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Abstract—Graphics processing units (GPU) have potential to
speed up deep packet inspection (DPI) by processing many
packets in parallel. However, popular methods of DPI such as
deterministic finite automata are limited because they are single
stride. Alternatively, the complexity of multiple stride methods
is not appropriate for the SIMD operation of a GPU. In this
work we present SWM, a simplified, multiple stride, Wu-Manber
like algorithm for GPU-based deep packet inspection. SWM uses
a novel method to group patterns such that the shift tables
are simplified and therefore appropriate for SIMD operation.
This novel grouping of patterns has many benefits including
eliminating the need for hashing, allowing processing on non-
fixed pattern lengths, eliminating sequential pattern comparison
and allowing shift tables to fit into the small on-chip memories
of GPU stream cores. We show that SWM achieves 2 Gb/s deep
packet inspection even on a single GPU with only 32 stream cores.
We expect that this will increase proportionally with additional
stream cores which number in the hundreds to thousands on
higher end GPUs.

I. INTRODUCTION

Throughput requirements continue to increase for network
applications and services. Deep packet inspection (DPI) has
the most strenuous throughput requirement and is a key
component of network intrusion detection systems [1], [2], [3],
[4], [5]. DPI scans payloads for the presence of known attack
patterns [6]. Increasing DPI speed can alleviate the bottleneck
behavior that current payload search systems impose.

Graphics processing units (GPU) [7] have potential to speed
up DPI by processing many packets in parallel. However, the
SIMD configuration of GPU processing cores require simplic-
ity for efficient utilization and fast kernel execution. Although
deterministic finite automata (DFA) have been implemented
in a GPU [8], [9], [10] due to their simplicity of operation,
state transition tables require excessive memory and one global
memory access for every packet byte processed in the worst
case. Therefore, reduced memory algorithms [11], [12] have
been used to allow DFA to be efficiently implemented in a
GPU [13], however, DFA algorithms are single stride, which
limits their speedup capability.

Methods to increase stride [14], [15], [16], [17] have been
developed, however, the complexity of these algorithms is not
appropriate for the SIMD operation of a GPU. For example,
in the Wu-Manber [14] algorithm, when a substring that is a
suffix of multiple patterns is encountered in a packet, multiple
patterns must be compared to the packet text through hashing.

This causes great divergence among processors in an SIMD
arrangement, and thus a significant performance degradation.

In this work we present a simplified Wu-Manber like
algorithm called SWM, which uses a novel method to group
patterns such that the shift tables are simplified and the algo-
rithm becomes appropriate for SIMD operation. Specifically,
our grouping method simplifies the algorithm resulting in
the following properties. Multiple pattern comparisons never
occur, allowing for SIMD operation without path divergence
between stream cores. This also allows for the use of shift
tables which include the entire length of all patterns, rather
than truncating the patterns when creating shift tables. Our
pattern groupings also allow the use of 2-byte substrings for
the shift tables which creates two other benefits. First, the
shift tables are very small and can be stored directly in the
local memories of the GPU stream cores which improves
performance and determinism. Second, 2-byte substrings can
be direct indexed which removes the need to hash the packet
text. This also improves performance by removing the hash
calculation entirely.

We further optimize SWM for the VLIW arrangement of
stream processors and efficient access of the global memory
packet buffer. We implement SWM in an ATI Radeon GPU
[18], and show that, even on a low end GPU, SWM can
achieve 2 Gb/s deep packet inspection.

The remainder of this work is organized as follows. Section
II discusses the SWM algorithm. Section III discusses the
architecture of the GPU system. Performance analysis and
experimental results are presented in Section IV and related
work is covered in Section V. The paper is concluded in
Section VI.

II. SWM ALGORITHM

This section begins by discussing the construction of shift
tables and operation of the Wu-Manber algorithm. It continues
by discussing our novel method for grouping patterns, shift
table construction and SWM algorithm operation. It concludes
by presenting some optimizations required for efficient GPU
execution.

