
Journal of Embedded Computing 3 (2007/2009) 99–107 99
DOI 10.3233/JEC-2009-0083
IOS Press

FPGA-based ROM-free network intrusion
detection using shift-OR circuit

Wen-Jyi Hwanga,∗, Huang-Chun Roana, Ying-Nan Shiha, Chia-Tien Dan Lob and Chien-Min Ouc

aDepartment of Computer Science and Information Engineering, National Taiwan Normal University, Taipei, 117,
Taiwan
bDepartment of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249, USA
cDepartment of Electronics Engineering, Ching Yun University, Chungli, 320, Taiwan

Abstract. This paper introduces a novel FPGA-based signature match co-processor that can serve as the core of a hardware-based
network intrusion detection system (NIDS). The co-processor is based on simple shift registers and bitmap encoders for the
efficient signature match in hardware. As compared with related work, experimental results show that the proposed work achieves
higher throughput and less hardware resource in the FPGA implementations of NIDS systems.

Keywords: Network intrusion detection system, FPGA implementation, pattern matching, Shift-Or algorithm, string searching.

1. Introduction

Due to increasing number of network worms and
virus, network users are vulnerable to malicious at-
tacks. A network intrusion detection system (NIDS)
provides an effective security solution to the network
attacks. It monitors network traffic for suspicious
data patterns and activities, and informs system ad-
ministrators when malicious traffic is detected so that
proper actions may be taken. Many NIDSs such as
SNORT [11] prevent computer networks from attacks
using pattern-matching rules. The computational com-
plexity of NIDSs therefore may be high because of the
requirement of the string matching during their detec-
tion processes.

The software-based SNORT systems may only
achieve up to 60 Mbps [7] throughput because of the
high computational complexity. Since these systems
do not operate at line speed, some malicious traffic can
be dropped and thus may not be detected. To accelerate

∗Corresponding author: Department of Computer Science and In-
formation Engineering, National Taiwan Normal University, No. 88,
Sec.4, Ting-Chow Rd, Taipei, 117, Taiwan. Tel.: +886 2 2932 2411
201; Fax: +886 2 2932 2378; E-mail: whwang@ntnu.edu.tw.

the speed for intrusion detection, several FPGA-based
approaches have been proposed [4,5,7,9,10]. FPGA-
based reconfigurable hardware can be programmed al-
most like software, maintaining the most attractive ad-
vantage of flexibility with less cost than traditional
ASIC hardware implementation. Moreover, the FPGA
hardware implementation can exploit parallelism for
string matching so that the throughput of NIDSs can be
increased.

The approach based on regular expressions [5,6] has
been found to be effective for the FPGA implementa-
tion of SNORT rules. It results in designs with low
area cost and moderate throughput acceleration. A reg-
ular expression is generated for every pattern in this
approach. A nondeterministic finite automata (NFA)
or a deterministic finite automata (DFA) is then used
to implement each regular expression. In the finite au-
tomata implementations, efficient exploitation of par-
allelism is difficult because the input stream is scanned
one character at a time. Another alternative for FPGA
implementation is to use the content addressable mem-
ory (CAM) [4,10]. By the employment of multiple
comparators in the CAM, the processing of multiple
input characters per cycle is possible. This may effec-
tively increase the throughput at the expense of higher
area cost.

ISSN 1740-4460/07-09/$17.00  2007/2009 – IOS Press and the authors. All rights reserved

100 W.-J. Hwang et al. / FPGA-based ROM-free network intrusion detection using shift-OR circuit

Our goal is to present a novel FPGA implementation
approach for NIDSs achieving both high throughput
and low area cost. The proposed architecture is based
on the shift-or algorithm for exact string matching [1].
The shift-or algorithm is an effective software approach
for pattern matching because of its simplicity and flexi-
bility. However, it may not perform well when the pat-
tern size is larger than the computer word size, which
is the case for many SNORT patterns. Accordingly, the
software implementation of shift-or algorithm may not
be suited for SNORT systems.

