
OC-3072 Packet Classification Using BDDs and Pipelined SRAMs

Amit Prakash Adnan Aziz
Department of Electrical and Computer Engineering

The University of Texas at Austin
prakash

�
adnan@ece.utexas.edu

Abstract

We present a solution to the problem of quickly classi-
fying packets. Our approach is based on techniques from
logic synthesis. Specifically, we express the classification
rules as Boolean logic equations, build Binary Decision Di-
agrams for these equations, and then map the BDDs to a
logic network consisting of a pipeline of static RAM banks.
We illustrate our approach by applying it to the longest pre-
fix matching for IP forwarding, and present evidence that
our scheme can perform a billion matches per second on a
CAIDA backbone forwarding table containing 60,000 pre-
fixes. We show how our approach generalizes to classifying
packets on multiple fields.

1 Introduction

Until relatively recently, routers were little more than
general purpose computers connected to specialized hard-
ware for transmitting and receiving packets over links. This
was because link bandwidth was low enough that general
purpose processors could implement all the functionality
needed for routing.

The advent of high-speed optical link technology has led
to a reversal to this situation — today routers and not links
are the bottleneck in moving information around the Inter-
net. One approach to make routers faster is to implement
performance-critical aspects of routing in custom hardware.

One of the basic operations that a router has to perform
is to take an incoming packet and determine which output
link to put it on. The “forwarding table” contains the in-
formation needed to make this decision. Conceptually, this
table consists of a set of (bitPrefix, outputPort) pairs. The
32 bit IP destination address � of an input packet � is com-
pared with the prefixes in the set and the packet � is forward-
ed to the output port that corresponds to the longest prefix
that matches � . Routers participate in elaborate protocols to
compute forwarding tables which result in paths that are in
some sense optimum [8, Chapter 11].

We focus on one of the most performance critical com-
putations performed by a router, namely packet classifica-
tion, a special case of which is the longest prefix matching
problem previously described. In its more general form, the
problem consists of looking at multiple fields in the pack-
et header, and determining what actions to perform on the
packet. In addition to making forwarding decisions, pack-
et classification has applications to implementing class-of-
service, building firewalls, gathering statistics, enforcing
service-level-agreements, etc.

To keep our exposition simple, we will first illustrate our
approach on the longest prefix matching problem. We will
describe how our approach generalizes to classification on
multiple fields to the general problem at the end of the pa-
per.

1.1 Prior work

The longest prefix matching problem has received
widespread attention. Approaches can be grouped into two
classes: software-centric, e.g., [1, 9, 12, 11] and hardware-
based, e.g., [5, 6].

The state-of-the-art in software-based solutions is em-
bodied by the binary search on hash tables algorithm [12].
Since the data structures are large, its best case performance
is bounded by the latency of dynamic RAM, which is ap-
proximately 50 nanoseconds. In practice, the approach is
reported to achieve approximately 2 million matches per
second, which is too slow for today’s high speed opti-
cal links. Furthermore, incremental updates are extremely
complex; given that backbone routers change their forward-
ing table based on BGP updates every 30 seconds, this is a
major limitation. Finally, the approach involves relatively
complex operations (e.g., computing hash codes) and is not
“regular” enough to be easily mapped into a direct hardware
implementation.

A diverse set of hardware-based solutions have been of-
fered to the longest prefix matching problem. Gupta et
al. [5] describe a scheme which expands all the prefixes
up to 24 bits in length, and stores that portion of the for-

warding table in DRAM. Since the vast majority of prefixes
are no more than 24 bits long, for these prefixes they can
make a forwarding decision by simply doing a DRAM ac-
cess, thereby achieving up to �����	�
��� matches per sec-
ond for 50 nanosecond DRAM. However, their approach
suffers from several limitations: it employs a large amoun-
t of (power hungry) DRAM (9–33 Mbytes are reported),
lookup times depend on the prefix length distribution, and
updates are complex. The approach does not scale — it
cannot be used for IP version 6, or for level 4 packet clas-
sification. Another hardware oriented approach is the use
of Content Addressable Memories (CAMs) [6]. A CAM
is a fully associative memory, i.e., it can perform an exact
match in a single clock cycle by doing multiple comparisons
in parallel. Longest prefix matching can be performed using
Ternary CAMs with some priority decode logic. CAMs can
be used to compute up to 50 million matches per second.
However, updating the CAM is difficult, since entries need
to be ordered by length. Furthermore, CAMs, being latch
based, burn a great deal of power.