A. Multiple Stride Basics (Wu-Manber)

Given a list of patterns P, Wu-Manber constructs a shift table
which stores a shift value (in bytes) for all B-byte substrings in
the first m bytes of each pattern p ∈ P . Each pattern therefore



has one shift value for m−B + 1 substrings. The shift value
for substring s, is the position of s from the end of the pattern,
subtracted from m. Here is an example where m = 5 and b =
2. In the pattern ‘HELLO’, the substring ‘HE’ occurs 2 bytes
into the pattern so the shift value for ‘HE’ is 5 − 2 = 3,
meaning that if ‘HE’ is encountered in a packet, we can shift
forward 3 bytes. In the pattern ‘HELLO’, the substring ‘LO’
occurs 5 bytes into the pattern so the shift value for ‘LO’ is
5 − 5 = 0, meaning that, if ‘LO’ is encountered in a packet
we cannot shift forward because we could potentially pass
over the string ‘HELLO’. Shift table entries are created for
all B-byte substrings, including those that do not exist in any
pattern. The stride value for substrings that do not exist in a
pattern is m−B + 1.

Shift table operation begins by examining B-bytes of a
packet starting at offset m−B+1. This B-byte value is looked
up in the shift table. If the shift value found is non-zero, then
we simply stride in the packet by this shift value and examine
the B-bytes at this next location. If the shift value is zero
then the packet text must be compared to any patterns that
share this B-byte substring as a suffix. This could potentially
be many patterns that need sequential comparison. This is
the most time consuming part of the algorithm. Wu-Manber
uses several methods to help with this problem but none are
appropriate for a GPU-based multiple stride algorithm. The
following are the methods used by Wu-Manber:

• Using a larger value for B helps reduce the number of
patterns that share suffixes, but this also requires more
memory for the shift tables

• The shift tables for larger values of B utilize a hash table
to reduce memory, but this requires calculating a hash
value for each B-bytes examined in the packet. Also, this
reduces the average stride because substrings that hash to
the same value must store the minimum stride value

• Hashing is used to reduce the time to compare many
patterns that share suffixes

The goal of SWM is therefore to avoid these methods and
produce a simpler algorithm with the following goals:

• Avoid using larger values for B so that the shift table size
is small enough for GPU stream core caches

• Use a direct indexed lookup for each B-bytes to avoid
the overhead of hashing and divergence between SIMD
processors

• Avoid hashing when comparing patterns to the packet text
in order to remove divergence between SIMD processors

• Avoid sequential pattern comparison to the packet text in
order to remove divergence between SIMD processors

• Create shift tables with full patterns rather than the first
m bytes of each pattern

B. Overview of SWM

All of the aforementioned properties can be achieved by
circumventing the occurrence of patterns that share suffixes.
If all patterns have a unique suffix, then any time that a stride
of zero occurs, the current B-bytes are known to belong to
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Fig. 1. Example of creating a compatibility graph for patterns ‘PRO-
GRAMMER’, ‘ACCELEROMETER’, ‘FOLKSINGER’, ‘GINGERBREAD’,
‘WIDESPREAD’, ‘INSPECTION’. Each pattern has a vertex and vertexes are
joined if the pattern prefixes are different. Maximal cliques are chosen from
the graph to form pattern groups.

only one specific pattern. If no two patterns share the same
2-byte suffix, then B can be chosen to be two bytes and the
following properties apply:

• Shift tables for B = 2 are small enough for GPU stream
core local memories

• Shift tables for B = 2 can be direct indexed
• Sequential pattern comparison and hashing are not needed

to compare patterns to the packet for shift values of
zero because there is a one-to-one relationship between
patterns and suffixes

• Shift tables can be created for full pattern lengths because
the length of the pattern associated with each shift value
of zero is known

In order to remove the occurrence of patterns that share
suffixes, we must group patterns such that no two patterns in
a group share the same two byte suffix. Specifically, we must
find the minimal number of groups such that no two patterns
in a group share a suffix. This grouping takes advantage of
the parallel processing capability of graphics processing units.
Each stream core in a GPU can processing one group of



patterns. Also, in a modern GPU, even though multiple stream
cores must be used to process the full set of patterns, there are
still enough stream cores to replicate these groups and process
the full pattern set for many packets in parallel.

