
High-throughput Online Hash Table on FPGA*

Da Tong, Shijie Zhou, Viktor K. Prasanna
Ming Hsieh Dept. of Electrical Engineering

University of Southern California
Los Angeles, CA 90089

Email: datong@usc.edu, shijiezh@usc.edu, prasanna@usc.edu

Abstract—Hash tables are widely used in many network
applications such as packet classification, traffic classification,
and heavy hitter detection, etc. In this paper, we present a
pipelined architecture for high throughput online hash table
on FPGA. The proposed architecture supports search, insert,
and delete operations at line rate for the massive hash table
which is stored in off-chip memory. We propose two hash table
access schemes: (1) the first scheme assigns each hash entry
multiple slots to reduce the hash collision rate; each slot can
store the corresponding hash key of the hash entry; (2) the
second scheme has a higher hash collision rate but a lower
off-chip memory bandwidth requirement than the first scheme.
Both schemes guarantee the line rate processing when using the
memory devices with sufficient access bandwidth. We design an
application specific data forwarding unit to deal with the po-
tential data hazards. Our architecture ensures that no stalling
is required to process any sequence of concurrent operations
while tolerating large external memory access latency. On a
state-of-the-art FPGA, the proposed architecture achieves 66-
85 Gbps throughput while supporting a hash table of various
number of entries with various key sizes for various DRAM
access latency. Our design also shows good scalability in terms
of throughput for various hash table configurations.

Keywords-Hash table, Data forwarding, FPGA

I. INTRODUCTION

Hash tables are commonly used whenever an item needs
to be quickly retrieved from a set. Therefore hash tables
have been applied to accelerate many network applications
such as packet classification, traffic classification, and heavy
hitter detection, etc [1], [2].

In recent years, 100 Gbps networking is becoming a
standard. Both the research community and the industry
are targeting 400 Gbps networks [3], [4]. State-of-the-art
Field Programmable Gate Arrays (FPGAs) are promising
platforms for high throughput implementation of hash tables
[6], as they offer unprecedented logic density and very high
on-chip memory bandwidth.

In this paper, we propose a high throughput online
hash table on FPGA using external DRAM. The proposed
architecture supports online operations including search,
insert, and delete at line rate. There are three major design
challenges. 1. Handling read-after-write data hazards due to
the pipeline’s processing latency and the DRAM’s access

*This work is supported by U.S. National Science Foundation under
grant CCF-1116781.

latency without degrading the throughput. 2. Achieving
line rate processing for DRAM devices with relatively low
bandwidth. 3. Designing a pipelined architecture which
integrates all the functions and achieves high throughput at
the same time. In order to prevent the data hazard without
stalling the pipeline, our proposed architecture uses efficient
data forwarding to handle data hazards. We propose two
hash table access schemes, first fit scheme and random fit
scheme to work with relatively high and low bandwidth.
Here relatively high/low bandwidth means the bandwidth
is/is not high enough to retrieve all the slots of one hash table
entry in one clock cycle. We summarize our contributions
as follows:

• A pipelined architecture for online hash table. It guar-
antees line rate processing when working with DRAM
devices of various memory access latency and band-
width. The architecture sustains high throughput of 66-
85 Gbps supporting 1-16 million entries, each entry
having 2-8 slots with the key sizes ranging from 16 to
128 bits.

• An application specific data forwarding unit. It ensures
the correctness of the architecture without stalling the
pipeline regardless of the memory access latency.

• Two hash table access schemes. These schemes guaran-
tee that we can perform one operation to the hash table
per clock cycle for various DRAM access bandwidth.

• A high throughput multi-functional pipelined architec-
ture. It supports all three typical operations to a hash
table at line rate: search, insert, and delete.

The rest of the paper is organized as follows: Section II
defines the problem we target. We introduce our architecture
in Section IV. Section V evaluates the performance, and
Section VI concludes this paper.

II. PROBLEM DEFINITION

The three basic operations of a hash table are:
• Search: The search operation retrieves the value as-

sociated with the input key if the input key exists in
the hash table.

