IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 3, MARCH 2006 241

Processor Array Architectures for
Deep Packet Classification

Fayez Gebali, Senior Member, IEEE Computer Society, and A.N.M. Ehtesham Rafiq

Abstract—This paper presents a systematic technique for expressing a string search algorithm as a regular iterative expression to
explore all possible processor arrays for deep packet classification. The computation domain of the algorithm is obtained and three
affine scheduling functions are presented. The technique allows some of the algorithm variables to be pipelined while others are
broadcast over system-wide buses. Nine possible processor array structures are obtained and analyzed in terms of speed, area,
power, and /O timing requirements. Time complexities are derived analytically and through extensive numerical simulations. The
proposed designs exhibit optimum speed and area complexities. The processor arrays are compared with previously derived

processor arrays for the string matching problem.

Index Terms—Processor array, string search, deep packet classification, parallel hardware.

1 INTRODUCTION

THE string matching problem is employed in packet
classification, computational biology, spam blocking,
and information retrieval, to mention only a few applica-
tions. String search operates on a given alphabet set ¥ of
size |X|, a pattern P = pyp; - - - pp—1 of length m, and a text
string T' = tyt; - - - t,,—1 of length n, with m < n. The problem
is to find all occurrences of pattern in the text string.

The average time complexity for implementing the string
search problem on a single processor was proven to be O(n)
[1]. To meet the requirement of fast string matching, several
hardware solutions were proposed that made use of
advances in Very Large Scale Integration (VLSI) and
processor array design techniques. Processor arrays are
simple, regular, and modular structures for implementing
several recursive algorithms [2], [3], [4]. Several authors
developed techniques for mapping regular iterative algo-
rithms onto processor arrays [3], [4], [5], [6], [7], [8], [9]. This
paper presents a systematic methodology for obtaining
several processor array architectures for deep packet
classification based on the techniques developed in [9].

Packet classification refers to the identification and
classification of individual data packets arriving at a switch.
There are three types of packet classification tasks [10]:
1) Single-field classification (SFC) looks at a single field in
the packet header and is used mostly in packet routing.
2) Multifield classification (MFC) scans multiple fields of a
packet header to classify packets and support quality of
service (QoS) policies. 3) Deep packet classification (DPC)
[10], [11] examines the packet payload data in order to make
classification decisions for the high-level applications. This
paper deals with a hardware support for the DPC.

The need for DPC is increasing rapidly with the
emerging content-aware applications, such as content-
switching, load balancing, data streaming, policy-based

o The authors are with the Department of Electrical and Computer
Engineering, University of Victoria, Victoria BC, VSW 3P6, Canada.
E-mail: {fayez, nrafiq)@engr.uvic.ca.

Manuscript received 28 July 2004; revised 21 Mar. 2005; accepted 26 Apr.
2005; published online 25 Jan. 2006.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0186-0704.

1045-9219/06/$20.00 © 2006 IEEE

firewalls, intrusion detection, etc. For such applications,
traditional look-up table and CAM (content-addressable
memory)-based search engines are not suitable [11], [12]. A
string search algorithm-based search engine is the most
suitable for those applications [11], [13]. Several efficient
linear string search algorithms have been developed [1],
[14], [15]. Most of these algorithms use preprocessing to
speed-up their search operations. This preprocessing
requires search operations and data index update. These
preprocessing operations do not use regular or iterative
operations, thus making them unsuitable for processor
array implementation. In [1], we proposed an algorithm
that achieves better performance without any preproces-
sing. But, that algorithm is suitable for the single processor
based hardware. In this paper, we deal with processor
array-based hardware solutions.

A hardware implementation for the algorithmic search
engine for packet classification can be assumed to have the
following characteristics:

e The text length n is typically big and variable
depending on the packet payload.

e The pattern length m varies from a word of few
characters to hundreds of characters (e.g.,, a URL
address).

e The word length w is determined by the data storage
organization and datapath bus width.

e Typically, the search engine is looking for the
existence of the pattern P in the text T, ie., the
search engine only locates the first occurrence of the
PinT.

o The text string T is supplied to the hardware in
word-serial format.

This paper is organized as follows: Section 2 discusses
the literature related to parallel algorithms and hardwares
for the string search problem. Section 3 introduces the
systematic methodology we employed to design the
processor array architecture. Sections 4, 5, and 6 describe
the resulting processor arrays derived in Section 3. Section 7
discusses the complexity analyses of our proposed hard-
wares. We verify the analysis results of the time complexity

Published by the IEEE Computer Society

242 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 3, MARCH 2006

in Section 8 by extensive numerical simulations. In Section 9,
we compare our design with previously designed processor
arrays for the string search algorithm. Finally, we conclude
our paper in Section 10.

2 REeLATED WORKS

Different researchers tried different approaches to speed up
the string search problem using algorithmic and hardware
techniques. In this section, we summarize their works
under three categories.

2.1 Parallel String Search Algorithms

In this section, we discuss theoretical techniques for
developing parallel string search algorithms.

Jaja has proposed a parallel algorithm for string searching
in [16]. His proposed algorithm does several preprocessings
before performing the actual search. It preprocesses T' in
O(log, m) time using O(m) operations. It also preprocesses P
in O(log, m) time using O(m) operations. It does the actual
searching in O(log, m) time using O(n) operations. This
technique is intended for programmable multiple processor
systems. Processors do different tasks at different times.

In [17], [18], a constant-time randomized parallel string
matching algorithm is proposed. These algorithms compute
deterministic samples of a sufficiently long substring of the
pattern. Some parameters are randomly chosen during
implementation. These randomized algorithms require
O(log log m) time for preprocessing and constant time for
searching on a CRCW(concurrent-read concurrent-write)
PRAM(parallel random-access machine). The PRAM is a
shared-memory model of parallel computation which
consists of a collection of identical processors and a shared
memory. This complex technique is also intended for
programmable multiple processor systems. Processors do
different tasks at different times. In [19], Galil also has
designed a CRCW-PRAM constant-time optimal parallel
algorithm.