The proposed architecture uses only simple shift reg-
isters and bitmap encoders for the hardware implemen-
tation of shift-or algorithm. It imposes no limitation on
the pattern size. In the architecture, each SNORT pat-
tern is only associated with a shift register for pattern
comparison, which are designed in accordance with the
pattern size. In addition, different rules may also share
the same bitmap encoder to reduce the area cost for
FPGA implementation.

Because of its simplicity, the architecture may oper-
ate at a higher clock rate as compared with other imple-
mentations. The area cost may also be lower than the
existing designs [4,10]. Moreover, although the pro-
posed architecture in its simplest form only processes
one character at a time, the architecture can be extended
to further enhance the throughput of the circuit. Mul-
tiple characters can be scanned and processed in one
cycle at the expense of slight increase in area cost.

The proposed architecture has been prototyped and
simulated by the Altera Stratix FPGA. Experimental
results reveal that the circuit attains the throughput up
to 6.75 Gbits/sec with area cost of 0.70 LE per charac-
ter. The proposed architecture therefore is an effective
solution to high throughput and low area cost NIDS
hardware design.

2. Preliminaries

We briefly review the shift-or algorithm for ex-
act string matching in this section. Suppose P =
p1p2 . . . pm is a pattern to be searched inside a large
text (or source) T = t1t2 . . . tn, where n � m. Ev-
ery character of P and T belongs to the same alphabet
Σ = {s1, . . . , s|Σ|}.

Let Rj be a bit vector containing information about
all matches of the prefixes of P that end at j. The
vector contains m + 1 elements Rj [i], i = 0, . . . , m,
where Rj [i] = 0 if the first i characters of the pattern
P match exactly the last i characters up to j in the text

(i.e., p1p2 . . . pi = tj−i+1tj−i+2 . . . tj). The transition
from Rj to Rj+1 is performed by the recurrence:

Rj+1[i] =
{

0, if Rj [i − 1] = 0 and pi = tj+1,
1, otherwise,

(1)

where the initial conditions for the recurrence are giv-
en by R0[i] = 1, i = 1, . . . , m, and Rj [0] = 0, j =
0, . . . , m. The recurrence can be implemented by the
simple shift and OR operations. To see this fact, we
first associate each symbol sk ∈ Σ a bit vector Sk

containing m elements, where the i-th element Sk[i] is
given by

Sk[i] =
{

0, if sk = pi,
1, otherwise.

(2)

Assume tj+1 = sc. Based on Eq. (2), the recurrence
shown in Eq. (1) can then be rewritten as

Rj+1[i] = Rj [i − 1] OR Sc[i], i = 1, . . . , m. (3)

We can clearly see now the transition from Rj to Rj+1

involves to no more than a shift of Rj and an OR
operation with Sc, where tj+1 = sc. Figure 1 shows
an example of the exact string matching based on the
shift-or algorithm, where P = aab and Σ = {a, b, c}.
The bit vector Sk associated with each sk ∈ Σ, which
is determined by Eq. (2), is given in Fig. 1(a). In this
example, T = acaab. Therefore, sc = a, c, a, a and b

for j = 1, 2, 3, 4 and 5, respectively. The Sc associated
with sc for each j can be found from the table shown in
Fig. 1(a). Given Sc and Rj−1, the Rj can be computed
by Eq. (3), as shown in Fig. 1(b). Note that, when
j = 5, it can be found from Fig. 1(b) that Rj [3] = 0.
Therefore, one occurrence of P is found when j = 5.

3. The architecture

The proposed architecture for SNORT pattern
matching is shown in Fig. 2. The architecture contains
M modules, where M is the number of SNORT rules
for intrusion detection. The incoming source is first
broadcasted to all the modules. Each module is respon-
sible for the pattern matching of a single rule. The en-
coder in the architecture receives the intrusion alarms
issued by the modules detecting matched strings, and
transfers the alarms to the administrators for proper
actions.