• Insert: The insert operation first searches the input
key in the hash table. If the key exists, it updates its
associated value with the input value. Otherwise, it

2015 IEEE International Parallel and Distributed Processing Symposium Workshops

/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.149

105

2015 IEEE International Parallel and Distributed Processing Symposium Workshop

978-1-4673-7684-6/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.149

105

inserts a key − value pair into the hash table if there
is an open slot in the hash table entry.

• Delete: The delete operation removes a key − value
pair from the hash table, and marks the corresponding
slot as empty

Our goal is to design an online architecture which sup-
ports these operations. The input to the architecture is a
sequence of key− value− operation sets. Given fixed key
and value lengths, and the set of operations (search, insert,
delete) , the architecture needs to be able to processes any
arbitrary sequence of inputs. Online here means that the
architecture is able to execute one operation to the hash
table at line rate, i.e. one operation every clock cycle.

III. RELATED WORK

Hash table enables fast table lookup. Therefore it is widely
used in network applications which normally performs rule
set lookup or collects per packet/flow information. [2]
propose an algorithm for fast packet classification using
perfect hash functions. By applying the hash function, each
packet classification requires only 2 memory accesses. As a
result, [2] achieves a throughput of 150 million packets per
second (MPPS). In Instvan et al. [7], a hash-based traffic
classification engine is proposed. Instvan et al. convert the
classic multi-feature decision-trees to a set of hash tables.
Their hash-based approach demonstrates good performance
with respect to both throughput and scalability on the state-
of-the-art multicore platforms. The design achieves over
10× improvement compared with the traffic classifiers based
on classic decision trees and other techniques. Cormode
et al. [1] present a hash table based statistical summary
technique for data streaming applications. The technique
uses multiple hash functions and shows a great bounded
accuracy and a low memory footprint. It can be applied to
online heavy hitter detection for network flows and many
other network applications.

There have been many FPGA implementations for high
performance hash tables. Bando et al. [8] present a par-
allel hash table based IP lookup technique with collision
resolution. Theoretically, with the help of multiple external
memory devices, the architecture can achieve a lookup rate
of upto 250 MPPS. However, the architecture focused on
the lookup operation for hash tables. The delete and insert
operations were not emphasized. Istvan et al. [6] present
the design and the implementation of a pipelined hash table
for an FPGA-based MemcacheD [9] server. Their design
achieves 10 Gbps for a wide range of key sizes. However,
their design stalls the pipeline whenever read-after-write
data hazard occurs. Therefore, the performance is highly
dependent on the sequences of keys and operations.

Our proposed architecture supports all typical operations
to a hash table. Moreover, since it doesn’t need stalling to
handle the data hazard, high throughput is guaranteed for
any input sequences of keys and operations.

Hash Table

Ex
am

in
e

Ex
ec

u
te

H
as

h
in

g

Stage 2Stage 1 Stage 3

Data Forwarding Unit
(DFU)

Figure 1: Pipelined architecture

IV. ARCHITECTURE

A. Overall Architecture

In the proposed design, each hash table entry has multiple
slots. Each slot stores one hash item (a key − value pair).
One valid bit is associated with each slot to indicate if this
slot stores a valid hash item or is open for insertion. When
an input key arrives, it is hashed to identify a hash entry
and then compared with all the keys of the slots stored at
the hash entry. We also check the validity of slots which
is represented using a bitvector. Each bit in the bitvector
corresponds to one slot. The intended operation is performed
based on both the match of keys and the validity of the slots.

We map the operations into a 3 stage pipeline as illustrated
in Figure 1.

• Stage 1(Hashing): The hash entry is computed
• Stage 2(Examine): The hash slots of the hash entry

are retrieved and examined.
• Stage 3(Execute): The operation is performed accord-

ing to the examination result from Stage 2.
The Data Forwarding Unit (DFU) forwards the necessary
data into the Execute stage to prevent data hazard. It is
discussed in detail in IV-C. The detailed operations at each
stage of the pipelined architecture are shown in Algorithm
1.