In [20], Misra uses the theory of powerlists [21] to
develop a parallel string matching algorithm. It can search
in O(log n) time using O(nm) processors. This algorithm
can even search wild card characters. The technique used in
this paper helps to derive a parallel algorithm. The paper
does not mention the type of the hardware that is suitable
for its implementation.

In [22], Chung has proposed a string matching algorithm
with variable length don’t cares. The proposed algorithm
can be performed in O(1) time on an m x n mesh-connected
computer with a reconfigurable bus system using O(nm)
processors. Bertossi and Logi also proposed an algorithm
with variable length don’t cares in [23]. But, their algorithm
can search in O(log n) time using O(mn/log n) processors
using the EREW (exclusive read exclusive write) PRAM.

2.2 Parallel Hardwares for String Searching

In this section, we summarize some hardwares (other than
processor array) for the string search problem.

Takefuji et al., in [24], proposed an algorithm that
requires m(n —m+ 1) processing elements and 2m(n —
m + 1) comparators to search P after only two iterations.
They have organized the processing elements into a neural

network array. Although the algorithm’s time requirement
is good, the area requirement is very high.

Cheng and Fu [25] proposed the space-time domain
expansion approach for the hardware implementation of
string matching. The time complexity of their approach is
O(n) using m x n processing elements. The algorithm’s
space-time complexity is high compared to other techni-
ques. Also they use ad hoc implementation technique that
needs verifications after implementation.

Isenman and Shasha [26] developed a hardware for string
matching using a deterministic finite state automaton based
on the standard technique of Knuth-Morris-Pratt algorithm
[27]. The hardware consists of an AT&T 32100 microproces-
sor that implements the compiled code for the UNIX System
command fgrep. The controller uses 28 single character
comparators together with four 16 bitadders. The speed of the
system depends on the complexity of the query, but the use of
multiple comparators in parallel enables them to achieve
performance of a factor of up to 500 compared to using no
parallel preprocessing. They verified the effectiveness of their
approach through extensive behavioral simulations.

2.3 Processor Array Designs for the String Search
In this section, we summarize some proposed processor
array implementations for the string search problem.

Foster and Kung [28] indicated that the design of fast
special purpose chips strongly depends on the correct
choice of an underlying algorithm that has properties of
modularity and regularity. These properties allow design of
processor arrays using different design procedures. Thus, a
good algorithm must have 1) few operations to be
implemented using few simple cells, 2) local and regular
data and control flow requirements, and 3) inherent
pipelining and multiprocessing features. Regular Iterative
Algorithms (RIAs) exhibit all these properties and the
challenge is to identify such an algorithm for the problem at
hand. The processor array, proposed by Foster and Kung,
accepts two streams of characters from the host machine to
represent the pattern and text. The output of the machine is
a stream of bits each of which corresponds to one of the
characters in the text string. We should note that such
preassumptions about data arrivals and productions place
constraints on possible processor arrays’ hardware spaces.
Foster and Kung identified a RIA suitable for the string
matching problem and their assumptions about data
arrivals forced them to use a hardware that is 50 percent
efficient since only one-half of the cells are active at any
clock cycle. They proposed alternate structures that elim-
inate this inefficiency. Perhaps another important contribu-
tion of their paper is identifying that classical algorithms
such as Boyer-Moore are not suited for fast hardware
implementations since they do not possess regularity or
modularity.

Mukherjee [29] devised a processor array to compare two
strings based on the longest common subsequence (LCS)
technique in O(n+m) time. The processor arrays were
based on dynamic programming and an iterative algorithm
was developed for this problem. The proposed processor
array had the text and pattern moving in opposite
directions.

GEBALI AND RAFIQ: PROCESSOR ARRAY ARCHITECTURES FOR DEEP PACKET CLASSIFICATION 243

Park and George [30] developed a processor array using
a data-flow technique. The run-time complexity of their
approach is O(n/d + o) using d x m processing elements,
where a equals logm for parallel hierarchical scheme and m
for parallel linear scheme, and d is the number of input
streams. Their approach cannot use data parallelism
efficiently. Parallelism is not applied when d = 1.
Michailidis and Margaritis developed a processor array
for the string search problem in [31] that required
preprocessing and search phases. The algorithm for the
preprocessing phase was expressed as a regular iterative
algorithm (RIA). The processor array for this phase was
obtained using a data dependency graph and was mapped
on the same processor array for the searching phase. The
searching phase was implemented based on a data
dependency graph for calculating a dynamic programming
matrix. The dependence graph was transformed to a “local
dependence graph” in order to ensure that input data is fed
at the edge nodes. Data timing and projecting the graph
nodes to processing elements (PEs) were done in one step.
In [32], Michailidis and Margaritis developed a processor
array for the string search problem using nondeterministic
finite automata. Like [31], they used dependency graph. Their
approach has the same complexities and problems as in [31].
Sastry and Ranganathan [33] devised a processor array
to calculate the edit distance between two strings based
on dynamic programming. In their array, pattern is not
searched in text. However, the approach can be applied
in the string searching problem. The hardware requires
m+mn —1 processing elements. The hardware has been
designed and fabricated using 2-micron CMOS p-well
technology. The time required to compare two strings is

(n + gD x 25 x 107 %s, (1)

where N is the number of processing elements. Equation (1)
assumes that the processing can be completed in a single
pass. If multiple passes are required, the required time is

<(m—1) X 2 % g} +n+ ED x25x107%. (2)

They did not give reasons for some of the design steps.

3 A SYSTEMATIC TECHNIQUE FOR PROCESSOR
ARRAY DESIGN

Systematic techniques to design processor arrays allow for
design space exploration for optimizing performance
according to certain specifications while satisfying design
constraints. Several techniques were proposed earlier [3],
[4], [5], [9]. However, most of these techniques were only
able to deal with two-dimensional (2D) algorithms such as
one-dimensional digital filters design. They were all based
on developing a data dependence graph (DG) as the
starting point. Three-dimensional algorithms, such as
matrix-matrix multiplication, could not be easily handled.
A similar argument could be given for the case of designing
two-dimensional filters for image processing since these
algorithms give rise to four-dimensional data dependencies
and it would be hard indeed to visualize or analyze the
associated 4D dependence graph. The first author proposed
a formal algebraic procedure for processor array imple-
mentation starting from a regular iterative algorithm with

Input 7', P
fori =0ton—mdo
j+0
while (j <m A tiy; = pj)
j—73+1
end while
if (j =m)
match_flag <— TRUE
match_location <
exit
end if

end for

Fig. 1. The basic string search algorithm.

arbitrary dimensions [9]. The example given in that
reference dealt with designing a processor array for a
three-dimensional digital filter which gives rise to a
dependence graph in a six-dimensional space. We develop
here processor arrays for the string search problem using
that formal technique. The steps we employ to design an
optimized processor array for string matching are explained
in the following sections.

