

Generalized Aho-Corasick Algorithm for Signature
Based Anti-Virus Applications

Tsern-Huei Lee

Department of Communication Engineering
National Chiao Tung University

E-Mail: tlee@banyan.cm.nctu.edu.tw

Abstract- Because of its accuracy, signature matching is
considered an important technique in anti-virus/worm
applications. Among some famous pattern matching algorithms,
the Aho-Corasick (AC) algorithm can match multiple patterns
simultaneously and guarantee deterministic performance under
all circumstances and thus is widely adopted in various systems,
especially when worst-case performance such as wire speed
requirement is a design factor. However, the AC algorithm was
developed only for strings while virus/worm signatures could be
specified by simple regular expressions. In this paper, we
generalize the AC algorithm to systematically construct a finite
state pattern matching machine which can indicate the ending
position in a finite input string for the first occurrence of
virus/worm signatures that are specified by strings or simple
regular expressions. The regular expressions studied in this
paper may contain the following operators: * (match any number
of symbols), ? (match any symbol), and {min, max} (match
minimum of min, maximum of max symbols), which are defined
in ClamAV, a popular open source anti-virus/worm software
module, for signature specification.

I. Introduction
Current virus/worm detection technologies can be classified

into three categories, namely, protocol analysis, behavior
anomaly, and pattern matching. Protocol analysis is a
technique which examines the header of a packet to ensure
there is no misuse of protocol fields. For example, the OID
field of an SNMP packet should be a certain number of bytes.
There is something wrong (say, an overflow attack) if the next
expected field does not appear after this number of bytes.
Behavior anomaly can be used to detect and prevent the
outbreak of an attack because an infected host is likely to
behave differently from a normal host. As an example, a
host infected by some virus/worm may try to infect other
vulnerable hosts on the Internet with port/address scanning.
Therefore, one can detect an infected host with the observation
of high new connection attempt rate or high failure ratio of
new connection attempts [5]. Behavior anomaly can be used
to detect the so-called “zero-day” attacks. However, it tends
to create false positives if the normal behavior cannot be
precisely specified. Finally, pattern matching is a technique
of looking for specific patterns in the payload of a packet or
across packets. One can utilize the strings of malicious codes
contained in viruses/worms for detection. Although it is
limited to known viruses/worms with identified signatures, the
pattern matching technique is quite valuable because of its
accuracy. Fortunately, the signature of a new virus/worm can

often be quickly derived nowadays once it occurs.
The purpose of this paper is to propose construction

procedures of finite state machines for signature matching.
There are some well-known pattern matching algorithms such
as Knuth-Morris-Pratt (KMP) [2], Boyer-Moore (BM) [3], and
Aho-Corasick (AC) [4]. The KMP and BM algorithms are
efficient for single pattern matching but are not scalable for
multiple patterns. The AC algorithm pre-processes the
patterns and builds a finite automaton which can match
multiple patterns simultaneously. Another advantage of the
AC algorithm is that it guarantees deterministic performance
under all circumstances. As a consequence, the AC
algorithm is widely adopted in various systems, especially
when worst-case performance is an important design factor.
Unfortunately, the AC algorithm was developed only for
strings while virus/worm signatures could be specified by
regular expressions. It is well known that a regular
expression is equivalent to a non-deterministic finite automata
(NFA) which in turn is equivalent to a deterministic finite
automata (DFA). As a consequence, a straightforward
approach to identify matches of a regular expression is to
construct a DFA. However, the number of states in a DFA
grows exponentially with the length of the regular expression
in the worst case. In this paper, we present a different
approach to construct a single DFA for multiple simple regular
expressions.

Our constructed finite state pattern matching machine can
identify the ending position of the first occurrence of
virus/worm signatures which could be specified by strings
and/or regular expressions. The regular expressions studied
in this paper fully cover virus/worm signatures defined in
ClamAV [1], an open source anti-virus software module.