B. Hash Function

The class H3 hash function [10], has been proved to be
very effective in distributing keys evenly among hash table
entries [11]. This leads to a low hash collision rate. The
class H3 hash functions are defined as follows [11]:

DEFINITION 1. Let K = {0, 1, ...2I − 1} be a key set of
I bits, and V = {0, 1, ...2J − 1} be a hash value set of J
bits. Let Q be the set of all possible I×J boolean matrices.
Given q ∈ Q and k ∈ K, let qn denote the nth row of q,
and kn be the nth bit of k, a hash function hq : K → V :

hq = (k0 · q0)⊕ (k1 · q1)⊕ ...⊕ (kI−1 · qI−1)

106106

Algorithm 1 Operations at each stage
Variables:
HashFunction = The hash function used in the architec-
ture.
Input = Input key − value pair.
Operation = Operation performed on the input.
HashAddress = Pointer to the hash table entry
I = Index of the Ith slot at HashAddress
MatchSlot = The slot where the matching key resides
MatchExists = The indicator of an existing match
V alidV ector = The bitvector recording validity of the slots
Stage 1: Hashing

1: HashAddress = HashFunction(Inpput.Key)
2: Retrieve all the hash items at HashAddress

Stage 2: Examine
1: Initialize MatchExists, V alidV ectors
2: for all Slots at HashAddress do
3: if HashAddress[I].V alid == 1 then
4: V alidV ector[I] <= 1
5: if HashAddress[I].Key == Input.Key then
6: MatchExists <= 1
7: MatchSlot <= I
8: end if
9: end if

10: end for
Stage 3: Execute

1: if MatchExists == 1 then
2: if Opereation == insert then
3: HashAddress[I].V alue == Input.V alue
4: end if
5: if Opereation == delete then
6: HashAddress[I].V alid <= 0
7: /* for data forwarding */
8: V alidV ector[I] <= 0
9: end if

10: if Opereation == search then
11: Output HashAddress[I].V alue
12: end if
13: else
14: if Opereation == insert then
15: for all I at HashAddress do
16: if V alidV ector[I] is the first zero in

V alidV ector then
17: HashAddress[I] <= Input
18: /* for data forwarding */
19: V alidV ector[I] <= 1
20: end if
21: end for
22: end if
23: end if

Stage 0 Stage i Stage I-1

k

AND qi

XOR

ki

Input Key Input Key

Partial Hash
Result

Partial Hash
Result

Figure 2: Pipelined Hash Computation

· denotes bitwise AND operation, ⊕ denotes bitwise XOR
operation. The set {hq|q ∈ Q} is called class H3.

By carefully choosing q, the optimal hash function of class
H3 for the target application can be produced. The H3 is
also suitable for high throughput hardware implementation
as it only requires simple bitwise AND and XOR operations.
According to Definition 1, to map a I-bit key to a J-bit
hash value, we need I × J AND operations and I XOR
operations. This is on the order of O(I × J). To improve
the throughput of hardware implementation, we can pipeline
the hash function as illustrated in Figure 2. We can use
O(I) stages, each stage containing O(J) AND operations and
O(1) XOR operations. Among these operations in each stage,
AND operations can be performed in parallel. Therefore,
O(1) latency in each stage can be achieved, which leads to
a high throughput. The rows of the matrix q can be stored in
distributed ram for fast access. The hash computing pipeline
is before the memory access, therefore, it does not introduce
any read-after-write hazards

C. Data Forwarding Unit

When insert or delete is performed, the hash table is
updated. We assume that the latency of the Examine and
the Execute stage is R and W cycles respectively (R and
W can be any positive integer). Thus, an update takes R+W
cycles to complete. Since the architecture takes in one input
every clock cycle, a read-after-write data hazard occurs if
an input enters the pipeline before the previous update on
the same hash item has been completed.

One trivial method to handle read-after-write hazard is to
stall the pipeline for R + W cycles. But this significantly
deteriorates the throughput if many consecutive updates need
to be performed on the same hash item. To handle the read-
after-write data hazards without deteriorating the throughput,
we need to provide the necessary up-to-date data to the
Execute stage without stalling the pipeline.