W.-J. Hwang et al. / FPGA-based ROM-free network intrusion detection using shift-OR circuit 101

Fig. 1. An example of shift-or algorithm with pattern P = aab and text T = acaab, (a) The bit vector Sk associated with each symbol
sk ∈ Σ = {a, b, c } for the pattern P , (b) The bit vector Rj for the text T , where one occurrence of P is found (encircled).

Fig. 2. The basic structure of the proposed circuit, where M is the number of rules implemented by the circuit.

Fig. 3. The basic circuit of each module for exact pattern matching, (a) The block diagram of the circuit, (b) The shift register circuit during clock
cycle j + 1.

3.1. Basic module circuit

A direct hardware implementation of shift-or algo-
rithm is shown in Fig. 3 [8], where each module con-
tains a ROM and a shift register. There are |Σ| entries
in the ROM. The k-th entry of the ROM contains the
m-bit vector Sk, where m is the size of the pattern as-
sociated with the module. The shift register consists of
m−1 flip-flops (FFs) and m OR gates. Based on the bit
vectors Sk, k = 1, . . . , |Σ|, provided by the ROM, the
objective of the shift register is to perform the shift-or
operation shown in Eq. (3).

The module operates by scanning the source string
one character at a time. Therefore, after the clock cycle
j, the circuit completes the string matching process
up to tj . Moreover, the character tj+1 is the input
character to the module during the clock cycle (j + 1).
Assume tj+1 = sc. The input character tj+1 is first
delivered to the ROM for the retrieval of Sc to the OR
gates. Each OR gate i has two inputs: one is from the
i-th output bit of the ROM (i.e., Sc[i]), and the other is
from the output of FF (i−1), which contains Rj [i−1]
during the clock cycle j + 1. From Eq. (3), it follows
that the OR gate i produces Rj+1[i], which is then used
as the input to the FF i. The Rj+1[i] therefore will

102 W.-J. Hwang et al. / FPGA-based ROM-free network intrusion detection using shift-OR circuit

Fig. 4. The shift-or circuit based on a bitmap encoder.

become the output of FF i during the clock j + 2 for
the subsequent operations.

Note that, during the clock cycle j + 1, the m-th
OR gate produces Rj+1[m], which is identical to 0
when p1p2 . . . pi = tj−itj−i+1 . . . tj+1. In this case,
the module will issue an intrusion alarm to the encoder
of the NIDS system. Therefore, the output of the OR
gate m is the check point of exact string matching with
pattern size m.

Although the direct implementation is simple, it has a
number of drawbacks. When the ROM is implemented
by the LEs, the area cost may be high when the alphabet
size |Σ| is large. The ROM can be realized by the
embedded memory bits. However, the memory bits
may operate at slower speed as compared with the LEs.
For example, the maximum clock rate of the embedded
memory M4K of Altera Stratix 1S40 is only 320 MHz;
whereas, the maximum operating frequency of LEs of
Altera Stratix 1S40 is 420 MHz. Therefore, the ROM
implemented by embedded memory bits may become
the bottleneck of the systems’s throughput. In addition,
the same ROM cannot be shared by different rules. The
consumption of embedded memory bits will be high
for the circuits containing large number of Snort rules.

3.2. Module circuit based on bitmap encoder

In the proposed circuit, the shift-or circuit is imple-
mented without ROMs. Therefore, no embedded mem-
ory bits are required, and higher operating frequencies
can be attained. The ROMs are replaced by a simple
bitmap encoder, which can be shared by different rules.
Consequently, the proposed circuit is well suited for the

implementation of systems containing large number of
Snort rules.

The bitmap encoder has |Σ| bits output. When the
symbol sk is presented at the input, only the k-th bit
output of the encoder will be set to zero while the others
are set to one. Given a pattern P = p1p2 . . . pm, the
simple bitmap encoder can be used to obtain the bit
vectors Sk for each symbol sk ∈ |Σ|.