3.1 Expressing the Algorithm as an lterative
Expression

To develop a processor array, first we mustbe able to describe
the string matching algorithm using recursions that convert
the algorithm into a regular iterative algorithm (RIA). We can
write the basic string search algorithm as in Fig. 1. This
algorithm can also be expressed in the form of an iteration

using two indices 7 and j.

m—1

yi = /\ Match (ti1;,p;),
=0

0<i<n—m, (3)

where ¢;(Y,0<i<n-—m) is a Boolean type output
variable. If y; = TRUE, then there is a match at position
t;, i.e., tiivm—1 = Pom—1- Match(a,b) is a function that is true
when character a matches character b. A represents an
m-input AND function.

3.2 Obtaining the Algorithm Dependence
Graph (DG)

The string matching algorithm of (3) is defined on a two-
dimensional (2D) domain since there are two indices(i, j).
Therefore, a data dependence graph can be easily drawn as
shown in Fig. 2. The computation domain is the convex hull in
the 2D space where the algorithm operations are defined as
indicated by the grayed circles in the 2D plane [9]. The
output variable Y is represented by vertical lines so that
each vertical line corresponds to a particular instance of Y.
For instance, the line described by the equation

i=3 (4)

244 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 3, MARCH 2006

tO tl tz t3 t4 t5 tﬁ

Fig. 2. Dependence graph for m =4 and n = 10.

represents the output variable instance ys;. The input
variable T is represented by the slanted lines. Again, as
an example, the line represented by the equation

i+j=3 (5)

represents the input variable instance ¢3. Similarly, the input
variable P is represented by the horizontal lines.

3.3 Data Scheduling

Pipelining or broadcasting the variables of an algorithm is
determined by the choice of a timing function that assigns a
time value to each node in the DG. A simple but very useful
timing function is an affine scheduling function of the form [9]

t(p) =s'p — s, (6)

where the function ¢(p) associates a time value ¢ to a point p
in the DG. The column vector s = [s; s3] is the scheduling
vector and s is an integer.

A valid scheduling function uniquely maps any point p
to a corresponding time index value. Such affine scheduling
function must satisfy several conditions in order to be a
valid scheduling function as explained below.

Input data timing restricts the space of valid scheduling
functions. We assume the input text 7' = tt; - - - ¢, arrives
in word serial format where the index of each word
corresponds to the time index. This implies that the time
difference between adjacent words is one time step. Take
the text instances at the bottom row nodes in Fig. 2
characterized by the line whose equation is j=0. Two
adjacent words, t; and ¢4, at points p; = (4,0) and p, =
(14 1,0) arrive at the time index values ¢ and ¢+ 1,
respectively. Applying our scheduling function in (6) to
these two points, we get

t(p) = js1 — s (7)
tp2) = (G +1)s1 —s. (®)

Since the time difference ¢(py) — t(p;) = 1, we must have
51 = 1. Therefore, a scheduling vector that satisfies input
data timing must be specified as

s=[1 s 9)

This leaves two unknowns in the possible timing functions,
mainly the component s; and the integer s.

If we decide to pipeline a certain variable whose null-
vector is e, we must satisfy the following inequality [9]

s'e # 0. (10)

We have only one output variable Y whose null-vector is
ey = [0 1]. If we want to pipeline Y, then the simplest valid
scheduling vectors are described by

S1 = [1].}
So = [1 —1].

(11)
(12)

On the other hand, to broadcast a variable whose null-
vector is e, we must have [9]

(13)

If we want to broadcast Y, then from (13) and (9), we must
have

s'e =0.

s3=1[1 0]. (14)

Broadcasting an output variable simply implies that all
computations involved in computing an instance of ¥ must
be done in the same time step.

Another restriction on system timing is imposed by our
choice of the projection operator as explained in the next
section.

3.4 DG Node Projection
The projection operation is a many-to-one function that
maps several nodes of the DG onto a single node. Thus,
several operations in the DG are mapped to a single
processing element (PE). The projection operation allows
for hardware economy by multiplexing several operations
in the DG on a single PE. El-Guibaly and Tawfik [9]
explained how to perform the projection operation using a
projection matrix P. To obtain the projection matrix we
require to define a desired projection direction d. The vector d
belongs to the null space of P. Since we are dealing with a
two-dimensional DG, matrix P is a row vector and d is a
column vector.

Avalid projection direction d must satisfy the inequality [9]

s'd # 0. (15)

In the following three sections, we will discuss design space
explorations for the three values of s obtained in (11)-(14).

4 DESIGN 1: DESIGN SPACE EXPLORATION WHEN
s=[1]
The feeding point of ¢ is easily determined from Fig. 2 to be
p=1[0 0]'. The time value associated with this point is
t(p) = 0. Using (6), we get s = 0.
To study the timing of two input variables P and T, we
first find their null-vectors:

ep=[1 0] (16)

er=[-1 1] (17)
The product of s and these two null-vectors gives

[1 1]ep=1 (18)

[1 1]er = 0. (19)

This choice for the timing function implies that input
variable P will be pipelined and input variable 7" will be
broadcast.

GEBALI AND RAFIQ: PROCESSOR ARRAY ARCHITECTURES FOR DEEP PACKET CLASSIFICATION 245

T

Fig. 3. Processor array for Design 1.a whens = [1 1], d, = [1 0], and
m = 4.

There are three simple projection vectors such that all of
them satisfy (15) for the scheduling function in (11). The
three projection vectors will produce three designs

Design l.a: d, =[1 0 (20)
Design 1.b: d, =[0 1] (21)
Design 1.c: d. =[1 1]". (22)

The corresponding projection matrices could be given by

P,.=[0 1] (23)
Py=[1 0f (24)
P.=01 -1]. (25)

Our processor design space now allows for three processor
array configurations for each projection vector for the
chosen timing function. In the following sections, we study
the processor arrays associated with each design option.