To achieve this goal, we design a Data Forwarding

107107

Shift
Registers

P
ro

ce
ss

in
g

El
e

m
e

n
t

P
ro

ce
ss

in
g

El
e

m
en

t

Key and FwdData from Execute stage

Key from
Examine
stage

Le
as

t
re

ce
n

t

M
o

st

re
ce

n
t

Stage 1 Stage R+W

Fw
d

D
a

ta

to
 f

o
rw

ar
d

Figure 3: Pipelined data forwarding unit

Unit (DFU). According to Algorithm 1, the necessary data
contains the V alidV ector, MatchSlot, MatchExist, and
Operation of the hash table entry being accessed. We
denote this set of data as FwdData. Since it takes R+W
cycles to complete an update, we need to keep track of
the R +W operations previous to the current operation. If
the updates on the current input key are observed in these
operations, we forward the most recent FwdData to the
Execute stage to replace the outdated data from the Examine
stage. Assuming that the memory can support a read and a
write operations in each cycle, an architecture that ensures
that the throughput is not adversely affected by the read-
after-write data hazards is shown in Figure 3.

The DFU has shift registers of size R + W to store the
keys and their associated FwdData. During each clock
cycle, the FwdData and the key at the Execute stage are
pushed into the shift registers and the oldest element is
removed.

To detect if a data hazard occurs, the input key to the
Execute stage is compared with all the keys stored in the
shift register. If one or multiple matching keys are found, the
DFU forwards the FwdData of the most recent matching
key.

The pipelined architecture gives higher priority to the
more recent keys and FwdDatas. Each stage processes the
following data:

• One pair of key and FwdData from the shift register.
The more recent pairs are processed at the stages closer
to the output of the pipeline.

• The key and FwdData at the Execute stage, because
when a key enters the pipelined DFU, the partial results
and the key being processed by the DFU are not
available in the shift register.

• The key and FwdData from the previous stage
This data allocation ensures, at any stage, the data being
processed is always more recent than the data from an

earlier stage. Therefore, at each stage, by locating the most
recent matching key among the 3 inputs, the processing
element can always output the FwdData of the most recent
matching key by that stage. Thus, if matching keys exists,
the output of the last stage is the most recent FwdData
of that key. The operations of the processing elements are
shown in Algorithm 2.

Algorithm 2 Operations of the processing element of the
pipelined DFU
Variables:
keyEX/keyShift = key from the Execute stage/shift regis-
ters.
FwdDataEX/FwdDataShift/FwdDataPrev =
FwdData from the Execute stage/shift registers/forwarded
from the pevious stage.
keyIn = Input key.

1: if FwdDataPrev is from the shift registers then
2: if keyEX == keyIn||keyShift == keyIn then
3: if Exactly one of keyEX , keyShift matches keyIn

then
4: Output the partial result of the matching key
5: else
6: Output FwdDataEX /*- - FwdDataEX has the

highest priority - -*/
7: end if
8: else
9: Output FwdDataPrev

10: end if
11: else
12: if keyEX == keyIn then
13: Output FwdDataEX

14: else
15: Output FwdDataPrev

16: end if
17: end if

D. Supporting Low Memory Bandwidth

The operations shown in Algorithm 1 use the first fit hash
table access scheme. That is: we examine the slots one after
another and always perform the operations to the first slot
that meets the requirements. (For example, when performing
insertion, if there are multiple empty slots, we insert the new
key−value pair to the first one we encounter). This scheme
guarantees that no existing keys can be missed in a search
operation and no duplicated data can exist in the hash table.
The hash collision only occurs when all the slots of a hash
entry are occupied and a new key needs to be inserted in
the hash entry. Since the H3 hash function has a low hash
collision rate, the chance that multiple keys are mapped to
the same hash entry is little, resulting in a low collision rate
for the first fit hash table access scheme. However, since this
scheme needs the data from all the slots of the accessed hash

108108

entry to decide which is the right slot to operate. Since we
need to perform line rate processing, all the slot data needs
to be retrieved in one memory access. This requires a high
memory bandwidth. If the DRAM device cannot provide
such a high bandwidth, the performance of the architecture
will be significantly degraded.