Figure 4 depicts the proposed circuit based on the
bitmap encoder. As shown in the figure, the circuit
contains only the bitmap encoder and a shift register.
The shift register also consists of m − 1 FFs and m
OR gates. Similar to the ROM-based module, each OR
gate i also has two inputs, and the first one is connected
to the output of FF (i − 1). However, the second input
is connected to the outputs of the bitmap encoder. The
connection is dependent on pi, the i-th character of the
pattern P . When pi = sk, we connect the second input
of OR gate i to the k-th output of the bitmap encoder.
Define the function f(pi) = k if pi = sk. Therefore,
as shown in Fig. 4, the second input of the OR gate i is
connected to the f(pi)-th output of the bitmap encoder.

Let Ik = {i : f(pi) = k}. Consequently, when
sk is presented at the input of the bitmap encoder, all
the OR gates having index i ∈ Ik receives 0 from the
bitmap encoder, while the others receive 1. Based on
Eq. (2), we conclude that each OR gate i obtains Sk[i]
from the bitmap encoder when the input symbol is sk.
That is, the bitmap encoder can replace the ROM for
hardware shift-or implementation.

Figure 5 shows a simple example of the proposed
circuit for the pattern P = aadc and Σ = {a, b, c, d}.
In this example, since there are only four symbols, the

W.-J. Hwang et al. / FPGA-based ROM-free network intrusion detection using shift-OR circuit 103

Bitmap
Encoder

2

FF_1

OR1 OR2 OR4OR3

a
b
c
d

FF_2 FF_3

0

Input Pattern 1
0011
1111
1110
1101

a
b
c
d

(b)

(a)

Fig. 5. A simple example of the proposed circuit for the pattern aadc and the total symbol a, b, c, d, (a)The architecture (b)Table of the pattern.

Bitmap
Encoder

2 a
b
c
d

Pattern 1 Pattern 2 Pattern 3

Input Pattern 1
0011
1111
1110
1101

a
b
c
d

Pattern 2
111
011
110
101

Pattern 3
1101
1111
1110
0011

(a)

(b)

Fig. 6. An example of three patterns (aadc, bdd and ddac) share the same bitmap encoder, (a)The architecture (b)Table of three patterns.

bitmap encoder has four outputs. We set a = s1, b =
s2, c = s3 and d = s4. Because p1 = p2 = a, we
have f(p1) = f(p2) = 1. Both the OR1 and OR2
are connected to the first output of the bitmap encoder.
Moreover, based on the facts that p3 = d and p4 = c,
we connect the OR3 and OR4 to the 4th and 3rd outputs
of the bitmap encoder, respectively. The shift register
therefore can receive bit vectors 0011 (i.e., S1), 1111
(i.e., S2), 1110 (i.e., S3) and 1101 (i.e., S4) when sym-
bols a, b, c and d are the input symbols, respectively.

One advantage of using the bitmap encoder is that
the encoder is independent of the pattern P . Only the
connection between the encoder and shift register is
dependent on P . Consequently, different Snort rules
can share the same bitmap encoder. An example of
three patterns (aadc, bdd and ddac) sharing the same
bitmap encoder is shown in Fig. 6, where we set Σ =
{a, b, c, d}.

To implement the bitmap encoder, we first note that
each ASCII character in a Snort rule contains 8 bits.

Therefore, |Σ| = 256 and the bitmap encoder contains
256 outputs for pattern matching. The area complexity
of bitmap encoder can be reduced by observing the
fact that some symbols sk in the alphabet Σ may not
appear in the pattern P . These symbols then can share
the same output in the bitmap encoder for complexity
reduction. One simple way to accomplish this is to
augment a new symbol s0 in the alphabet Σ. All the
symbols sk having Sk = 1 are then mapped to s0 by
a symbol encoder as shown in Fig. 7. These symbols
then shared the same output associated with s0 in the
bitmap encoder.

Although using the symbol encoder can reduce the
area cost of bitmap encoder, when rules have different
sets of unused symbols, the sharing of symbol encoder
and bitmap encoders by different rules may be difficult.
One way to solve this problem is to first divide the
Snort rules into several groups, where the rules in each
group use the same set of symbols. All the rules in

104 W.-J. Hwang et al. / FPGA-based ROM-free network intrusion detection using shift-OR circuit

Fig. 7. The increase of a symbol encoder for reducing the bitmap encoder size. In this example, each input character is assumed to be an ASCII
code (8 bits). We also assume the Snort rule uses only 7 symbols in the alphabet. The output of the symbol encoder is 3 bits.