C. SWM Pattern Grouping

We create a compatibility graph to group patterns such
that no two patterns in the same group share a suffix. In the
compatibility graph, each pattern is represented by a vertex.
If two patterns have the same 2-byte suffix, their vertices
receive no adjoining edge. On the contrary, if two patterns
have different suffixes, their vertices are joined by an edge.

We group vertices together by finding maximal cliques (kn
subgraphs with maximal n). Each clique becomes a pattern
group. This is a minimal graph coloring problem so we use
a graph coloring heuristic. Finding a low number of groups
to cover all patterns allows greater replication of the entire
pattern set in the GPU.

Figure 1 shows an example compatibility graph and
corresponding groupings for patterns ‘PROGRAMMER’,
‘ACCELEROMETER’, ‘FOLKSINGER’, ‘GINGERBREAD’,
‘WIDESPREAD’ and ‘INSPECTION’. There are three
resulting pattern groups as shown in Figure 1(b). The groups
are (‘PROGRAMMER’,‘GINGERBREAD’,‘INSPECTION),
(‘ACCELEROMETER’,‘WIDESPREAD’) and
(‘FOLKSINGER’).

D. SWM Shift Table Construction

We begin shift table construction by finding the number of
characters m, in the shortest pattern. We use the value of m to
derive a shift value for all 2-byte substrings within the patterns
in a set. To find the shift value for any 2-byte substring we
use the distance in bytes v from the end of the pattern that the
substring occurs. The shift value for any substring is calculated
to be MIN(v, m−B + 1). Figure 2(a) shows the shift values
for the 2-byte substrings in the pattern ‘ACCELEROMETER’.

The shift values for each substring are stored in a direct
indexed shift table as shown in Figure 2(b). If a substring has
a shift value of zero, a pointer is added to the patterns table
which contains the length and full pattern from which the
substring was derived. This is used for comparing the pattern
to the packet when a shift value of zero is found. Because of
the pattern grouping, there will be only one pointer in the shift
table for each pattern in the patterns table.

E. SWM Operation

SWM begins by looking up the shift value for 2-bytes (p)
of a packet starting at offset m−B +1. If the shift value (v)
is non-zero, this is used as the stride and SWM repeats the
process at packet byte (p + v). If the shift value is zero then
the pointer in the shift table is used to compare a pattern from
the patterns table to the packet text.

F. Group Balancing

Because substrings that do not exist in a pattern set receive a
default stride value of m, which is the largest possible stride,
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Fig. 2. Extracting shift values and shift table examples for the pattern
‘ACCELEROMETER’.

pattern sets with fewer patterns may have a larger average
stride. Since a packet must be processed by all pattern sets
before deep packet inspection is complete for a packet, it
makes sense that we should try to make the average stride for
each pattern set similar, in order to equalize the processing
time for each pattern set and minimize the overall latency for
processing a packet. We therefore perform further refinement
on our pattern groupings. After the minimum number of
pattern groups is found, we attempt to equalize the number
of patterns in each group without increasing the number of
groups.

III. GPU ARCHITECTURE

The functionality of SWM is split between the CPU and
the GPU, as illustrated by Figure 3. The following sections
describe the functionality of SWM in the CPU and the GPU.

A. CPU

As shown in Figure 3, the CPU host has several responsi-
bilities. These responsibilities include creating the SWM shift
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Fig. 3. SWM system architecture. Deep packet inspection is performed by
the GPU where each stream core processes a separate packet and any matches
are reported back to the CPU.

tables and transferring the tables to the local memory of the
GPU compute units. The host maintains a current packet buffer
which is mapped to the global memory of the GPU. The host
also reads results from the matching buffer on the GPU and
reports any potential attack patterns.