To boost the throughput while working with limited mem-
ory bandwidth, we designed a random fit hash table access
scheme. In addition to the hash function deciding which
hash table entry to access, we use a second hash function
to decide which slot in the hash table entry to perform
the operations. Figure 4 shows a comparison between the
first fit scheme and the random fit scheme along with
their bandwidth consumption. We can see that for the same
hash table configuration, the random fit scheme needs much
less bandwidth than the first fit scheme per access. This
means more accesses per unit time and it leads to a better
throughput. As long as the bandwidth is enough to bring one
slot data per memory access, the line rate processing can be
guaranteed. This is a much lower requirement than bringing
all the slots in one memory access.

Like the first fit scheme, the random fit scheme can also
guarantee no missed search for any existing keys and no
duplicated data in the hash table. This is because a given
key is always hashed to the same slot in the same entry. If
a key exists in the hash table, it can only exist in that slot
leaving no chances for missed search or duplicated data.

In addition to lower bandwidth requirement, the random
access scheme also needs less complex logic than the first
fit scheme. When implementing first access scheme we need
a module to decide the right slot to perform the operations.
This module is not necessary when implementing random
access scheme. Less complex logic results in less logic slices
consumption and a better routing on FPGA. This further
enhances the throughput of the architecture with the random
access scheme, as demonstrated in Section V.

Compared with the first fit access scheme, the random fit
scheme has a larger hash collision rate. It is possible that
an insertion is assigned to a slot which has been occupied
by a different key. At this point even if there are other
empty slots in the hash entry, this insertion can not take
place and the input key is discarded. This results in that
a lower utilization of the hash table than the first access
scheme. But the collision only occurs when two different
keys are mapped to the same slot of the same entry, namely
having hash collisions for both hash functions. Considering
the low collision rate of the H3 hash functions, the collision
rate of the random fit scheme is still very low. Moreover,
in a normal network traffic where packets are from various
users, the probability of a collision is even lower. Therefore
we can achieve a great improvement in throughput with a
small trade off in hash table utilization when working with
limited memory access bandwidth.

h1(key)

Slot 1 Slot 2 Slot 3 Slot 4

Occupied slot Empty slot

Bandwidth Requirements

(a) First Fit Scheme

`

` h1(key)

Slot 1 Slot 2 Slot 3 Slot 4

h2(key)

Occupied slot Empty slot

Bandwidth Requirements

(b) Random Fit Scheme

Figure 4: Two Hash Table Access schemes

E. Supporting Multiple Operations

Figure 5 shows the architecture of the execution stage
to support multiple functions at a high throughput. We
assign one processing element to update each slot. In each
processing element, updated slot data for all three operations
are generated in parallel. Then we select the appropriate
updated slot data for forwarding based on the operation to
the input key. A slot selection module is designed to generate
a one-hot slot selection signal to the second multiplexers
in the processing elements. According to the comparison
results and the valid vector from the examine stage, it sends
a “1” to the processing element for the target slot, indicating
that the processing element forwards the updated slot data.
To all the other processing elements, the slot selection
module sends a “0” to let them forward the original slot
data. The outputs of these processing elements are written
back to the external DRAM.

The number of the processing elements is decided by the
hash table access schemes. If we use first fit access scheme,
we need as many processing element as the number of slots
per hash table entry. If we use random access, we only need
one processing element and the slot selection module can
also be eliminated.

109109

Insert: Update the key and value

Delete: Invalidate the slot data

Search: Return the original slot data

M
U

X

Operation

M
U

X

Return the original slot data

Th
is

 s
lo

t?

0

1

D
at

a
fr

o
m

 e
xa

m
in

e
 s

ta
ge

PE: slot 0

PE: slot 1

PE: slot I U
p

d
at

ed
 s

lo
ts

 d
at

a

Slot Selection
One-hot slot selection

Figure 5: Supporting Multiple Operations

V. EVALUATION

A. Experimental Setup

We implement the proposed design on FPGA. Our target
device is Xilinx Virtex 7 XC7VX1140T with -2 speed grade.
All reported results are post place and route results using
Xilinx Vivado 2014.3. We evaluate the performance by
varying the DRAM access bandwidth and latency value to
demonstrate that our architecture achieves high throughput
for various DRAM devices.