1.2 Problem relevance

It is worth stressing that the longest prefix matching
problem is still important today. There are two arguments
that have been made that it is irrelevant: (1) since packets
are written in slow DRAM memory, this is more of a bottle-
neck to performance, and (2) deployment of multiprotocol
label switching (MPLS) does away with the need for doing
longest prefix matching.

We argue against the first point by noting that a fast
matcher can be used to perform the forwarding decisions
for multiple input ports. Furthermore, the general packet
classification problem is more complex, and needs corre-
spondingly more computation.

Similarly, the introduction of MPLS does not complete-
ly do away with the packet classification problem. It is not
clear whether MPLS will really be widely deployed, as it re-
quires a complex label management scheme in a distributed
environment. MPLS labels will still need to be computed at
entry points into MPLS networks. Furthermore, more gen-
eral classification (level 4 and above), cannot be achieved
by simple MPLS labels because MPLS labels are simply
too “coarse.”

2 Background — logic synthesis & BDDs

Logic synthesis [10] is the term given to the process of
realizing an optimized gate-level implementation of a logi-
cal specification. It is common to express the specification
using Boolean logic equations. The task of the synthesis
tool is to compute an optimized netlist of logic gates, drawn

from a target standard-cell library, which implements these
logic equations.

Truly optimum synthesis is extremely difficult to
achieve, due to the fact that the underlying decision prob-
lems are invariably NP-hard. As such, general purpose syn-
thesis tools make extensive use of heuristics. In our work,
we will develop a logic synthesis procedure that maps the
forwarding table expressed using Boolean logic equations
to a special reprogrammable architecture that is suitable for
implementing classification rules.

Given that synthesis tools operate with Boolean-valued
functions of Boolean-valued variables, it is imperative to
use a data structure that can compactly represent and ma-
nipulate a large class of useful Boolean functions. The data
structure of choice for representing Boolean functions is the
Reduced Ordered Binary Decision Diagram [2].

Binary Decision Diagrams have their roots in the decom-
position given by the Shannon expansion theorem, i.e., the
result that
�������
�����������
��
� . Recursively applying this
decomposition leads to a tree structured representation. A
reduced ordered binary decision diagram (henceforth BDD)
for the function, is precisely such a representation, with the
added requirements that the variables about which Shannon
expansion takes place occur in a fixed order in the tree, n-
odes with equal children are removed, and isomorphic sub-
trees are merged. An example of a BDD is given in Fig-
ure 1(a). The two children of a BDD node are referred to as
the 0-branch and 1-branch; these correspond to the function
computed when the node variable is set to 0 or 1, respec-
tively.

3 Our classifier

Let us consider a router which has ��� output ports. Given
a forwarding table, our goal in the longest prefix matching
problem is to find an optimized implementation of the func-
tion � PM which takes as an argument a 32 bit address (i.e.,
has domain ��� �!��"�#%$) and returns a & -bit output port identi-
fier, i.e., has range ���'�
��"(� .

Given a forwarding table, it is straightforward to write
Boolean logic equations specifying � PM. In principle, we
can run logic synthesis on these equations to obtain an effi-
cient hardware implementation of � PM. Performing longest
prefix matching is then just a matter of floating the destina-
tion IP address as an input to this hardware — the output
port identifier is the output of the synthesized circuit.

This approach differs from previous hardware approach-
es in that the forwarding table is encoded in the circuit itself,
instead of being fed as an input to a logic circuit. However
this also means that hardware has to be reprogrammable as
the table may change. Thus, our logic synthesis algorithm
needs to target reprogrammable hardware.

For reprogrammable hardware, Field Programmable

0 1 2 3

0 1 1 0 0 0 1 1

3210

0 1

10

(b)

1

10

0

1

1

X2

X1

X0

X1

X2

1

01

(a) BDD

1

0

0

0

Figure 1. (a) BDD for the Boolean logic function)+*,.-0/1,325476,.-8/�9�6,32:/;,'<=4>,32:/?6,.<A@ . (b) Representation of
the BDD in memory.