The problem definition is described in Section II. In
Section III, we present the construction procedure for a given
set of strings together with one regular expression which
contains only a single operator. The construction procedure
is then generalized in Section IV for multiple regular
expressions with multiple instances of operators. Finally, we
draw conclusion in Section V.

II. Problem Definition
We address in this paper the problem of constructing a finite

state pattern matching machine for a set of strings W together

1-4244-1251-X/07/$25.00 ©2007 IEEE. 792

Authorized licensed use limited to: National Cheng Kung University. Downloaded on March 5, 2009 at 00:49 from IEEE Xplore. Restrictions apply.

with n simple regular expressions RE1, RE2, …, and REn.
The regular expression definition includes the following
operators: * (match any number of symbols), ? (match any
symbol), and {min, max} (match minimum of min, maximum
of max symbols). We assume that every symbol is a byte.
Moreover, in each REk, there is at least one *, ?, or {min, max}
operator. For simplicity, we call strings in W and RE1,
RE2, …, and REn signatures and let W =
W ∪ RE1 ∪ RE2 ∪ … ∪ REn.

Our goal is to construct a finite state pattern matching
machine that can indicate the ending position in a finite input
string x for the first occurrence of signature(s). A pattern
matching machine is said to be valid for W if it can indicate
the ending position of the first occurrence of signatures in W .
Our construction procedure is a generalization of the AC
algorithm [4]. Throughout this paper, functions g, f, and
output represent, respectively, the goto function, the failure
function, and the output function of a finite state pattern
matching machine.

We assume that a goto graph G for the set of strings W has
been constructed with the AC algorithm. Let R denote the
start state of graph G. If W is an empty set, then graph G
contains only state R with g(R, a) = R for all symbols a.

Some definitions are needed. We say u is a prefix and v is
a suffix of the string uv. Moreover, u is a proper prefix if v is
not empty. Likewise, v is a proper suffix if u is not empty.
String u is said to represent state P in a goto graph if the
shortest path from the start state to state P spells out u. The
start state is represented by the empty string. String u is said
to represent state Q relative to state P if the shortest path in the
goto graph from state P to state Q spells out u.

Note that there might be a self-loop at the start state.
However, it becomes a tree after removing the self-loop, if
exists. In the following definitions, we ignore the self-loop.
We call state S the father of state P if there exists a symbol a
such that g(S,a) = P. State P is said to be a descendent of
state S if there exists a non-empty string u which represents
state P relative to state S. The tree which consists of state S
and all its descendent states is called the sub-tree of S. A
goto graph G is said to be “extended” with string u if G is
augmented with u by the enter procedure (without the output
function) of the AC algorithm. We say a goto graph G is
extended with string u from state P if G is augmented with u
by the enter procedure (again, without the output function)
using state P as the start state. Extension of a goto graph
with a string includes creation of new states (if necessary) and
generation of the goto function. We say a string u or a
regular expression RE is “added” to the goto graph G if a valid
pattern matching machine for W ∪ {u} or W ∪ RE is
constructed by augmenting graph G. Computation of the
output function is not considered in this paper because it is the
same as that in the AC algorithm. For convenience, we call
any state with non-empty output function a final state.

Our constructed finite state pattern matching machine may
consist of multiple separated goto graphs connected by failure

functions. Scanning of an input string is equivalent to
traversal of the goto graphs.

III. One Regular Expression with a Single Operator
Let us start with the simplest case of adding one regular

expression RE1 with only one *, ?, or {min, max} operator to
the given goto graph G.

III.A * Operator
It is clear that the * operator can be omitted for our

application if it appears at the first or the last position of a
regular expression. Therefore, the simplest regular
expression with a single * operator is s1*s2, where s1 and s2 are
non-empty strings. The following procedure is performed to
construct a valid pattern matching machine for W =
W ∪ RE1.
1. Duplicate the goto graph G and let NR denote the start

state of the duplicated graph D.
2. Extend G with string s1s2. Let r denote the first symbol

of s1. Note that g(R, r) is changed if originally g(R, r) =
R. Denote by Q the state represented by s1. Let the
extended graph be denoted by G'.