The key sizes we use in our experiments are 16, 32, 64
and 128 bits. These numbers cover most key sizes in network
applications (e.g. Port numbers, IPv4 and IPv6 address,
5 field packet classification and traffic classification, etc)
and they also cover a sufficiently wide range to test the
scalability of our architecture. We test the logic resource
consumption and the throughput of our architecture for
various key sizes and vary the number of hash table entries
and slots per entry to test the scalability of our architecture.

Logic resources on FPGA are organized as slices. So
the number of occupied slices reflects the logic resource
consumption of our architecture. In our experiments, the
utilization of slices never exceeds 4% of the total available
number. Therefore in the following sections, we focus on
reporting the throughput of our architecture using various
configurations.

When computing the throughput, we use the minimum IP
packet size, 40 bytes. Our architecture can take in one packet
per clock cycle. Therefore, the throughput can be computed
by multiplying the clock rate with the minimum packet size.

0

50

100

150

200

250

300

16 32 64 128

C
lo

ck
 R

at
e

 (
M

H
Z)

Key Length (bits)

Random
Fit

First Fit

72 Gbps

85 Gbps

(1M hash table entries, 4 slots per entry)

Figure 6: Performance of baseline hash table configurations

Table I: Bandwidth requirement for baseline configuration
Key length (bits) 16 32 64 128
First Fit (Gbps) 25.94 40.18 69.54 127.63

Random Fit (Gbps) 6.70 10.59 17.46 31.95

Since our architecture is designed as a general architecture
to work with various DRAM devices, we also show the
minimum bandwidth requirement for our architecture to
operate at its highest possible clock rate. To calculate the
bandwidth requirement, we multiply the operation clock rate
with the amount of data exchanged between FPGA and the
DRAM device.

B. Typical Hash Table Configuration

Figure 6 shows the clock rate and the throughput of
our architecture for a baseline hash table configuration.
The architecture achieves very steady performance for all
tested hash key lengths. The throughput lies between 72
- 85 Gbps. We can tell from the figure that as we have
discussed in Section IV-D, due to less complex logic, the
design using random fit scheme achieves a higher throughput
than the one using first fit scheme. Table I shows the memory
bandwidth requirement for the corresponding configuration.
As discussed in Section IV-D, the random fit scheme needs
much less memory bandwidth than the first fit scheme.

C. Scalability

Section V-C and V-D test the scalability of our architec-
ture. Since key size of 16 bits is too small to effectively
demonstrate the scalability, we remove it from the experi-
ments in these two sections.

Figure 7 shows the performance of our architecture for
various numbers of hash table entries. We observe that for
both random fit scheme and first fit scheme, the clock rate
does not vary much as the number of hash table entries
grows significantly from 1 M to 16 M. This is because only
4 more bits in the hash value are required to increase the
number of hash table entries from 1 M to 16 M. This 4-bit

110110

0

50

100

150

200

250

300

32 64 128

C
lo

ck
 R

at
e

 (
M

H
z)

Key Length (bits)

First Fit, 1 M

First Fit, 4 M

First Fit, 16 M

Random Fit, 1 M

Random Fit, 4 M

Random Fit, 16 M

68 Gbps

82 Gbps

Memory Bandwidth Reqirement (Gbps):
First Fit: 38 - 124, Random Fit: 10 - 31

(4 slots per entry)

Figure 7: Various Number of Hash Table Entries

0

50

100

150

200

250

300

32 64 128

C
lo

ck
 R

at
e

 (
M

H
z)

Key Length (bits)

First Fit, 2 slots

First Fit, 4 slots

First Fit, 8 slots

Random Fit, 2 slots

Random Fit, 4 slots

Random Fit, 8 slots

66 Gbps

81 Gbps

Memory Bandwidth Reqirement (Gbps):
First Fit: 17 - 252, Random Fit: 10 - 31

(4 M hash table entries)

Figure 8: Various Number of Slots per Entry

lays little impact on the logic consumption and the routing of
the implementation. Therefore, the architecture demonstrates
very good scalability when the number of hash table entries
varies.