Gate Arrays (FPGAs) may seem to be the obvious choice,
but we found them to be ill-suited for this application. We
attempted to map logic equations corresponding to a back-
bone router’s forwarding table to a Xilinx FPGA using the
Xilinx logic synthesis tools. The tool ran for a day without
succeeding at synthesizing the equations. We then gave the
tool a mux-based gate-level netlist implementation derived
directly from the BDD representation of � PM, and told it
to perform place-and-route the netlist. In one day it could
place-and-route only one of the BDDs (corresponding to the
least significant bit of � PM), and the delay of the resulting
circuit was 85 nanoseconds, which is not competitive with
the existing state-of-the-art.

The problem with mapping a large, unstructured set of
logic equations to an FPGA is that fitting in so many nodes
and their interconnects is again a hard combinatorial opti-
mization problem, especially since there are relatively few
long wires in FPGAs. Furthermore, these wires go through
many switch boxes inside the FPGA, which adds to the de-
lay.

In summary, using generic logic synthesis on the logic e-
quations corresponding to the forwarding table is not possi-
ble because a hard combinatorial problem has to be solved,
and traditional reprogrammable architectures are not suited
to implementing the equations. In the next section, we de-
scribe our approach, which overcomes both these problems.

3.1 Our architecture: cascaded SRAMs

To illustrate our approach, we first consider the case
where there are exactly two output ports, i.e., � PM B��� �!��"�#C$EDFG���'�!�H" .

Our approach consists of building the BDD for � PM and
then mapping it to a pipeline of 32 SRAMs, numbered from
0 to 31, as in Figure 2. Conceptually, the & -th SRAM holds
the BDD nodes for level & ; the data-out lines of the & -th
SRAM and the IJ&K�L��M -th bit of the input IP address feed
the address lines of the IJ&?�N��M -th SRAM. (Assume for now
that we do not skip levels when the children of a BDD node
are equal.) This is illustrated in Figure 1(b).

We have shown that the size of the BDD representation
of a forwarding table is bounded by the size of the forward-
ing table. Due to space restrictions, we omit a formal proof
of this result. (In fact the BDD will actually be significantly
smaller than the forwarding table because of node sharing.)

As an example, consider the forwarding table:��IO��PQ�%�RM1�
IS�(PQ�
��M;��IT� ��PQ�
��M1�
IT� �H�R�C�RM1�
IU�
�RP.�C�HM1�
IT� �H���%�RM;" . The
BDD corresponding to this forwarding table mapping can
be translated to the BDD drawn with solid lines in Fig-
ure 1(a). When we want to translate this BDD into the
cascaded memory architecture, we will have to add extra
nodes on edges which skip levels. The dashed circles repre-
sent the new nodes. Figure 1(b) shows how these nodes can
be arranged in different SRAM banks.

A similar architecture can also be used to perform a trie
walk in hardware. However for our application, the BDD
representation is considerably smaller than the correspond-
ing trie because of node sharing. This is especially true at
the lower levels, where the width of the trie is much greater
than that of the BDD for same forwarding table. The small
size of the BDD lets us use very fast SRAMs, which would
otherwise be infeasible. Furthermore, since a trie can skip
multiple levels, it is impossible to pipeline

We now provide a more detailed description of the ar-
chitecture. Let us assume that maximum number of BDD
nodes at any level is bounded by ��V nodes where W is some
constant. Let each SRAM be capable of storing �QVYX:Z word-
s, each W bits wide. The least significant address line of
the [-th SRAM is driven by the [-th bit of input IP address.
The remaining address lines of the [0�\� -th line is driven
by the data-out lines of the [-th SRAM. Again, assume that
each BDD node has its 0-child and 1-child in the next level.
(Later we will show we can get rid of this restriction with a
little overhead.) We store the nodes at level [in an address
in SRAM [(each node is two words, a pointer to the 0-child
and a pointer to the 1-child). Since the number of nodes is
limited by �RV we can do this. As there will be only one top
node in the BDD we can let the] W B �!^ address bits of S-
RAM 0 remain fixed. The matcher operates as follows: we
float the IP address as the input. The first bank generates the

DATA
(2^(k+1) x k) bits

1st bit of IP address
k

DATA

0th bit of IP address
address of top node

STATIC RAM

STATIC RAM

(2^(k+1) x k) bits

k

32nd bit of IP address

DATA
(2^(k+1) x k) bitsSTATIC RAM

output port

ADDRESS

ADDRESS

ADDRESS

Figure 2. SRAM implementation.

higher address bits of the correct node in the second level.
These bits combined with the second bit of IP Address go
to the second SRAM and we get the required address bits of
node in the third bank. This way when we get all the way
to the last bank we get the correct port out. Since all the
SRAM blocks have same delay we can easily pipeline this
architecture so that data coming out of each stage is latched
for the next clock cycle.