4.1 Design 1.a: Usings=[1 1]'andd, =[1 0]
A point in the DG given by the coordinates p = [i j]’ will
be mapped by the projection matrix P, into the point

p =P.,p=j. (26)

The processor array corresponding to Design 1.a is shown
in Fig. 3. Input T is broadcast to all processors and word p;
of the pattern P is allocated to PE;. The intermediate output
of each PE is pipelined to the next PE with a higher index,
as shown, such that the output samples y; are obtained from
the top PE. The processor array consists of m PEs and each
PE is active for n time steps.

The PE details are shown in Fig. 4, where “D” denotes a
1-bit register to store the output.

4
- Character
Comparator £
——

Fig. 4. PE detail for Design 1.a in Fig. 3.

Fig. 5. Processor array for Design 1.b when s = [1 1], d;, = [0 1]', and
n = 10.

4.2 Design 1.b: Usings=[1 1]'and d, =[0 1]’
A point in the DG given by the coordinates p = [i j]’ will
be mapped by the projection matrix P} into the point

p =Pyp=:. (27)

The resulting processor array is shown in Fig. 5.

The processor array consists of n — m + 1 PEs. Word p; of
the pattern P is fed to PE; and from there they are
pipelined to the other PEs. The text words ¢; are broadcast
on the input bus to all PEs. Output y; is obtained from PE;
at time ¢ and a tristate buffer at the output of that PE
ensures that it is the only output fed to the output bus. Each
PE is active for m time steps only. Thus, the PEs are not well
utilized as in the design of Section 4.1. However, we note
from the DG of Fig. 2 that PE, is active for the time period 0
to m — 1 and PE,, is active for the time period m to 2m — 1.
Thus, these two PEs could be mapped to a single PE
without causing any timing conflicts. In fact, all PEs whose
index is expressed as

i’ =i mod m (28)

can all be mapped to the same processor without any timing
conflicts. The resulting processor array after applying the
above modulo operations on the array in Fig. 5 is shown in
Fig. 6.

The processor array now consists of m PEs. The pattern
P could be chosen to be stored in each PE or it could
circulate among the PEs where initially PE; stores the
pattern word p;. We prefer the former option since memory
is cheap, while communications between PEs will always be
expensive in terms of area, power, and delay. The text
words t; are broadcast on the input bus to all PEs. PE;
produces outputs i, i +m, i+2m, --- at times i, i +m,
i+ 2m, etc. The PE details are shown in Fig. 7. A tristate
buffer at the output of that PE ensures that it is the only
output fed to the output bus. The D register stores the
output.

4.3 Design 1.c:Usings=[1 1]'andd. =[1 1]

A point in the DG given by the coordinates p = [i j]’ will

be mapped by the projection matrix P, into the point
p=Pp=i—j (29)

The resulting processor array is shown in Fig. 8 for the
case when n = 10 and m = 4, after adding a fixed increment
to all PE indices to ensure non-negative PE index values.

T

Fig. 6. Processor array for Design 1.b after applying the modulo
operation in (28) for the case when m = 4.

246 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 3, MARCH 2006

>

- Character
Eom parator

T

Fig. 7. Processing element for Design 1.b in Fig. 6.

The processor array consists of n PEs where only m of the
processors are active ata given time step as shownin Fig. 9. At
time step 4, input text ¢; is broadcast to all PE in the array.

We notice from Fig. 9 that at any time step only m out of
the n processors are active. To improve PE utilization, we
need to reduce the number of processors. An obvious
processor allocation scheme could be derived from Fig. 9. In
that scheme, operations involving the pattern word p; are
allocated to processor i. In that case, the processor array in
Fig. 3 will result.

4.4 Comparing Designs 1.a and 1.b
Design 1.a in Section 4.1 performs better than Design 1.b in
Section 4.2 for the following reasons:

e PE; of Design l.a (shown in Fig. 4) stores a single
word of P (i.e., p;) that can be stored in a register in
the ALU. On the other hand, each PE in Design 1.b
(shown in Fig. 7) stores the entire pattern P using
on-chip memory module with its associated memory
access delay [34].

e The clock period of Design 1.a (Fig. 3) is given by

Tak(1.a) = max|[r, + 74, 7), (30)

where 7, is the processing delay, 7, is output driver
delay, and 7, is the input bus delay. 7, is given by
G

Td = T0 ~ >

G, (31)

where 79 is the propagation delay when the output

driver is loaded by a minimum-area inverter, C; is

the actual load capacitance, and C, is the gate

capacitance of a minimume-area inverter [35], [36].
The input bus delay 7, is given by [37]

= RCx MM+

~ 0.5 RC m?,

(32)

Fig. 8. Processor array for Design 1.c when s=[1 1), d, =[1 1],
m =4, and n = 10.

Processing Element (PE)
4 5

O
O

O O Oo

7
O
O
O
O

Time
O O O O O O0v

tGO

\7%0)

tgo

o O O O

O o O O o O

Fig. 9. Processor activity at the different time steps for the design in
Fig. 8.

where R and C are the parasitic resistance and
capacitance of one section of the bus between two
adjacent PEs, respectively, and m is thenumber of PEs.
Typically, 74 is smaller than 7, and, therefore, the clock
period of Design 1.a equals 7, (assuming 7, < 7).
The clock period of Design 1.b (Fig. 5) is given by

Tk (1.0) = 7 + 7 + T, (33)

where 7, is the memory access delay.
Comparing (30) and (33), we conclude that Design
1.a has slightly higher clock speed than Design 1.b.

e The area of each PE in Design 1.b is more than that
of Design 1.a mainly due to the on-chip memory of
size m.

e Power consumption in Design 1.a is given by

o(1l.a) = mopgr + o, (34)

where gpp is power consumed by each PE and g, is
power consumed by the input bus.

Similarly, Power consumption in Design 1.b is
given by

0(1.b) = mopr + 20s. (35)

Comparing (34) and (35), we conclude that Design 1.a
consumes less power than Design 1.b.