Figure 8 shows the performance of our architecture for
various numbers of slots per hash table entry. We observe
that the two hash table access schemes show different per-
formance with respect to scalability in the experiment. For
the first fit scheme: although the architecture still achieves a
high clock rate, the clock rate drops significantly when we
increase the number of slots per entry from 2 to 8. For the
random fit scheme: the clock rate varies little as the number
of slots grows. Such difference with respect to scalability is
due to:

• When we use first fit scheme, we need to process all the
slots in parallel. The logic consumption is proportional
to the number of slots per hash table entry. When the

0

50

100

150

200

250

300

32 64 128

C
lo

ck
 R

at
e

 (
M

H
z)

Key Length (bits)

First Fit, 2 cycles

First Fit, 4 cycles

First Fit, 8 cycles

Random Fit, 2 cycles

Random Fit, 4 cycles

Random Fit, 8 cycles

69 Gbps

80 Gbps

Memory Bandwidth Reqirement (Gbps):
First Fit: 37 - 126, Random Fit: 10 - 30

(4 M hash table entries, 4 slots per entry)

Figure 9: Various Memory Access Latency

number of slots grows, along with the increasing logic
consumption, the pressure on routing also increases.
Therefore the clock rate drops fast.

• When we use random fit scheme, given a fixed number
of entries in the hash table, the number of slots per
entry only affects the hash value width of the second
hash function. When the number of slots increases from
2 to 8, the hash value width only varies by 3 bits, which
has little effect on the implementation. Therefore, the
random access scheme shows a better scalability than
the first fit scheme for various numbers of slots per
hash table entry.

D. DRAM Access Latency

Depending on the DRAM devices and memory interface,
DRAM access may take various number of clock cycles. As
discussed in Section IV-C, the memory access latency affects
the number of stages of the data forwarding unit. Figure 9
shows the clock rate of our proposed architecture for various
memory access latency. Since our DFU is fully pipelined,
increasing the number of stages from 2 to 8 doesn’t affect
the performance by a lot. As a result, both architectures
demonstrate good scalability when working with various
memory access latency.

E. DRAM Devices

As the results shown in Section V-B, V-C, and V-D our
architecture can work at a very high clock rate. DRAM
provides very large storage capacity. However, due to fre-
quent refreshing and the row activation delay [13], a direct
mapping of our hash table to a normal DRAM device (e.g.
DDR3 DRAM) cannot keep up with the working frequency
of our proposed architecture. In [13], Qu et al. proposed a
data replication technique and boost up the DRAM access
rate to 200 M accesses per second. The technique replicates

111111

the data across all the DRAM banks and access the banks in
a round robin manner, so that the row activation delay can
be overlapped with the fetching delay. Therefore, it can only
accelerate the search operations, because delete and insert
need to be performed to all the banks in the DRAM. This
technique can be applied when our architecture is used to
implement a static hash table (which means normally only
search operations are performed, for example an IP lookup
engine without dynamic update).

In [6], the experiments are conducted on a Maxeler
Workstation. The target platform is equipped with a 24 GB
DDR3 DRAM which can be accessed in 384-bit words at
300 MHz with a burst size of 8. This platform provides
a memory bandwidth of 115 Gbps. Comparing with the
bandwidth requirement shown in Section V-B, V-C and V-D,
this bandwidth is large enough to support our experimented
configurations.

VI. CONCLUSION

In this paper, we proposed a pipelined architecture for
a high throughput online hash table on FPGA. It can
be applied to accelerate various network applications. Our
architecture supported fixed-length keys and values using
external DRAM. It sustained 72-85 Gbps throughput for
typical hash table configurations due to the careful design in
hash function, hash table access, and data forwarding unit.
Based on the DRAM bandwidth requirement, we proposed
two hash table access schemes, first fit scheme and random
fit scheme. The first fit scheme examined multiple slots of
the corresponding hash entry, therefore having a high mem-
ory bandwidth requirement; the random fit scheme reduced
the memory bandwidth requirement and logic resources by
examining only one slot of the corresponding hash entry,
but the hash collision rate is higher than first fit scheme.
Both schemes demonstrated good scalability when the size
of hash table increased.