In the next section, we will show experimentally that if
we allocate 16K BDD nodes for each level, we can accom-
modate 60K prefixes with room to spare. Hence it suffices
for each SRAM to be _R��`>�a�!b bits in size. Thus a 64 Kbyte
SRAM will easily serve our purpose. Modern L2 caches are
of this size with a cycle time as low as 0.66 nanoseconds per
access. (For example, the Pentium-IV operates at 1.5 Ghz,
and has a single cycle access time to the L2 cache [7].) So
if each pipeline stage just does one memory access, we can
do one lookup every � ns, i.e., a billion lookups per second.
(We are budgeting of 0.33 ns for interconnect delay; given
that the communication is very local, this should be more
than adequate.) Assuming 160 bit IP packets, we can serve
a line operating at ��cH�d�e�
��f?�g�
cH� Gbps, i.e., an OC-3072
link.

The above discussion has assumed that there were two
output ports, with ids � and � . We can generalize it to & -
bit output port ids by building & BDDs, one for each bit of
the output port id. The disadvantage with this approach is it
requires IO&h�
_��HM SRAMs.

However there is a simple trick that allows us to get by
with 32 SRAMs even for & -bit output port ids. Instead of

having just two nodes, zero and one, at the last level of the
BDD, we will have �R� nodes, one for each output port. (This
data structure is referred to as a multi-valued BDD (mvBD-
D) [2].) We can easily construct this data structure by build-
ing the BDD of the function i PM B ITj�k lQ�R�Rm(n(o�oR�O��p�m�qUM�DF��� �!��" where i PM(ip,port) = 1 iff the IP address ip matches
the port number port. While building this BDD, we force
the variables corresponding to the port id bits to be the low-
est variables of the BDD. Then if we cut the BDD at the lev-
el where port-id bits start, we get the corresponding mvBD-
D.

Reducing the number of levels

We note that if we are allocating 16K nodes for each lev-
el, we do not need the first 14 SRAMs — we can use the first
14 bits of IP address to directly index to the corresponding
nodes at level 14. For a given 14 bit prefix of IP address we
can walk down the original BDD and get the corresponding
BDD at 14-th level. So we just write that node at the ad-
dress formed by the 14 bit prefix. (Some of the nodes may
have multiple copies in the same level but that is accept-
able because number of nodes cannot exceed the total size
of memory.)

Another observation, in the spirit of Gupta et al. [5], is
that almost prefixes are less than or equal to 24 bits. So in
most cases we can get the result after the 24-th level. After
that we can have one bit to indicate whether we are done. In
case we are not done, we can use the remaining 8 bits and 7
bits from previous pointer (if we provision for at most 128
prefixes longer than 24 bits). Thus we need only 11 SRAM
banks, as opposed to 18. This significantly reduces the area
requirements, power dissipation and latency of the system.

Removing restrictions on BDDs

We previously imposed a restriction on BDDs that each
node must have its 0-branch and 1-branch nodes in the nex-
t level. However this is not the case for standard BDDs,
where edges can skip level. There are two solutions to this
problem. The trivial solution is to insert extra nodes on
edges which skip levels, as shown in Figure 1. An alter-
native approach is to use 2 bits with each pointer to tell how
many nodes we can skip. With a little more hardware we
can let each pipeline stage can check if the level skip bit-
s are zero or not. If they represent zero, then it function
as usual otherwise it just subtract the number of levels to
skip and pass the same address. With 2 bits we can skip
maximum up to 4 levels which will considerably reduce the
number of replicated nodes.

Updates

Performing updates in our system is straightforward.
When a prefix is changed, the number of nodes in the orig-
inal BDD that change is always less than equal to the num-
ber of levels. Since we have just 11 levels in our modified
decision diagram, in most cases we will have less than 12
nodes changing. Furthermore these words will be going to
different banks so they can be written simultaneously. How-
ever in the modified decision diagram since we start directly
at level 14, a single node can map to many addresses so a
change in a class A prefix (8 bits) will lead to �QZSr!suth�vc�b
entries of two words each which is not excessive, and such
changes will be infrequent as there are very few class Ad-
dresses. Also because we expand all the bits from 25 to
32 in the last level, a change in 25 bit prefix can lead to��w=������x words. Prefixes longer than 25 bits are also very
infrequent. If we assume these problematic updates occur
less than ����y of the time then average number of words to
be written on the memory banks will be less than 35.