In summary, Design l.a is the best among the three
designs from the point of view of speed, area, and power.

5 DESIGN 2: PESIGN SPACE EXPLORATION WHEN
s=[1 —1]

Applying the scheduling function in (12) to ep and er, we get

1 —1fep=1
1 —1)er =2.

(36)
(37)

GEBALI AND RAFIQ: PROCESSOR ARRAY ARCHITECTURES FOR DEEP PACKET CLASSIFICATION 247

Fig. 10. Processor array for Design 2.a when s = [1 —1], d, = [1 0],
and m = 4.

This choice for the timing function implies that both
input variables P and T will be pipelined.

The pipeline direction for the input 7" flows in a south-
east direction in Fig. 2. The pipeline for 7' is initialized from
the top row in the figure defined by the line j=m — 1.
Thus, the feeding point of ¢, is located at the point

p = [-m m]". The time value associated with this point is
given by

t(p) = —2m—s=0. (38)
Thus, the scalar s should be s = —2m. The processor arrays

derived in this section will have a latency of 2m time units
compared to Design 1.a given in Section 4.1.

There are three simple projection vectors such that all of
them satisfy (15) for the scheduling function in Section 4.1.
The three projection vectors are

Design 2.a:d, =[1 0] (39)
Design 2.b:d, = [0 1] (40)
Design 2.c:d. =[1 —1]". (41)

Our processor design space now allows for three
processor array configurations for each projection vector
for the chosen timing function. In the following sections, we
study the processor arrays associated with each design
option.

5.1 Design 2.a: Usings=[1 —1] andd, =[1 0]

Using the same treatment as in Section 4.1, the resulting
processor array is shown in Fig. 10 for the case when n = 10
and m = 4. PEs of this design are same as shown in Fig. 4.

5.2 Design 2.b: Usings=[1 —1]'andd,=[0 1]

Using the same treatment as in Section 4.2, the resulting
processor array is shown in Fig. 11 for the case when n = 10
and m = 4. PEs of this design are same as shown in Fig. 7.

5.3 Design 2.c: Usings=[1 —1]'andd. =[1 -1
The resulting processor array is similar to Design 1.c which,
in turn, similar to Design 1.a in Section 4.1.

5.4 Comparing Designs 2.a and 2.b

All three designs, derived in the previous three subsections,
have a latency of 2m clock periods before the first result
appears. However, Design 2.a is better than Design 2.b for
the following reasons:

e Design 2.a requires the least area since it does not
require on-chip memory to store the pattern P.

{1
Y

Fig. 11. Processor array for Design 2.b when s =[1 —1]', d, = [0 1]’,
and m = 4.

e The clock periods of Design 2.a and Design 2.b are
given by

(42)

(43)

Tdk(Q.CL) =Ty, + T4
Tetk (2.0) = 7 + T + T
Since typically 74 < 7, Design 2.a has higher clock

speed than Design 2.b.

e Power consumptions of Design 2.a and Design 2.b
are given by

(44)
(45)

0(2.a) = mopg
0(2.b) = mope + 0b-

Thus, Design 2.a consumes less power than
Design 2.b.

5.5 Comparing Designs 1.a and 2.a

Comparing (30) and (42), we conclude that Design 2.a is faster
than Design 1.a. Comparing (34) and (44), we conclude that
Design 2.a consumes less power than Design 1.a. Thus, so far,
Design 2.a is the best design among the six designs proposed
so far.

6 DESIGN 3: DESIGN SPACE EXPLORATION WHEN

s=[10]
The feeding point of ¢, is easily determined from Fig. 2 to
be p=[—m m]". Time value of this point is t(p) = 0.
Using (6), we get s= —m. Thus, the processor arrays

derived in this section will have a latency of m time units
compared to Design 1.a given in Section 4.1.

Applying the scheduling function in (14) to ep and ey,
we get

[1 Olep =0
[1 Olep = —1.

(46)
(47)

This choice for the timing function implies that input
variables P will be broadcast and T" will be pipelined.

There are three simple projection vectors such that all of
them satisfy (15) for the scheduling functions in (14). These
projection vectors are

Design 3.a:d, =[1 0] (48)
Design 3.b: d, = [1 1] (49)
Design 3.c:d.=[1 —1]". (50)

Our processor design space now allows for three processor
array configurations for each projection vector for the chosen
timing function. In the following sections, we study the
processor arrays associated with each design option.

6.1 Design 3.a: Usings=[1 0]'and d, =[1 0]

The processor array corresponding to Design 3.a is drawn
in Fig. 12. PE; stores only the value p;, which can be stored
in a register in the ALU similar to Design 1.a. The outputs of

248 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 3, MARCH 2006

Fig. 12. Processor array for Design 3.awhens = [1 0]’,d, = [1 0]’, and

m=4.

all PEs are wire-ORed or connected to the inputs of an
m-input dynamic or static NOR gate as shown. This is the
most efficient implementation that is also practical from the
point of view of CMOS VLSI circuit considerations. The
output of the NOR gate is in reality a long system-wide bus.
As such, operating speed would suffer the same constraints
that were discussed in Section 4.4. The processor array for
Design 3.a is similar to Design 1.a, but all PEs operate on
one output value at the same time.

6.2 Designs 3.b and 3.c: Using s = [1 0]’ and
d=01 =1

These two projection vectors produce the same processor

array as Design 3.a. But, unlike Design 3.a, each PE stores

the entire pattern P in the on-chip memory.

6.3 Comparing Designs 3.a, 3.b, and 3.c
Design 3.a in Section 6.1 performs the best among the three
designs for the following reasons:

e Design 3.a requires the least area since it does not
require on-chip memory to store the pattern P.

e All three designs are limited in speed by the delay of
an m-input NOR gate. Although the outputs in all
three designs are obtained through an m-input NOR
gate, the gate speed is actually determined by the
bus propagation delay. That bus is the output line
connecting the driver transistors of the NOR gate.
So, the clock periods of Design 3.a, Design 3.b, and
Design 3.c are given by

Tak(3.0) =7, + TNOR R T, + Ty (51)
Tk (3.0) =7 + 1 + T (52)
Tak(3.¢) = 7 + T + Tin. (53)

Thus, Design 3.a has slightly higher clock speed
than Design 3.b and Design 3.c.
e Power consumptions of all three designs are same
and are given by

0(3) = mopg + b (54)

6.4 Comparing Designs 3.a and 2.a
Comparing (42) and (51), we conclude that Design 2.a is
faster than Design 3.a. Comparing (44) and (54), we
conclude that Design 2.a consumes less power than
Design 3.a. Thus, Design 2.a is the best design among
the nine designs proposed in this paper.