B. GPU

The SWM kernel runs on each stream core in the GPU,
as shown in Figure 3. The following are specifics about
the functionality of the kernel as well as GPU memory
management.

1) Kernel: Each stream core on the GPU has a VLIW
processor. In order to more efficiently use the VLIW pro-
cessors we thread multiple, non-adjacent packet sections si-
multaneously per work item. This increases the utilization of
the individual processing elements in each stream core. Most
GPUs have the ability to run more work items than available
stream cores. The GPU will trade off active work items in
order to help hide the latency caused by global memory
accesses. The ATI Radeon HD 6450 has 32 stream cores so
this is the minimum number of work items that we will run
on the GPU.

2) Memory: The local data store (LDS) of each compute
unit, and the private memory of each stream core, contain the
shift tables necessary for SWM kernel operation. Local access
to the shift tables allows for faster performance. Packet data is
stored in a memory buffer on the CPU host. The map buffer
OpenCL command creates a mapping between this host buffer
and a buffer in the GPU global memory. This mapping is
used for DMA between the GPU memory and host memory.
This method is faster that using a write buffer command to
explicitly write packet data from the host to the GPU global
memory. The kernel requests 16 byte vectors from the global
packet buffer. Fetching 16 byte vectors most efficiently utilizes
the memory fetch unit, which can access 128 bits at a time.

 

1.5

1.6

1.7

1.8

1.9

2

2.1

1 2 3 4

T
h

ro
u

g
h

p
u

t 
(G

b
/s

)

Threads / Work Item

0.0 0.5 1.0

attack bytes / trace bytes

Fig. 4. Kernel performance using 1 to 4 copies of SWM sequentially per work
item (kernel instance). Increasing the number of copies increases available
instruction parallelism to efficiently utilize the VLIW processors. Increasing
the number of payload bytes derived from attack signatures being searched
also affects the performance of the SWM kernel.

IV. PERFORMANCE ANALYSIS

In this section we evaluate the performance of SWM on our
test GPU. We begin by describing the experiment hardware,
followed by evaluation of the SWM kernel performance.

A. Experiment Setup

We implement SWM on an ATI Radeon HD 6450 which
has 32 stream cores and 512MB of DDR memory. Our host
system contains an Intel I5 processor running at 3.3 GHZ and
8GB memory. The GPU and host interconnect via a PCIe 2.1
x 16 bus. SWM is written using Open Computing Language
(OpenCL) [19] which abstracts the programming of various
parallel computing devices. Using OpenCL allows SWM to
be portable amongst most newer graphics processing units.

B. Kernel Performance

In this section we evaluate the performance of SWM using
different design optimizations. First, we evaluate the perfor-
mance of the kernel using a varying number of copies of SWM
in the kernel. Second we evaluate the performance of SWM
using a varying number of work items. We also evaluate SWM
by using global memory and local memory to store the state
tables.

1) Kernel Thread Optimization: Figure 4 demonstrates the
performance of SWM using an increasing number of copies
of the SWM code in the kernel. We do this by copying the
SWM code within the kernel code. This increases the parallel
instructions available to the VLIW processors. As shown in
Figure 4, the throughput increases when increasing the number
of copies of SWM due to the increase in processor utilization.

Figure 4 also shows that SWM achieved a throughput of
over 2 Gb/s. This throughput is achieves on a GPU with only
32 stream cores. Other GPUs have many more cores, such as
the AMD 6970 which has 640 stream cores. Also observed in
Figure 4, changing the payload content to contain a varying
percentage of attack strings affects the throughput a minor
amount.
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Fig. 6. Performance using global vs local memory to store the SWM shift
tables on the GPU.