3. Extend the duplicated graph D with string s2 and let the
resulting graph be denoted by D'. Let r represent the
first symbol of s2. Note that g(NR, r) is changed if
originally g(NR, r) = NR.

4. Extend D' with s1s2. The newly created states in this step
are called virtual states. Let the extended graph be
denoted by D". It is clear that G' is contained in D'', i.e.,
one can find a corresponding state S' in D" for every state
S in G' so that the string representing S' (relative to NR) is
the same as the string representing S (relative to R).

5. Compute independently the failure functions for graphs G'
and D". If, for some state S' in D", f(S') = P' is a virtual
state, then repeatedly apply P' ← f(P') until P' is not a
virtual state and assign f(S') = P'.

6. For every state Q' in G with representing string us1,
modify f(S) for every state S in the sub-tree of Q' by
assigning f(S) = f(S') where S' is the corresponding state in
D" of S in G'. Note that output(S) is updated as
output(S) ∪ { 1RE } if the representing string of S is

1 2us vs .
7. Delete the virtual states, i.e., use graphs G' and D' for

traversal.
Example 1: Construct the pattern matching machine for W
= W ∪ RE1 where W = {abededabc, bedad, cedabc} and
RE1 = ab*edab.

The resulting goto graph G' for W' = W ∪ {abedab} is
shown in Figure 1(a), where ~{a, b, c} means any symbol
which is not a, b, or c. All final states are shown with double
circles. According to step 6, state 8 in G' is a final state
because f(8) = 26' which matches signature RE1. Figure 1(b)
illustrates the resulting goto graph D". States 21' and 22' are
virtual states. Note that although state 19 is not a final state
in G', its corresponding state 19' is a final state in D'. Since
we are interested in finding the first occurrence of signature(s),

1-4244-1251-X/07/$25.00 ©2007 IEEE. 793

Authorized licensed use limited to: National Cheng Kung University. Downloaded on March 5, 2009 at 00:49 from IEEE Xplore. Restrictions apply.

a goto graph can be pruned by deleting all the descendent
states of a final state. For example, state 20' in D" can be
deleted without changing the match result. After pruning, a
state is a final state if and only if (iff) it is a leaf state, i.e., a
state without any descendent state. The failure functions for
graphs G' and D" are presented in Figures 1(c) and 1(d),
respectively. According to step 3, we have g(0',e) = 23'
although g(0,e) = 0.

0
a

 c

 ~{a,b,c}

1
b

2
e

3
d

4

10
e

11

15
e

16
d

17

 b

e
5

d
6

a
7

c
9

d
12

a
13

d
14

a
18

b
19

c
20

21
b

22
a

Q
b

8

R

(a) The goto graph G'.

21'
b

22'
a

 e
23'

d
24'

a
25'

b
26'

0'
a

 c

 ~{a,b,c,e}

1'
b

2'
e

3'
d

4'

10'
e

11'

15'
e

16'
d

17'

 b

e
5'

d
6'

a
7'

c
9'

d
12'

a
13'

d
14'

a
18'

b c
20'

Q

(b) h h

b
8'

19'

NR

(b) The goto graph D".

(c) The failure function of graph G'.

(d) The failure function of graph D".

Figure 1. The pattern matching machine for Example 1.

For convenience, we call state P' with representing string us

a companion state of state P with representing string s. As a
result, every state is a companion state of itself. Moreover, if
state Pk is a companion state of state P, then either Pk is P or
there exist states P1, P2, …,Pk, such that f(Pi) = Pi-1, 1 < i ≤
k, and f(P1) = P. In step 6, we modify the failure and output
functions of every state S in the sub-tree of any companion

state of Q. After the modification, we have f(S) = P, the state
in D' such that the string u representing P is a proper suffix of
the string v representing S and, if string w representing any
other state in D' is a proper suffix of v, then it is a proper suffix
of u. This skill will be used repeatedly in this paper. For
brevity, we say P is the longest proper suffix state of S in D'.
It is worth mentioning that state S in G' becomes a final state if
its representing string is us1vs2 for some strings u and v.