If we assume 1000 BGP updates come every 30 seconds,
in the worst case we need to write IS����xh�v���RM0Pz�
�R�H�{��
_HxR` words and in average case _R|H` words. This is very
little data over a 30 second time period — it can even be
downloaded via a serial link. Inside the chip all the SRAMs
can be written in parallel, so in the worst case one of the
banks will write 128 words for an update, meaning 128K
writes. If the write latency of SRAMS is 10 ns then this
will make the classifier unavailable for ����xR`7�}�
� ns =
1.28 ms every 30 seconds. This reduced the throughput of
the classifier by only ~ �R�'���Hx���_H�5���'~ ��b.y .

3.2 Hardware implementation

One of the strengths of our architecture is that it is very
regular and consequently easy to implement. All we need is
a number of SRAM banks placed one after another. SRAM-
s are standard components; vendors such as LSI Logic sell
memory generators that create layout and timing models for
parametrized SRAMs. The control logic to perform writes
and multiplex addresses is minimal. For routing tables not
needing more than 16K nodes at any level we can do with
11 SRAMs each 64 Kbytes in size. A 128 Kbyte SRAM in
0.18 micron CMOS technology is about �H|H�H�0��_H�H�R� square
microns in area, and dissipates 0.25 Watts, so if we have 6
such banks, the die size would be 7.5mm � 6mm and the
power requirement would be around 1.5W (these numbers
were obtained from a memory designer from a large semi-
conductor vendor).

Note that the total delay through the pipeline is �R� times
the delay of each stage, i.e., 11 ns. This requires buffering
1760 additional bits for an OC-3072 line, and corresponds
to a propagation delay of 2.2 meters through copper wire.

Bit No. of nodes Bit No. of nodes

14 2164 20 6803
15 2678 21 5207
16 3675 22 2745
17 5096 23 1001
18 6093 24 335
19 6745

Table 1. Number of nodes at different levels.

�
��� �����d�\� �!���d�����%�����!�!��� ���G�
time

11546 23308 18512 19128 7.2
23132 34065 28042 28918 9.3
28769 37847 31444 32445 11.4
34550 40855 34211 35264 13.3
40222 43777 36763 37926 15.2
46092 46370 39119 40363 17.0
51867 48189 40726 42014 18.7
57668 45063 40995 42188 20.6

Table 2. Scaling of system with number of prefixes. Here�!���
denote the number of prefixes,

�1�5�d�g�
denotes the

number of BDD nodes,
�����d�����A�h�(�!�!���

denotes the num-
ber of BDD nodes between level 14 and 24,

�����
is the total

number of nodes in memory, time is CPU time in second-
s to build the BDD on a PIII 500MHz/256Mbytes running
Redhat Linux 6.2.

3.3 Experiments

We evaluated our approach with a forwarding table for
MAE-WEST obtained from CAIDA [3]. The table has
57668 prefixes and 62 output ports. The table 1 shows the
number of nodes we need in different SRAM banks to map
this routing table. The maximum number of nodes needed is
6803 at level 20. So routing tables containing 60 K prefixes
should easily fit in the SRAMs by provisioning memory for
16K nodes in each SRAM.

We can get some idea of how the total number of BD-
D nodes scales with the number of prefixes by considering
subsets of the forwarding table selected randomly with sim-
ilar distribution of prefix lengths. Table 2 shows how the
number of BDD nodes scales with the number of prefix-
es. The second column shows number of nodes in the exact
mvBDD. The third column is the number of nodes between
level 14 and 24. The fourth column is the actual number of
nodes in memory after accounting for extra nodes to needed
to skip levels. From Table 2 it is clear that the number of
nodes grows sublinearly with the number of prefixes.

4 Packet classification on multiple fields

We now turn to the general packet classification problem,
which we illustrate by considering level 4 packet classifica-
tion. Level 4 packet classification requires examining mul-
tiple fields in the packet header, and is significantly more
complex than the longest prefix matching problem. In a
common formulation [4, page 21], a level 4 classification
rule consists of an ordered pair, with the first element being
a predicate, and the second element being an action. The
predicate is a conjunction of conditions on the source IP ad-
dress, destination IP address, source port, destination port
and protocol fields. The conditions themselves could be
ranges (e.g., source port �����R�H_), equality (destination port
= 80) or prefixes (source IP = 101 P). The action could be a
4-bit quantity denoting class-of-service, or even a single bit
denoting whether to block the packet. In the common for-
mulation, the set of rules is assumed to be totally ordered,
and if for a given packet, two rules’ predicates are true, then
the action taken is that of the higher ranked rule.

