memory accesses.
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tional to the number of iterations, storage reduction comes
from the decreased number of distinct field specifications.
However, such effectiveness becomes less obvious after
several iterations for two reasons. The first is that the
decreasing number of leaf nodes in prefix tries would re-
sult in fewer selected filters in each iteration. The other
is that our algorithm selects the filters with rarely used
field specifications first. Therefore, the remaining filters
usually share more field specifications, which makes the
remaining combinations of field specifications difficult to
eliminate. Although the number of memory accesses in-
creases as well as the number of iterations, the perfor-
mance degradation is moderate because only one extra
memory access is required for each additional iteration.

We also note that our scheme could achieve better
improvement on the required storage for larger filter dat-
abases since these databases usually have more distinct
field specifications. In Fig. 7, the required storage of IPC1
is much larger than the other two databases initially. How-
ever, with our scheme, the required storage could be re-
duced to the same level as that of the other two filter
databases, albeit with higher numbers of memory accesses.
Therefore, our scheme is more flexible and feasible with re-
spect to filter database size.

5.2. Comparative analysis of our scheme and previous
schemes

We did the second evaluation by comparing our scheme
with other notable schemes. The schemes from previous

mance of the proposed scheme is slower as a trade-off to
yield better storage consumption and scalability. Although
both schemes are based on cross-producting, the proposed
scheme could reduce the required storage by eliminating
the distinct field specifications. As a result, the scalability
of our scheme could be significantly improved.

As compared to other non-cross-producting-based
schemes, the proposed scheme seems uncompetitive in
storage performance, but our scheme outperforms these
schemes in both average and worst case search perfor-
mance. Both the storage disadvantage and speed advan-
tage come from the cross-product table. While the cross-
product table is superior in search speed, it also incurs ex-
tra storage.

Next, we use 12 synthetic databases for further evalua-
tion. The synthetic databases are generated by ClassBench
with default settings. Each database is initialized with
16,000 filters. However, some filters might be redundant,
and, as a result, the actual number of filters in each data-
base is usually less than 16,000.

While the storage performance of the proposed scheme
is not comparable to the existing schemes using the rela-
tively small, real, filter databases, this effect disappears
when the size of the filter database increases. As shown
in Table 9, the memory consumption of the proposed
scheme is much less than that of ABV and most cases of

Table 9
Storage performance of the existing algorithms using synthetic databases.

work include ABV [13], HyperCuts [21], Independent sets Syn  Original Aggregate HyperCuts Independent Controlled
[23] and RFC [5]. For the ABV scheme, the aggregate size DBs  filters bt vector sets cross-
is 32 bits, and the memory width is 256 bits. HyperCuts producting
adopts the setting in which the space factor is 1 and bucket ACLT 15926  36,523.81 369.18 557.37 827.55
i - ACL2 15447 55141.81 1,359.68  250.53 1,690.12
size is 32. Thg source code for the first two ex1§t1ng algo R R ety iy e
.rlthms is publicly available in [35]. lp the following exper- ACL4 15405 1330642 198526  229.30 1.562.94
iments, both refinements, approximate range-to-prefix ACL5 10379 4,545.09  294.45 119.47 654.02
transformation and cache line alignment, are enabled to FW1 14898  32,494.13 23,883.84 295.37 2,075.47
show their effect. FW2 15501 39,88548 10,859.94 242.20 1,766.12
. . . FW3 14297 27,532.10 27,172.06 231.41 1,983.00
To begin with, the evaluation uses the real databases. FW4 13856 3123193 1071761 23698 2151.53
Table 7 shows the storage performance of the pI'OpOSEd FW5 14,009 26,260.04 19,503.95 269.85 1,935.06
scheme and other existing schemes, and Table 8 lists the IPC1 14954 16,11621 3,557.90  285.63 1,519.83
speed performance. As compared to RFC, the search perfor- IPC2 16,000 4440532 1245029  250.00 1,707.25
Table 7
Storage performance of the existing algorithms using real databases.
Real DBs Original filters Aggregate bit vector HyperCuts Independent sets RFC Controlled cross-producting
ACL1 752 296.34 29.45 8.56 497.62 417.72
FW1 269 263.73 33.41 4.05 1,094.55 262.11
IPC1 1,550 331.46 142.18 23.70 8,984.18 879.00
Table 8
Speed performance of the existing algorithms using real databases.
Real DBs Aggregate bit vector HyperCuts Independent sets RFC Controlled cross-producting
AMA WMA AMA WMA AMA WMA AMA WMA AMA WMA
ACL1 35.13 44 14.79 22 25.94 31 11 11 13.02 15
FW1 20.49 30 21.37 46 27.26 34 11 11 9.90 14
IPC1 26.14 50 22.44 49 51.86 81 11 11 15.29 19
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Fig. 8. Storage performance of the proposed scheme using bytes per filter.

Table 10
Speed performance of the existing algorithms using synthetic databases.