Traversal begins at the start state of graph G'. It stays in
graph D' once it is entered. Moreover, graph D' is entered iff
the failure function is consulted when a state in the sub-tree of
a companion state of Q is visited. We call state Q a
“switching state". The switching state is created because of
the * operator. Since graph D' can only be entered from
states in the sub-tree of a companion state of Q, we know that
s1 has already been matched if D' is entered. In fact, the
signature RE1= s1*s2 is matched iff a state in G' with
representing string us1vs2 is visited or a state in D' with
representing string us2 is visited. Therefore, the
constructed pattern matching machine is valid.

III.B ? Operator

Assume that RE1= s1?s2. The procedure for adding s1?s2 to
G is described below.
1. Extend the goto graph G with s1. Denote by Q the state

represented by s1.
2. Extend the resulting graph from state Q with as2 for all

symbols a in Σ .
3. Determine the failure function for the resulting graph.

The basic idea of the above procedure is to extend the
original goto graph G with s1as2 for all possible symbols a.
In other words, the regular expression s1?s2 is expanded into
strings s1as2 for all possible symbols a. It is not hard to see
that the pattern matching machine constructed with the above
procedure is valid.

III.C {min, max} Operator

Assume that RE1 = s1{min, max}s2. A straightforward
solution of adding RE1 to G is to add s1 ?k s2 to G for all k =
min, …, max, where ?k denotes k repetitions of the ? operator.
However, this solution is likely to create a huge number of
new states if max is a large number. A different approach
which requires much fewer states is presented below.

First graph G is extended with s1. Let Q denote the state
represented by s1 and G' the resulting graph. Compute the
failure function for G'. Some information has to be stored in
state Q to indicate that a {min, max} operator is encountered
when Q is visited. The information is basically a pointer to
the starting location of the remaining part of RE1, i.e., {min,
max}s2. The same information is stored in all companion
states of Q. If a companion state of Q is visited, the traversal
continues on graph G' and a second traversal is forked
specifically to check if the remaining part of signature RE1 can
be matched. The goto graph T for the forked traversal is

i 0 1 2 3 4 5 6 7 8 9 10 11
f(i) -- 0 10′ 11′ 12′ 23′ 24′ 25′ 26′ 15' 0 0

i 12 13 14 15 16 17 18 19 20 21 22
f(i) 0 1 0 0 0 0 1 2 15 13' 2'

i′ 0′ 1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′ 10' 11′
f(i′) -- 0′ 10′ 11′ 12′ 23′ 24′ 25′ 26′ 15′ 0' 23′

i′ 12′ 13′ 14′ 15′ 16′ 17′ 18′ 19′ 20′ 21′ 22' 23′

f(i′) 24′ 25′ 0′ 0′ 23′ 24′ 25′ 26′ 15′ 13′ 2' 0′

i′ 24′ 25′ 26′
f(i) 0′ 1′ 2′

1-4244-1251-X/07/$25.00 ©2007 IEEE. 794

Authorized licensed use limited to: National Cheng Kung University. Downloaded on March 5, 2009 at 00:49 from IEEE Xplore. Restrictions apply.

built with {s2}. A threshold th = max - min is kept and the
next min input symbols are skipped for the forked traversal.
Assume that s2 = a1a2…an. As a result, graph T consists of
n+1 states. Number the states so that state 0 is the start state
and state i is the state represented by a1…ai. A counter ctr,
with initial value 0, is maintained for the forked traversal.
Update ctr = ctr + i – f(i) when the failure function is
consulted in state i. Also, ctr is increased by 1 if state 0 is
the current state and input symbol a≠a1. The scanning ends
iff the original traversal finds a match (on graph G'), the
forked traversal finds a match (on graph T), or the input string
is exhausted. An additional condition for the forked traversal
to end is ctr > th, i.e., no match is found subject to the {min,
max} constraint. Note that the original traversal may
generate multiple forked traversals because the companion
states of Q could be visited multiple times. An example of
adding regular expressions with {min, max} operators to a
goto graph G will be provided in the next section.