7 TiME COMPLEXITY ANALYSIS

We provide, in this section, analyses of best, worst, and
average times required to find a match. The time complex-
ities reported have to be added with m for Designs 2. These
time complexities also have to be scaled by the actual delay
of one time step which depends on the particular design.
For example, the time step associated with Designs 1 or
Designs 2 is determined by the propagation delay of the
output driver loaded by the adjacent PE. On the other hand,
the time step associated with Designs 3 is determined by
bus propagation delay that increases quadratically with the
number of PEs.

7.1 Best Case

In the best case, yy will indicate a match. This output is
obtained after m time steps.

7.2 Worst Case

In the worst case, all y; outputs with 0 <i¢ <n —m will
produce a negative result. Only the last output at position
Yn—m produces a match. This output is obtained after n time
steps.

7.3 Average Case

Assume a character of T matches a character of P with
probability a. Assuming all characters are equally likely, a is
given by

1 1

a =
where w is the number of bits in a character.

Define «; as the probability of finding the first match at
output ;. In that sense, all outputs y; with 0 <j <1
produced negative results. We can express «; as

a; = am(l _ am)ifl.

(56)
The average number of time steps for first match is given by

n—m

=0

(57)

After a rather laborious algebraic manipulation (see the
Appendix), we obtain

(58)

Tw=n—m.

8 NUMERICAL ANALYSIS

In this section, we perform extensive numerical simulations
to estimate time complexities using the C programming
language. The results of the numerical simulations are
compared with the analytical results of Section 7.

We perform the simulations based on the following
assumptions:

e Number of simulations = 100,000.

e w = 32 for typical 32-bit machine.

e Maximum value of n is 16,384 (which corresponds to
the maximum network packet size).

e Maximum value of m is 25.

e P, T, m, and n are randomly generated. We use
uniform distribution so that each value is equally
likely.

GEBALI AND RAFIQ: PROCESSOR ARRAY ARCHITECTURES FOR DEEP PACKET CLASSIFICATION 249

10

-
o
(S

Normalized time complexity

2 4 6 8 10
Sample index x10*

(@)

10

-
o
©

e
o
)
T

Normalized time complexity
=)

—
o
©

5.02
x 10*

4.99 5 5.01
Sample index

4.98

(b)

Fig. 13. Experimental results are plotted in (a) for all simulations and in (b) for 500 simulations. Results are normalized by m.

8.1 Best Case

The best case time complexity derived in Section 7 is m.
Since m has been varied randomly in each simulation, we
normalize each result by the corresponding m. Fig. 13a
shows the graph of the normalized value vs. sample index.
Fig. 13b shows the normalized results for 500 simulations
taken from the middle of Fig. 13a. This allows us to see the
fine scale variations. In Fig. 13, the minimum normalized
value is 1. Thus, the best case time complexity is m as
analytically derived in Section 7.

8.2 Worst Case

The worst case time complexity derived in Section 7 is n.
Since n has been varied randomly in each simulation, we
normalize each result by the corresponding n. Fig. 14a
shows the graph of the normalized value vs. sample index.
Fig. 14b shows the normalized results for 500 simulations
taken from the middle of Fig. 14a. This allows us to see the
fine scale variations. In Fig. 14, the maximum normalized
value is 1. Thus, the worst case time complexity is n as
derived in Section 7.

o
<)

0.6

e
~

Normalized time complexity

o
S

0 2 4 6 8 10
Sample index % 10*

(@)

8.3 Average Case

The average case time complexity derived in Section 7 is
n — m. Like Sections 8.1 and 8.2, we normalize each result
by the corresponding n — m. Fig. 15a shows the graph of the
normalized value versus sample index. We notice from this
figure, for all simulations, the normalized search time is
very close to 1 indicating that average search time is n —m
as was derived in Section 7. Fig. 15b is the histogram of the
results of Fig. 15a. This figure shows that almost all the
normalized results lie in the range between 0 and 3. So, we
redraw the histogram in Fig. 15c in the range between 0 and
3. In Fig. 15, the average normalized value is 1. The median
of the normalized results is also 1.0015. Thus, the average
case time complexity is n — m as derived in Section 7.

9 DESIGN COMPARISON

In this section, we compare the technique we used to design
the processor arrays with earlier techniques and we
compare the designs we obtained with previously proposed
processor arrays for the string search algorithm.

o
®

o
o

o
IS

Normalized time complexity

0.2

4.99 5 5.01 5.02
Sample index x 10*

4.98

(b)

Fig. 14. Experimental results are plotted in (a) for all simulations and in (b) for 500 simulations. Results are normalized by n.

250 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17,

25

- n
[$)] o
T T
L L

Normalized time complexity
S

o 2 4 6 8 10
Sample index

(@)

NO. 3, MARCH 2006

Normalized time complexity count

0 L 10 15 20 25
Normalized time complexity

(b)

-
o

Normalized time complexity count
N w » (& (=2 ~ Lo ©

-
T

o

1 2
Normalized time complexity

(©

Fig. 15. (a) Experimental results are plotted in. (b) is the histogram of the results of (a). (c) is the same histogram in the range from 0 to 3. Results are

normalized by n — m.

We employed a systematic technique to obtain our
processor arrays by first converting the string search
algorithm to a regular iterative expression (RIA). Having
obtained the RIA, we were able to develop a data
dependency graph (DG) which allowed us to explore
possible data timing options that conform to I/O timing
requirements. Earlier approaches did not explain how the
designs were obtained or ad hoc techniques were used.
Such techniques at best help develop one design and do not
allow for design space exploration.