Fig. 8. The sharing of the same symbol encoder and bitmap encoder by three different Snort rules. Each character is also assumed to be an
ASCII. All the Snort rules use the same alphabet comprised of 7 symbols.

the same group can then share the same symbol and
bitmap encoders, as shown in Fig. 8. The overhead for
the realization of encoders then can be reduced.

3.3. High throughput module circuit

The basic module circuit shown in Fig. 3 only pro-
cess one character per cycle. The throughput of the
NIDS system can be improved further by processing
q characters at a time. This can be accomplished by
grouping q consecutive characters in the source into a
single symbol. Without loss of generality, we consider
q = 2. Let Ω = {x1, . . . , x|Ω|} be the alphabet for the
new symbols, where xi = (y1, y2), and y1, y2 ∈ Σ.

Based on Ω, a pattern P can be rewritten as P =
u1u2 . . . u�m/2�, where ui = (p2i−1, p2i). Note that
u�m/2� = (pm−1, pm) when m is even. However,
when m is odd, u�m/2� = (pm, φ), where φ denotes
“don’t care,” and can be any character inΣ. We can then
associate a bit vector Xk containing �m/2	 elements
for each symbol xk ∈ Ω, where the i-th element of Xk

is given by

Xk[i] =
{

0, if xk = ui,
1, otherwise.

(4)

A bitmap encoder providing X1, . . . , X|Ω| can then be
constructed for shift-or operations. In this case, the
bitmap encoder contain |Ω| = |Σ|2 outputs, where each
output i will be set to 0 when the symbol xi is presented
at the input. It is therefore necessary to employ a larger

bitmap encoder for a module with higher throughput.
A symbol encoder similar to that shown in Fig. 7 can be
employed to reduce the complexity of bitmap encoder.
In this case we augment a new symbol x0 (with X0 =
1) in the alphabet Ω. All the symbols xk having Xk =
1 are then mapped to x0 by the symbol encoder.

Note that the string matching operations ending at
j over the alphabet Ω is equivalent to the operations
ending at either 2j or 2j + 1 (but not both) over the
alphabet Σ. It is necessary to perform the matching
process ending at every location of the source over the
alphabet Σ. Therefore, we employ two shift registers
in the module as shown in Fig. 9, where one is for even
locations, and the other is for odd locations.

Moreover, since the pattern P in this case contains
�m/2	 symbols, the shift registers with �m/2	−1 FFs
and �m/2	 OR gates are sufficient for the operations.
Therefore, the total number of FFs in the high through-
put circuit is 2�m/2	− 2, which is less than that in the
basic circuit presented in the previous subsection.

To perform the string matching operations ending at
the even locations of the source over Σ, we convert the
source T to the sequence Te = e1e2 . . . over alphabet
Ω, where ej = (t2j−1, t2j). During the clock cycle
j + 1, symbol ej+1 is fetched to the symbol encoder.
This is equivalent to the scanning of two characters
t2j+1 and t2j+2 simultaneously for shift-or operations.

The shift-or operations at the odd locations of the
source can be performed in the similar manner, except
that the source T is extracted as To = o1o2 . . . , where
oj = (t2j , t2j+1). During the clock cycle j + 1, we

W.-J. Hwang et al. / FPGA-based ROM-free network intrusion detection using shift-OR circuit 105

Shift Register

Symbol
Encoder

Symbol

Delay

Encoder

2 1jt
++++

2 2jt
++++

Output

2 jt

Bitmap
Encoder

W

Shift Register

Bitmap
Encoder

W

Fig. 9. The structure of a high throughput module circuit processing two characters at a time (q = 2) with the bitmap encoder.