IV. Multiple Instances of Operators
In this section, we consider the case of adding multiple

regular expressions RE1, RE2, …, and REn to a goto graph G
built with a set of strings W. Since the ? operator can be
expanded or replaced by the {min, max} operator, we will
focus on multiple instances of * and {min, max} operators.

IV.A Regular Expressions with * Operators Only
Assume that RE1, RE2, …, and REn contain only * operators.

To begin with, let us consider a simple example with only two
instances of * operators RE1 = s1*s2*s3. For this case, the
following procedure is performed to construct the pattern
matching machine.
1. Create two duplicated graphs of G, called D1 and D2, with

start states NR1 and NR2, respectively.
2. Extend G with s1s2s3, D1 with s2s3, and D2 with s3.

Denote the resulting graphs by G', D '
1 , and D '

2 . Let Q1,
Q2 (in graph G'), and P (in graph D '

1) denote, respectively,
the states represented by s1, s1s2, and s2 relative to NR1.

3. Compute the failure functions independently for graphs G',
D '

1 , and D '
2 .

4. For every state S in the sub-tree of a companion state of
Q2 or the sub-tree of a companion state of P, modify f(S)
= P', the longest proper suffix state of S in D '

2 . The
output function output(S) is updated as output(S) ∪
{ 1RE } if the representing string of S is 1 2 3us vs ws . For
every state S in the sub-tree of a companion state of Q1
but not in the sub-tree of any companion state of Q2,
modify f(S) = P', the longest proper suffix state of S in D '

1 .
The output function output(S) is updated as
output(S) ∪ { 1RE } if the representing string of S is

2 3us vs .

Note that there are two switching states Q1 and Q2 in G' and
one switching state P in D '

1 . We say these switching states
are contributed by and belong to RE1. Moreover, P is said to

be a sibling switching state of Q2 since they are created by the
same * operator.

The basic idea of the above construction procedure is to
distinguish three different conditions: both Condition 1 and
Condition 2 are false (graph G'); Condition 1 is true and
Condition 2 is false (graph D '

1); and both Condition 1 and
Condition 2 are true (graph D '

2). Here Condition 1
represents the failure function is consulted in some state S
which is in the sub-tree of a companion state of Q1 and
Condition 2 means the same except that state S is in the
sub-tree of a companion state of Q2 or the sub-tree of a
companion state of P. Let FQi (i = 1, 2) be the flag
associated with switching state Qi. We set FQi = 1 iff
Condition i is true. As a result, the three conditions
correspond to (FQ1, FQ2) = (0, 0), (1, 0), and (1, 1). We call
any combination of (FQ1, FQ2) a configuration of the pattern
matching machine. It is clear that not all configurations are
possibly to appear during traversal. For example,
configuration (0,1) never appears because FQ2 = 1 implies
FQ1 = 1 since Q2 is in the sub-tree of Q1. We say a
configuration is feasible if it is possible to appear during
traversal.

According to the construction procedure, each graph is
extended with some suffix of s1s2s3. The original goto graph
is extended with s1s2s3 and the output function of some states
are modified so that it can be used to match strings in W' =
W ∪ {s1s2s3} ∪ {u1s1u2s2u3s3 | at least one of u1, u2, and u3 is
not empty and u1s1u2s2u3s3 is a prefix of some string in W}.
Graph D1 is extended with s2s3 and the output function of
some states are modified so that it can be used to match strings
in W'' = W ∪ {s2s3} ∪ {us2vs3 | at least one of u and v is not
empty string and us2vs3 is a prefix of some string in W}.
Finally, graph D2 is extended with s3 and therefore can be used
to match strings in W''' = W∪ {us3 | u is an empty string or us3
is a prefix of some string in W}. As a consequence, the
constructed pattern matching machine is valid.