Design 2.a in Section 5.1 is identical to the one obtained by
Foster and Kung [28]using ad-hoc techniques. Design 2.a is
also similar to that proposed by Park and George [30]. Similar
processor array has also been derived by Sastry et al. in [33].

The processor array of Mukherjee [29] determines the
similarity between two strings instead of finding exact
matches. Our systematic technique could be easily adapted
for this situation by properly modifying (3). However, the
design proposed in [29] was obtained using dynamic
programming approach and has time complexity of
O(n + m). Analytical as well as numerical simulations of
our designs show an average time complexity of O(n —m)
(Sections 7 and 8). Our design approach could also be
adapted to implement the approximate text searching
considered by Michailidis and Margaritis [31], [32].

To summarize, the systematic technique we used to
explore possible processor array structures for the string
search problem produced novel and efficient designs in
addition to all the designs previously proposed in the
literature.

10 CONCLUSION

This paper presented a systematic technique for expressing
the string search algorithm as a regular iterative expression
to explore all possible processor arrays for the string search
algorithms as used in deep packet classification. The
computation domain of the algorithm was obtained and
three affine scheduling functions were presented. The
technique allowed some of the algorithm variables to be
pipelined while others are broadcast over system-wide
buses. Nine possible processor array structures were
obtained and analyzed in terms of speed, area, power,
and I/O timing requirements. Time complexities were
derived analytically and through extensive numerical
simulations. The proposed designs exhibit optimum speed,
area, and power. The processor arrays were compared with
previously derived processor arrays for the string matching
problem. In all designs, we showed that the resulting
processor arrays have m processors and their average time
to produce a result is n — m (58).

GEBALI AND RAFIQ: PROCESSOR ARRAY ARCHITECTURES FOR DEEP PACKET CLASSIFICATION

APPENDIX

TIME COMPLEXITY CALCULATION FOR THE
AVERAGE CASE

Using (56) and (57), we have

n—m

Ty =a" Y (m+i)(1—am)"

=0
m n—m

C S iy -amy
=0

1—am <
1

n—m

=a"(1+a")) (m+i)(1—a")

=0
[(1—am '~ 1+am,
neglecting higher terms of am]
n—m

=a") (m+i)(1-a")

=0
[neglecting higher terms of a'”]

n—m n—m

= ma" Z(l —a™) +a" Z i(1— am)i
i=0 =0

—m+1
. 1— (1 _ am)n m+
=ma " X +
1—-(1—am)
m , (1=a")(1=(n—m+1)(1=a")" "+ (n—m)(1—a™)"~M+1)
a X (1—(1—a™))?
myn—m+1
=m-—m(l—a™ +
(1=a"™)—(n=m+1)(1—a™)" "1} (n_m)(1—a™)P~ +2

A

—m— m(l _ an;)n*m,‘Fl_’_
—m+3
(1=a™)~(nrm +1)(17"rn)n—"7]n+l +(n—m)<11—ai:g" m
a
—m — m(l _ am)n—m+l+

(—a™)—(n—m+1)(1—a™ =+ () (1=~ M+3 (14 g

[(1-

am)—l ~14a™
neglecting higher terms of am]

=m —m(l—a™)" "¢
(1—a™)— (e +1) (1™ =+ (04 ™ — ™) (1— gy —m+3
e
l1-(n—m+1)+ (n—m+na™ —ma™)
=(m—m)+

am
[1—a™ =~ 1,since 1 > a™]

l—-n+m-1+n-—m+na™—ma"

am

REFERENCES

[1] AN.M.E. Rafig, M.W. El-Kharashi, and F. Gebali, “A Fast String
Search Algorithm for Deep Packet Classification,” Computer
Comm., vol. 27, no. 15, pp. 1524-1538, Sept. 2004.

[2] H.T. Kung and C.E. Leiserson, “Systolic Arrays for VLSI,” Proc.
Sparse Matrix Symp., pp. 256-282, 1978.

[3] SXK.Rao and T. Kailath, “Regular Iterative Algorithms and Their
Implementation on Processor Arrays,” Proc. IEEE, vol. 76, no. 3,
pp- 259-269, Mar. 1988.

[4] S.Y.Kung, VLSI Array Processors. Englewood Cliffs, N.J.: Prentice-
Hall, 1988.

[5] EM. M. Abdel-Raheem, “Design and VLSI Implementation of

Multirate Filter Banks,” PhD dissertation, Dept. of Electrical and
Computer Eng., Univ. of Victoria, 1995.

0]

[

8]
[l

(10]

(1]

(12]

(13]

[14]

(15]

(o]

(171

[18]

(191

[20]

(21]

(22]

(23]

[24]

(23]

[26]

(27]

(28]

[29]

[30]

(31]

(32]

251

E. Abdel-Raheem, F. El-Guibaly, and A. Antoniou, “Systolic
Implementation of FIR Decimators and Interpolators,” IEE Proc.
Circuits Device System, vol. 141, pp. 489-492, Dec. 1994.

M.O. Esonu, A]J. Alkhalili, S. Hariri, and D. Al-Khalili, “Systolic
Arrays—How to Choose Them,” IEE Proc.-E Computers and Digital
Techniques, vol. 139, no. 3, pp. 179-188, May 1992.

J.M. D. Y. Wong, “Optimization of Computation Time for Systolic
Arrays,” IEEE Trans. Computers, vol. 41,no. 2, pp. 159-177, Feb. 1992.
F. El-Guibaly and A. Tawfik, “Mapping 3D IIR Digital Filter onto
Systolic Arrays,” Multidimensional Systems and Signal Processing,
vol. 7, no. 1, pp. 7-26, Jan. 1996.

M. Nossik, “Optimizing Network Processing with Deep Packet
Classification,” OPTIMIZING_WP.pdf, http://www.idt.com/
docs/, 2002.

S. Iyer, RR. Kompella, and A. Shelat, “ClassiPI: An Architecture
for Fast and Flexible Packet Classification,” IEEE Network, vol. 15,
no. 2, pp. 33-41, Mar./Apr. 2001.