As future work, we will extend our architecture to support
larger scale hash table with broader range of key and value
sizes. The scope of our work will be expanded to big data
application under the data center context, for example, to
accelerate MemcacheD [9] system.

REFERENCES

[1] G. Cormode and S. Muthukrishnan, “An improved data
stream summary: The count-min sketch and its applications,”
J. Algorithms, vol. 55, no. 1, pp. 58–75, Apr. 2005. [Online].
Available: http://dx.doi.org/10.1016/j.jalgor.2003.12.001

[2] V. Puš and J. Korenek, “Fast and scalable packet
classification using perfect hash functions,” in Proceedings
of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, ser. FPGA ’09. New York,
NY, USA: ACM, 2009, pp. 229–236. [Online]. Available:
http://doi.acm.org/10.1145/1508128.1508163

[3] “FP3: Breakthrough 400G network processor,”
http://www.alcatel-lucent.com/fp3/.

[4] M. Attig and G. Brebner, “400 gb/s programmable packet
parsing on a single fpga,” in Architectures for Networking and
Communications Systems (ANCS), 2011 Seventh ACM/IEEE
Symposium on, Oct 2011, pp. 12–23.

[5] C. Estan and G. Varghese, “New directions in traffic measure-
ment and accounting,” SIGCOMM Comput. Commun. Rev.,
vol. 32, no. 4, pp. 323–336, Aug. 2002.

[6] Z. Istvan, G. Alonso, M. Blott, and K. Vissers, “A flexible
hash table design for 10gbps key-value stores on fpgas,” in
Field Programmable Logic and Applications (FPL), 2013
23rd International Conference on, Sept 2013, pp. 1–8.

[7] Y. Qu and V. Prasanna, “Compact hash tables for high-
performance traffic classification on multi-core processors,”
in Computer Architecture and High Performance Computing
(SBAC-PAD), 2014 IEEE 26th International Symposium on,
Oct 2014, pp. 17–24.

[8] M. Bando, N. S. Artan, and H. J. Chao, “Flashlook: 100-gbps
hash-tuned route lookup architecture,” in Proceedings of
the 15th International Conference on High Performance
Switching and Routing, ser. HPSR’09. Piscataway, NJ,
USA: IEEE Press, 2009, pp. 14–21. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1715730.1715733

[9] “Free and open source, high-performance, distributed memory
object caching system,” 2013.

[10] J. L. Carter and M. N. Wegman, “Universal classes
of hash functions (extended abstract),” in Proceedings
of the Ninth Annual ACM Symposium on Theory of
Computing, ser. STOC ’77. New York, NY, USA:
ACM, 1977, pp. 106–112. [Online]. Available: http:
//doi.acm.org/10.1145/800105.803400

[11] M. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient hard-
ware hashing functions for high performance computers,”
Computers, IEEE Transactions on, vol. 46, no. 12, pp. 1378–
1381, Dec 1997.

[12] C. Estan and G. Varghese, “New directions in traffic
measurement and accounting,” SIGCOMM Comput. Commun.
Rev., vol. 32, no. 4, pp. 323–336, Aug. 2002. [Online].
Available: http://doi.acm.org/10.1145/964725.633056

[13] Y. Qu and V. Prasanna, “High-performance pipelined architec-
ture for tree-based ip lookup engine on fpga,” in Parallel and
Distributed Processing Symposium Workshops PhD Forum
(IPDPSW), 2013 IEEE 27th International, May 2013, pp.
114–123.

[14] W. Jiang and V. Prasanna, “Data structure optimization for
power- efficient ip lookup architectures,” Computers, IEEE
Transactions on, vol. 62, no. 11, pp. 2169–2182, Nov 2013.

112112