The construction procedure can be generalized to the case
with an arbitrary number of * operators. Assume that there
are m * operators in the set of n regular expressions RE1,
RE2, …, and REn. We call the string derived from REk by
removing all the * operators SREk (string REk). The original
goto graph G is extended with SREk, 1 ≤ k ≤ n, and the
resulting graph is called G'. Let Q1, Q2, …, and Qm be the
switching states in graph G'. We say two switching states Qi
and Qj are identical if u = v where u and v are the strings
representing states Qi and Qj, respectively. When this
happens, Qi and Qj can be merged into one switching state.
Assume that there are M (M ≤ m) distinct switching states,
denoted by Q1, Q2, …, and QM, after merging identical ones.
Note that a switching state may belong to multiple regular
expressions because of the merging process. Denote by FQi
the flag associated with switching state Qi. There are
obviously 2M possible combinations of (FQ1, FQ2, …, FQM)
and each combination represents a configuration. A
configuration is infeasible iff FQi = 0, FQj = 1 and Qj is in the

1-4244-1251-X/07/$25.00 ©2007 IEEE. 795

Authorized licensed use limited to: National Cheng Kung University. Downloaded on March 5, 2009 at 00:49 from IEEE Xplore. Restrictions apply.

sub-tree of Qi. If there are H feasible configurations
(including the all-zero one), then the original goto graph G is
duplicated H-1 times and each graph is extended with some
suffix of SREk (1 ≤ k ≤ n) so that each resulting graph
corresponds to a feasible configuration.

We need to determine what suffix of SREk, 1 ≤ k ≤ n, is
extended in D which corresponds to feasible configuration
(FQ1, FQ2 …, FQM). Graph D is extended with SREk if FQi
= 0 for every Qi belonging to REk. If there is at least one
switching state belonging to REk with its associated flag set,
then we need to find the switching state Ql belonging to REk
which satisfies FQl = 1 and Ql is in the sub-tree of Qi for every
switching state Qi belonging to REk with FQi = 1. Once Ql is
determined, graph D is extended with SRE '

k , where SRE '
k is

the proper suffix of SREk which satisfies SREk = uSRE '
k and u

is the string representing state Ql. The resulting graph after
extension is denoted by D'. Note that there is a sibling
switching state of Qi in graph D if FQi = 0 in the feasible
configuration corresponding to graph D.

The failure functions are first computed independently for
all graphs. Some modifications are necessary. Consider
state S in a specific graph D'. If state S is in the sub-tree of a
companion state of some switching state Q, we modify f(S) =
P, the longest proper suffix state of S in the graph
corresponding to the new feasible configuration. The new
feasible configuration has FQi = 1 if originally FQi = 1 or FQi
= 0 and S is in the sub-tree of a companion state of Qi.

Traversal begins at the start state of graph G'. It switches
to another goto graph corresponding to the new feasible
configuration when failure occurs and the failure changes
configuration. The traversal ends iff a match is found or the
input string is exhausted.

IV.B Regular Expressions with {min, max} Operators

Assume that, in addition to * operators, there are {min, max}
operators contained in RE1, RE2, …, and REn as well. A
regular expression which contains at least one {min, max}
operator is fragmented by the {min, max} operators. For
example, regular expression RE = s1*s2*s3{min1,
max1}s4*s5{min2, max2}s6 is fragmented into re1 = s1*s2*s3, re2
= s4*s5, and re3 = s6. As in previous sections, we assume that
the goto graph G built with W is given. To handle RE1,
RE2, …, and REn, we collect all regular expressions without
any {min, max} operator and the first fragment of every
regular expression with at least one {min, max} operator.
The collection of regular expressions and first fragments are
added to graph G with the procedure presented in the last
section. Note that, unlike a regular expression, the first
fragment re1 does not make the state in any graph represented
by sre1 (string re1) or any proper suffix of sre1 a final state.
Let G' denote the resulting graph.