D. Bursky, “Search Engines Take on Larger Forwarding Tables,”
Electronic Design, vol. 51, no. 27, p. 48, 2003.

M. Peyravian, G. Davis, and]. Calvignac, “Search Engine
Implications for Network Processor,” IEEE Network, vol. 17,
no. 4, pp. 12-14, July/ Aug. 2003.

G.A. Stephen, String Searching Algorithms, Lecture Notes Series on
Computing, D.T. Lee, ed., Bangor, Gwynedd, UK: World
Scientific, vol. 3, 1994.

T. Lecroq, “Experiments on String Matching in Memory Struc-
tures,” Software: Practice and Experience, vol. 28, no. 5, pp. 561-568,
Apr. 1998.

J. Jaja, An Introduction to Parallel Algorithms, Reading, Mass.:
Addison-Wesley, ch. 7, pp. 311-365, 1992.

M. Crochemore, Z. Galil, L. Gasieniec, K. Park, and W. Rytter,
“Constant-Time Randomized Parallel String Matching,” SIAM
J. Computing, vol. 26, no. 4, pp. 950-960, Aug. 1997.

U.Z. T. Goldberg, “Faster Parallel String-Matching via Larger
Deterministic Samples,” J. Algorithms, vol. 16, no. 2, pp. 295-308,
Mar. 1994.

Z. Galil, “A Constant-Time Optimal Parallel String-Matching
Algorithm,” . Assoc. for Computing Machinery, vol. 42, no. 4,
pp. 908-918, July 1995.

J. Misra, “Derivation of a Parallel String Matching Algorithm,”
Information Processing Letters, vol. 85, no. 5, pp. 255-260, Mar. 2003.
J. Misra, “Powerlist: A Structure for Parallel Recursion,” ACM
Trans. Programming Languages and Systems, vol. 16, no. 6, pp. 1737-
1767, Nov. 1994.

K.L. Chung, “O(1)-Time Parallel String-Matching Algorithm with
VLDCs,” Pattern Recognition Letters, vol. 17, no. 5, pp. 475-479, May
1996.

A.A. Bertossi and F. Logi, “Parallel String-Matching with
Variable-Length Don’t Cares,”]. Parallel and Distributed Comput-
ing, vol. 22, no. 2, pp. 229-234, Aug. 19%4.

Y. Takefuji, T. Tanaka, and K.C. Lee, “A Parallel String Search
Algorithm,” IEEE Trans. Systems, Man, and Cybernetics, vol. 22, no.
2, pp. 332-336, Mar./Apr. 1992.

H.D. Cheng and K.S. Fu, “VLSI Architectures for String Matching
and Pattern Matching,” Pattern Recognition, vol. 20, no. 1, pp. 125-
141, 1987.

M.E. Isenman and D.E. Shasha, “Performance and Architectural
Issues for String Matching,” IEEE Trans. Computers, vol. 39, no. 2,
pp- 238-250, Feb. 1990.

A.V. Aho and].D. Ulman, Principles of Compiler Design, Reading,
Mass.: Addison-Wesley, pp. 91-94, 1977.

M.J. Foster and H.T. Kung, “The Design of Special-Purpose VLSI
Chips: Example and Opinions,” Proc. Seventh Ann. Symp. Computer
Architecture, Int’l Conf. Computer Architecture, pp. 300-307, May 1980.
A. Mukherjee, “Hardware Algorithms for Determining Similarity
between Two Strings,” IEEE Trans. Computers, vol. 38, no. 4,
pp- 600-603, Apr. 1989.

J.H. Park and K.M. George, “Efficient Parallel Hardware Algo-
rithms for String Matching,” Microprocessors and Microsystems,
vol. 23, no. 3, pp. 155-168, Oct. 1999.

P.D. Michailidis and K.G. Margaritis, “Parallel Architecture for
Flexible Approximate Text Searching,” CD-ROM Proc. Seventh
WSEAS Int’l Multiconf. Circuits, Systems, Comm. and Computers
(WSEAS-CSCC 2003), July 2003.

P.D. Michailidis and K.G. Margaritis, “Bit-Level Processor Array
Architecture for Flexible String Matching,” Proc. First Balkan Conf.
Informatics (BCI 2003), pp. 517-526, Nov. 2003.

252

(33]

[34]

(35]

[36]

(371

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 3, MARCH 2006

K.RR. Sastry and N. Ranganathan, “CASM—A VLSI Chip for
Approximate String-Matching,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 17, no. 8, pp. 824-830, Aug. 1995.

P.R. Panda, N.D. Dutt, and A. Nicolau, “On-Chip vs. Off-Chip
Memory: The Data Partitioning Problem in Embedded Processor-
Based Systems,” ACM Trans. Design Automation of Electronic
Systems, vol. 5, no. 3, pp. 682-704, July 2000.

F. Elguibaly, “A Fast Parallel Multiplier-Accumulator Using the
Modified Booth Algorithm,” IEEE Trans. Circuits and Systems II:
Analog and Digital Signal Processing, vol. 47, no. 9, pp. 902-908,
2000.

F. Elguibaly, “Merged Inner-Prodcut Processor Using the Mod-
ified Booth Algorithm,” Canadian]. Electrical and Computer Eng.,
vol. 25, no. 4, pp. 133-139, 2000.

N.H.E. Weste and K. Eshraghian, Principles of CMOS VLSI Design.
Addison-Wesley, 1992.

Fayez Gebali received the BSc degree in
electrical engineering (first class honors) from
Cairo University, the BSc degree in mathematics
(first class honors) from Ain Shams University,
and the PhD degree in electrical engineering
from the University of British Columbia where he
was a holder of the NSERC postgraduate
scholarship. Dr. Gebali is a professor of compu-
ter engineering and associate dean of engineer-
: & ing at University of Victoria. His research
mterests include processor array design for DSP, computer commu-
nications, computer arithmetic, and network processors design. He is a
senior member of the IEEE Computer Society.

A.N.M. Ehtesham Rafiq received the BSc and
MSc degrees in computer science and engineer-
ing from Bangladesh University of Engineering
and Technology, Dhaka, Bangladesh in 1997
and 2000, respectively. He is currently a PhD
candidate in the Electrical and Computer En-
gineering Department of University of Victoria,
Canada. His research interests include compu-
ter communications, computer architecture, and
VLSI design.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