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

2000 4000 6000 8000

LE
 p

er
 C

ha
ra

ct
er

Number of Characters

ROM-based Architecture
Bitmap Encoding Architecture

0

100

200

300

400

500

2000 4000 6000 8000

O
pe

ra
tin

g
F

re
qu

en
cy

 (
M

H
z)

Number of Characters

ROM-based Architecture
Bitmap Encoding Architecture

(a) (b)

Fig. 10. The performance of the ROM-based and bitmap encoding circuit with q = 1 for various rule sets sizes ranging from 500 characters to
8000 characters (a) LE per character (b) Operating Frequency.

scan the symbol oj . From Fig. 9, we observe that oj can
be obtained from ej and ej+1 via delaying and broad-
casting operations. Therefore, the shift-or operations at
even and odd locations share the same input as shown
in the figure.

4. Experimental results and comparisons

Figure 10 shows the average number of LEs per char-
acter and operating frequency of the proposed circuit
with q = 1 for various rule sets with sizes ranging from
200 characters to 8000 characters. In this experiment,
both the symbol encoder and bitmap encoder are shared
by different rules for reducing the area cost for the FP-
GA implementation. In addition to the proposed cir-
cuit, the ROM-based shift-or circuit [8] is considered in
the figure for comparison purpose. In the ROM-based
circuit, the symbol encoder and ROM are also shared
by different rules. We use the Altera Quartus II as the
tool for circuit synthesization. The target FPGA device
is Stratix EP1S40.

From Fig. 10, it can be observed that the operating
frequency of the proposed circuit is stable over a wide
range of rule set sizes. Moreover, the average number
of LEs per characters decreases as the size of rule set
increases. This is because the area overhead for imple-
menting the symbol encoder reduces as the number of
rules sharing the encoder increases. In addition, similar
rules may share the same portion of a shift register.

Given the same size of rule set, it can be observed
from Fig. 10 that the proposed architecture has higher
operating frequency as compared with the ROM-based
architecture. The proposed architecture has faster oper-
ating frequency because it contains no embedded mem-
ory. In many FPGA devices such as Stratix EP1S40,
the embedded memory operates at slower clock rate
as compared with the usual LEs. In addition, circuits
containing only LEs may provide higher flexibility for
the place and route optimization as compared with the
circuits consisting of both the LEs and embedded mem-
ory blocks. Consequently, the proposed architecture
has lower area complexity as shown in Fig. 10.

106 W.-J. Hwang et al. / FPGA-based ROM-free network intrusion detection using shift-OR circuit

Table 1
Comparisons of various string matching FPGA designs, where the number of characters available for
pattern matching is 1568 characters

Design Device Throughput Memory Bits LEs Operating
(Gb/s) /char Frequency (MHz)

Proposed Altera
architecture (q = 1) Stratix EP1S40 3.38 0 0.7 422.12
Proposed Altera
architecture (q = 2) Stratix EP1S40 6.75 0 0.7 422.12
ROM-based shift-OR Altera
architecture (q = 2) [8] Stratix EP1S40 5.14 40768 1.09 321.03

Table 2
Comparisons of various string matching FPGA designs.

Design Device Throughput No. characters LEs
(Gb/s) /char

Proposed architecture (q = 1) Altera Stratix EP1S40 3.11 8000 0.53
Proposed architecture (q = 2) Altera Stratix EP1S40 6.75 1568 0.7
Clark-Schimmel [2] Xilinx Virtex2-8000 2.2 7996 1.88
Cho et al. [3] Xilinx Spartan3-2000 3.2 6805 0.9
Gokhale et al. [4] Xilinx VirtexE-1000 2.2 640 15.2
Hutchings et al. [5] Xilinx Vertix-1000 0.248 8003 2.57
Moscola et al. [6] Xilinx VirtexE-2000 1.18 420 19.4
Singaraju et al. [9] Xilinx Virtex2VP30-7 6.41 1021 2.2
Sourdis-Pnevmatikatos [10] Xilinx Spartan33-5000 4.91 18000 3.69

Table 1 shows the throughput, the average number
of LEs per character, total number of memory bits and
operating frequency of the various shift-or circuits with
q = 1 or 2. All the circuits have the same rule set size
1568 characters. In the table, the throughput indicates
the maximum number of bits per second the circuit can
process. As shown in Table 1, because the circuit with
q = 2 processes two characters for each clock cycle,
it has higher throughput than that of the circuit with
q = 1, which processes one character per cycle only.