The remaining fragments of a regular expression with {min,
max} operators can then be added to G' one by one.
Consider the regular expression RE = s1*s2*s3{min1,
max1}s4*s5{min2, max2}s6 as an example. The first fragment

re1 has been added to G to obtain G'. Since re1 contains two
* operations, it contributes in G' two switching states called Q1
and Q2. Some information is stored in the companion states
of S represented by u1s1u2s2u3s3 to guide a forked traversal to
the starting location of the second fragment re2. Similarly,
for any graph D1 which corresponds to a feasible configuration
with FQ1 = FQ2 = 0, the same information is stored in all
companion states of S represented by u1s1u2s2u3s3. Consider
a graph D2 with corresponding configuration satisfying FQ1 =
1 and FQ2 = 0. The same information is stored in the
companion states of S represented by us2vs3. Finally, for any
graph D3 with corresponding configuration satisfying FQ1 =
FQ2 = 1, the same information is stored in the companion
states of S represented by us3. To summarize, the
information is stored in every state which finds a match of re1.
In general, if the first fragment contains K * operators, i.e., re1
= s1*s2*…*sK+1, then it will contribute K switching states in G',
called Q1, Q2, …, and QK, such that Qi is in the sub-tree of Qi-1,
1<i ≤ K. Some information is stored in every state which
finds a match of re1 to guide a forked traversal to the starting
location of the second fragment.

Now consider the processing of the second fragment re2.
The construction procedure for re2 is simply to add re2 to the
goto graph built with an empty string. For our example, the
result consists of a goto graph T1 build with {s4s5} which
contains a switching state Q represented by s4 and another
goto graph T2 built with {s5}. Let P4 and P5 be the states
represented by s4s5 and s5 relative to the start states of T1 and
T2, respectively. The failure functions for graphs T1 and T2
are computed first independently and then modified for states
in the sub-tree of P4. Information is stored in states P4 and P5
to guide another forked traversal to the starting location of the
third fragment re3. For convenience, we call states P4 and P5
terminal states of the second fragment re2. The maintained
counter ctr1 is increased by one if the current state is the start
state of graph T1 and it returns to the same state after an input
symbol is processed. Assume that the failure function is
consulted in state S. If S is not in the sub-tree of Q, then ctr1
is updated as ctr1 = ctr1 + |u| - |v|, where u and v are the strings
representing states S and f(S), respectively, and |z| denotes the
length of string z. If state S is in the sub-tree of Q, then ctr1
is updated as ctr1 = ctr1 + |u| - |v| - |w|, where u, v, and w are
the strings representing states S, Q, and f(S), respectively. In
this case, the traversal continues on graph T2 if the updated
ctr1 is smaller than or equal to th1= max1 - min1. In general, if
the second fragment contains (K-1) * operators, i.e., re2 =
s1*s2*…*sK, then K graphs, T1, T2, …, and TK, are required
such that Ti is constructed with {sisi+1…sK}. Note that there
are K-i switching states, denoted by Q1, Q2, …, and QK-i, in
graph Ti. For the traversal on graph Ti, ctr1 is increased by
one if the current state is the start state of Ti and it returns to
the same state after an input symbol is processed. If the
failure function is consulted in state S which is not in the
sub-tree of any switching state, then ctr1 is updated as ctr1 =
ctr1 + |u| - |v|, where u and v are, respectively, the strings

1-4244-1251-X/07/$25.00 ©2007 IEEE. 796

Authorized licensed use limited to: National Cheng Kung University. Downloaded on March 5, 2009 at 00:49 from IEEE Xplore. Restrictions apply.

representing states S and f(S), and the traversal continues on
graph Ti if ctr1 ≤ th1. If state S is in the sub-tree of Qj but
not in the sub-tree of Qj+1, then ctr1 is updated as ctr1 = ctr1 +
|u| - |v| - |w|, where u, v, and w are the strings representing
states S, Qj, and f(S), respectively,. In this case, the traversal
continues on graph Ti+j if ctr1 ≤ th1. Note that if the state
represented by sisi+1…sK (a terminal state of re2) is visited,
then a forked traversal is created. The above construction
procedure and traversal can be applied to any remaining
fragment other than the last fragment.