Syn DBs Aggregate bit vector HyperCuts Independent sets Controlled cross-producting
AMA WMA AMA WMA AMA WMA AMA WMA
ACL1 33.30 44 21.07 56 21.72 26 10.69 13
ACL2 36.55 50 21.72 132 36.98 45 8.47 11
ACL3 52.55 84 22.78 119 67.39 102 18.70 27
ACL4 50.00 84 21.78 92 64.48 101 18.46 28
ACL5 33.72 57 28.28 60 58.04 107 13.55 15
FW1 47.33 56 22.52 221 45.29 52 9.05 10
FwW2 33.28 34 21.12 43 28.34 30 2.78 3
FW3 51.71 61 23.47 201 44.73 51 8.07 9
FwW4 53.47 87 24.22 639 53.45 65 9.85 11
FW5 51.65 61 23.95 182 46.95 56 9.08 10
IPC1 44.05 65 22.44 87 51.39 80 14.79 23
IPC2 32.34 33 17.14 41 25.16 27 2.73 3

HyperCuts. In addition, the proposed scheme also surpasses
both schemes in search performance, as shown in Table 10.
Although the proposed scheme needs more storage than
the Independent Sets scheme, it seems that the extra cost
could be offset by better search performance. The experi-
mental results of RFC are not listed since the table con-
struction would consume more than 4 GB of memory and
cannot be completed on our 32-bit machine. Although a
64-bit machine might be able to complete the construction
procedure, we believe that the required storage for RFC is
unlikely to be acceptable even with the state-of-the-art
hardware.

In sum, the proposed scheme could significantly im-
prove the storage efficiency with moderate speed degrada-
tion as a trade-off. By combining the advantages of the
Cross-producting scheme and Independent Sets, the pro-
posed scheme achieves a better balance between speed
and storage performance.

5.3. Scalability evaluation

To further investigate performance variation with re-
spect to the size of databases, we use ClassBench to gener-

ate larger databases from 32K to 128 K> with different
characteristics. The performance metrics include bytes
per filter (BpF) and the number of memory accesses in
the average and worst case. BpF is equal to the total stor-
age space divided by the number of filters. Since this
experiment evaluates the proposed scheme with databases
of different sizes, BpF could provide a better judgment on
the storage performance. These metrics are divided into
four groups, and the experimental results for each group
are shown in Figs. 8 and 9.

As shown in Fig. 8, the values of BpF vary from 37 to 270
for filter databases with from 16 K to 128 K filters. In fact,
the BpF values are smaller than 165 bytes in most cases,
and, as a result, the required storage of the proposed
scheme does not incur any exponentially increased storage
as the original cross-producting scheme or RFC does. More-
over, the average BpF value of the proposed scheme is only
96 bytes even when the sizes of filter databases increase to
more than 100 K filters. If the number of distinct field spec-
ifications boosts, the filters in independent sets are multi-

3 The maximum number of filters generated by ClassBench is bounded by
130K.
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Fig. 9. Storage performance of the proposed scheme using the number of memory accesses.

plied as well, so that the size of the cross-product table
could remain at an acceptable level. Therefore, the pro-
posed scheme could preserve the required storage without
being affected by the increased number of filters.

Fig. 9 shows the search performance of varying-size fil-
ter databases. Apparently, the number of memory accesses
is not influenced by the number of filters. In addition, the
difference of memory accesses between the worst case
and average case gets less significant when the database
size increases. This is because, with more filters, the per-
centage of the best matching prefixes corresponding to
the filters of independent sets is usually increased as well.
Furthermore, the proposed scheme could exploit the
increasing number of filters by properly selecting the fil-
ters of independent sets. Therefore, the search perfor-
mance in the worst case improves.

In our scalability evaluation, the experimental results
have shown that our scheme could achieve consistent stor-
age requirement and search performance for 48 different
filter databases. Although the storage performance of the
proposed scheme may not compete with some existing
schemes with small filter databases, the side effect disap-
pears when the number of filters increases. Overall, the
proposed scheme could provide superior scalability with
respect to varying sizes and characteristics of filter
databases.

6. Conclusions

In this work, we have developed a compound scheme
for scalable packet classification. The scheme uses linear
search to improve the storage requirement of the original
cross-producting scheme. Such combination comes from
the observation that each existing scheme would perform
better if the filter databases exhibited certain characteris-
tics. We found that the original cross-producting scheme
and the independent sets scheme complement each other
according to their performance on different filter dat-
abases. In contrast to the performance divergence, they
share the same search procedure of one-dimensional
searches. Therefore, we are inspired to propose the new

scheme, Controlled Cross-producting. Furthermore, we ad-
dress the problem of supporting incremental updates in
our data structures and present new approaches that do
not insert a large number of new entries.

In our experiments of software implementations, we
have demonstrated the scalability of our scheme in terms
of speed and space with respect to filter databases of vary-
ing sizes. Our results show that each packet classification
takes less than 20 memory accesses on average and 30
memory accesses in the worst case for large filter dat-
abases with more than 10K filters. As compared to the
existing schemes, the proposed scheme better balances
speed and storage performance. Therefore, the proposed
scheme is suitable for network applications with numer-
ous filters or multifunction network devices that integrate
routers, firewalls and network intrusion detection systems
(NIDS). We believe that our proposed scheme will remain
up-to-date with new network applications due to its insen-
sitivity to filter databases with different characteristics.

For future work, we intend to implement our scheme
based on a commodity field program array gate platform.
Packet classification still plays an important role in sup-
porting new IPv6 applications, such as flow labeling,
encapsulating and authentication. We are collecting real-
world IPv6 filter databases for further demonstration,
though such databases are still quite rare to date. Finally,
we believe that such a novel combination of complemen-
tary algorithms might be a new direction to achieve better
performance in practice.
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