The direct approach of building a BDD for the classifi-
cation function computing the action as a function of the
header, and then mapping the BDD to a pipeline of memory
banks does not work well in case of generalized classifica-
tion. The BDD size for each individual predicate will be
small. However the fact that the rules may be ordered ar-
bitrarily can result in enormous BDDs. For example, we
generated 1000 random classification rules and found the
resulting BDD to have more than a million nodes.

We can avoid this BDD blowup by slightly modifying
the semantics of classification. Specifically, we allow the
user to assign a priority level to each rule from a small, pre-
defined set of priorities, e.g., ��� �!�H�
~!~
~;�A��" . Then if there are
multiple rules that match a packet, the highest priority rule
will be applied. If more than one rule with highest priority
is applicable to a packet, then the classifier is free to selec-
t any one of them to apply to the packet. We will shortly
describe how to use this flexibility to order predicates of a
given priority in such a way that the BDD for the classifica-
tion function is linear in the number of rules of that priority.
We believe that these restrictions will not be very significant
for most real-world applications.

Since there is a known number of priority classes, we can
build a pipeline of SRAMs computing the action for the set
of rules at a priority level exactly as before. The classifier
then consists of pipelines for each priority operating in par-
allel and a priority encoder, which then selects the highest
priority action to apply.

We now provide details on how we order predicates with-
in a priority level. First of all, the only conditions we con-
sider are prefixes on individual fields. Both equality and
range checks can be expressed as prefixes with at worst as
many prefixes as number of bits in the field. (If there are

ranges on multiple fields in a predicate and all the ranges
need splitting, there can be a multiplicative effect. How-
ever in practice arbitrary ranges are used for port number-
s only.) We define a prefix � Z to be less than � $ (denot-
ed by � Z���� � $) if and only if � $ is a proper prefix of� Z . We say � Z and � $ are incomparable if � Z����� � $ and� $K���� � Z . We totally order the individual fields, e.g., source
IP � destination IP � source port � destination port �
protocol. Given two predicates �}�gITl Z �Cl $ �Cl # �%l r �ClQ
M and¡ �¢IJ£ Z �A£ $ �A£ # �A£ r �A£;
M , we define � � ¡

if and only iflQ¤ � � £;¤ where [is the smallest index such that l.¤ and £;¤
are comparable. Now if we make sure that rules are prior-
itized according to the order � on the predicates, we can
prove that the size of the Shannon tree of resulting classi-
fication function will be linear in number of rules. A BDD
is a reduction of the Shannon tree, so it will also be linear-
ly bounded in number of rules (and possibly much smaller
because of sharing).

References

[1] A. Brodnik, S. Carlsson, M. Degermark, and S. Pink. Smal-
l forwarding tables for fast routing lookups. In ACM SIG-
COMM, 1997.

[2] R. Bryant. Binary Decision Diagrams and Beyond: Enabling
Technologies for Formal Verification. In Proceedings Inter-
national Conference on Computer-Aided Design, November
1995.

[3] CAIDA. www.caida.org.

[4] P. Gupta. Algorithms for routing lookups and packet clas-
sification. PhD thesis, CS Department, Stanford University,
2000.

[5] P. Gupta, S. Lin, and N. McKeown. Routing Lookups in
Hardware at Memory Access Speeds. In Proceedings IEEE
Infocom, 1998.

[6] Lara Networks Inc. www.laranetworks.com.

[7] Intel. developer.intel.com/design/Pentium4/prodbref/.

[8] S. Keshav. An Engineering Approach to Computer Network-
ing. Addison-Wesley, 1997.

[9] B. Lampson, V. Srinivasan, and G. Varghese. IP Lookups
using Multiway and Multicolumn Search. In Proceedings
IEEE Infocom, 1998.

[10] G. De Micheli. Synthesis and Optimization of Digital Cir-
cuits. McGraw Hill, 1994.

[11] V. Srinivasan and G. Varghese. Fast IP Lookups Using Con-
trolled Prefix Expansion. In ACM SIGMETRICS, 1998.

[12] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scal-
able High-Speed IP Routing Lookups. In ACM SIGCOMM,
1997.