Let us consider the construction procedure for the last
fragment. In our example, since re3 is a string, we need only
build a goto graph T3 with {s6}. Let F denote the state
represented by s6 relative to the start state of T3. The failure
function for graph T3 is computed independently. The
signature RE is matched iff state F is visited. Again, if the
last fragment contains (K-1) * operators, i.e., re3 = s1*s2*…*sK,
then K graphs, T1, T2, …, and TK, are required such that Ti is
constructed with {sisi+1…sK}. State F in graph TK
represented by sK is the only final state for RE.
Example 2: Construct the pattern matching machine for W
= W ∪ RE1 ∪ RE2, where W = {abededbc, bedad, cedabc}
and RE1 = ab*edab, RE2 = abe{3, 5}d*ca{2,6}bd.
 Figure 2 shows the resulting goto graphs. If x =
cabebdabedaacafabde, then “abebdabedaacababd” is identified
when the last “d” is processed. Note that a forked traversal is
created when the first “e” is processed and another forked
traversal is created when the second “e” is processed. The
first forked traversal finds the match and the second forked
traversal ends when “f” is processed.

a

 c

 ~{a,b,c}

 FQ=0

b e d

e

e d

 b

e d b c

d a d

a b c

ba

Q

{3,5}

() Th h G'
(a) The goto graph G'.

a

 c

 ~{a,b,c}
b a d

a b

d a

 b

c

c b

 d a

 d

FQ1=0
FQ2=1

(b) The goto graph D'.

d ~{d} c a
{3,5}

{2,6}

P

c ~{c} a

{2,6}

(c) The goto graph for the second fragment of RE2.

b ~{d} d
{2,6}

(d) The goto graph for the third fragment of RE2.

Figure 2. The goto graphs for Example 2.

V. Conclusion
We have presented in this paper a systematic approach to

construct the finite state pattern matching machine for a set of
strings together with some simple regular expressions. Like
the Aho-Corasick algorithm, our proposed construction
procedure yields a pattern matching machine dictated by three
functions, namely, the goto, failure, and output functions.
The difference is that our constructed pattern matching
machine may consist of multiple separated goto graphs
connected by failure functions. Theoretically, there could be
a large number of forked traversals for a regular expression
which consists of multiple {min, max} operators. In practice,
there should not be a larger number of forked traversals for
clean traffic, as long as the first fragment is sufficiently long.
Therefore, in real applications, one can set a limit, say 8, on
the number of concurrent forked traversals for each traffic
flow. Comparison of the performance of our proposed
pattern matching machine with that of the ClamAV
implementation will be reported in a future paper.

References
[1] Clam anti virus signature database, www.clamav.net.
[2] D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern

matching in strings,” TR CS-74-440, Stanford
University, Stanford, California, 1974.

[3] R. S. Boyer and J. S. Moore, “A fast string searching
algorithm,” Communications of the ACM, Vol. 20,
October 1977, pp. 762-772.

[4] A. V. Aho and M. J. Corasick, “Efficient string
matching: an aid to bibliographic search,”
Communications of the ACM, Vol. 18, June 1975, pp.
333-340.

[5] S. E. Schechter, J. Jung, and A. W. Berger, "Fast
detection of scanning worm infections." 7th
International Symposium on Recent Advances in
Intrusion Detection, French Riviera, September 2004.

1-4244-1251-X/07/$25.00 ©2007 IEEE. 797

Authorized licensed use limited to: National Cheng Kung University. Downloaded on March 5, 2009 at 00:49 from IEEE Xplore. Restrictions apply.