2) Work Item Optimization: Figure 5 demonstrates the
effect of using a different number of work items. The lowest
number of work items used is 32. With 32 work items, only
one kernel instance will run on each stream core. If that stream
core is waiting for a global memory access to execute an
instruction, then the stream core’s ALU will be idle. Increasing
the number of work items allows the stream cores to execute
a different kernel instance while another instance waits on a
memory access. In Figure 5, we increase the number of work
items from 32 up to 256. I minor increase in throughput is
achieve by increasing the number of work items.

3) Memory Optimization: Figure 6 shows the performance
of SWM when storing the shift tables in local vs global
memory. As expected, storing the shift tables in local memory
achieves much higher performance as this method does not
suffer the same wait time as when using global memory.
Overall, SWM achieves a throughput of about 2 Gb/s.

V. RELATED WORK

There are two main methods to accelerate deep packet
inspection. These are intra-stream parallelism and inter-stream
parallelism. In intra-stream parallelism, multiple, contiguous
bytes of a packet are scanned simultaneously. In inter-stream
parallelism, multiple packets are scanned simultaneously using
multiple copies of the pattern matching engine.

Methods have been presented to exploit intra-stream par-
allelism to increase DPI performance. Wu and Manber [14]
and derivatives [15] have produced multiple-pattern, multiple-
stride average case algorithms. The complexity of these al-
gorithms is not appropriate for GPU implementation. Brodie
et al [20] increases throughput by allowing multiple DFA
transitions to be traversed simultaneously. This system uses a
specially designed hardware approach and is therefore limited
in its implementation possibilities.

Hua et al [16] introduces a variable stride DFA (VS-DFA)
which partitions patterns into variable size blocks using a
fingerprinting scheme. These blocks are used to construct a
multiple byte striding DFA. The same fingerprinting scheme
is also used as a preprocessing step on the input source such
as incoming packets. This guarantees that the correct size
block of characters is fed to the VS-DFA. This preprocessing
requires hashing of every byte of the packet before the input
is given to the VS-DFA. The VS-DFA operation and the
fingerprinting operation must be performed in parallel, again
requiring special hardware.

Methods have been presented to exploit inter-stream par-
allelism to increase DPI performance. Commercial content
inspection products use specialized hardware to accelerate pat-
tern matching. Commercial chips such as the LSI Tarari T2000
series [21], the Cavium Networks CN1700 series [22] and
the Netlogic NLS2008 [23] are advertised to achieve content
inspection speeds of multiple Gb/s. Unfortunately, these are
specialized hardware chips and therefore the implementation
platforms are very limited.

Graphics processing units (GPU) have been used to exploit
inter-stream and intra-stream parallelism. Vasiliadis et al [8],
[9] have implemented deterministic finite automata (DFA)
in a GPU. Unfortunately, the state transition tables have a
large memory requirement. The state transition tables must
be stored in global memory and require one global memory
access for every byte processed in the worst case. GPEP
[13] uses an optimized algorithm called P3FSM which has
similar complexity to a state transition table but reduces the
memory requirement. However, this algorithm is limited to
single stride. A GPU-based Wu-Manber modification [24] has
been implemented but does not utilize the Wu-Manber shift
table for packet strides and is limited to multiple Mb/s rather
than Gb/s. SWM is a simplification rather than a modification
of the Wu-Manber, algorithm which is most appropriate for a
GPU implementation, allowing for multi-Gb/s speeds.

VI. CONCLUSION

Accelerating deep packet inspection is important to the
effectiveness of network security due to the continuing need
to increase the number and complexity of attack signatures.
Given this requirement, graphics processing units can be used
to process network traffic in parallel and improve signature
scanning speeds. However, GPUs have limitations in terms of
the type of algorithm that can be implemented, and multiple
stride deep packet inspection algorithms are not congruent
with these limitations. SWM solves this congruency problem



through a systematic pattern classification system. Our results
indicate that SWM can achieve a consistent throughput of 2
Gb/s on a low end GPU.
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