From Table 1, it can also be observed that, when
q = 2 and rule size 1568 characters, the ROM-based
architecture requires 40768 memory bits for attaining
the throughput 5.14 Gbits/sec and area complexity 1.09
LEs per character. Based on the same q and rule set
size, the proposed architecture consumes no memo-
ry bits for achieving higher throughput 6.75 Gbits/sec
and lower area cost 0.70 LE per character. Therefore,
we conclude that the ROM-based architecture requires
large number of memory bits for the hardware imple-
mentation of shift-or algorithm. By contrast, the pro-
posed architecture attains higher throughput and low-
er average number of LEs per character without the
consumption of memory bits.

Table 2 compares the FPGA implementations of the
proposed architecture with those of the existing related
works. Note that the exact comparisons of the pro-
posed circuits with the related work may be difficult
because they are realized by different FPGA devices.

However, it can still be observed from the table that our
circuits have effective throughput-area performance as
compared with existing work. This is because our de-
sign is based on the simple shift-or algorithm. The sim-
plicity of circuit allows the string matching operations
to be performed at high clock rate with small hardware
area. In fact, with q = 1, the proposed architecture re-
quires lowest average LEs per character. When q = 2,
the proposed architecture also has superior throughput
over the existing architectures. These facts show the
effectiveness of the proposed architecture.

5. Conclusion

A novel FPGA implementation of NIDS systems
based on shift-or algorithm is presented in this paper.
The proposed algorithm in the basic form process one
character at a time, and contain only a ROM and a
simple shift register for each pattern matching. The
throughput can be further enhanced by replacing the
ROM with a simple bitmap encoder, and by processing
multiple characters in parallel. Both the one-character
and two-character at a time of the proposed algorithm
are implemented in our experiments. Comparisons
with existing work reveal that our design is one of the
cost-effective solutions to the FPGA implementations
of the NIDS systems.

W.-J. Hwang et al. / FPGA-based ROM-free network intrusion detection using shift-OR circuit 107

References

[1] R. Baeza-Tates and G.H. Gonnet, A new approach to text
searching, Communications of the ACM 35 (1992), 74–82.

[2] C. Clark and D. Schimmel, Scalable multi-pattern matching on
high speed networks, Proceedings of the IEEE Symposium on
Field- Programmable Custom Computing Machines (2004),
249–257.

[3] Y.H. Cho and W.H. Mangione-Smith, Deep packet filter with
dedicated logic and read only memories, Proceedings of the
IEEE Symposium on Field- Programmable Custom Computing
Machines (2004), 125–134.

[4] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole and
V. Hogsett, Granidt: towards gigabit rate network intrusion
detection technology, Proceedings of the International Con-
ference on Field Programmable Logic and Application (2002),
404–413.

[5] B.L. Hutchings, R. Franklin and D. Carver, Assisting network
intrusion detection with reconfigurable hardware, Proceed-
ings of the IEEE Symposium on Field-Programmable Custom
Computing Machines (2002), 111–120.

[6] J. Moscola, J.W. Lockwood, R.P. Loui and M. Pachos, Im-
plementation of a Content-Scanning Module for an Inter-
net Firewall, Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (2003), 31–38.

[7] T. Ramirez and C.D. Lo, Rule Set Decomposition for Hard-
ware Network Intrusion Detection, in the 2004 International
Computer Symposium (ICS 2004), Dec. 15–17, 2004, Taipei,
Taiwan, 2004.

[8] H.C. Roan, C.M. Ou, W.J. Hwang and C.T.D. Lo, Efficient
Logic Circuit for Network Intrusion Detection, Lecture Notes
in Computer Science 4096 (2006), 776–784.

[9] J. Singaraju, L. Bu and J.A. Chandy, A signature match pro-
cessor architecture for network intrusion detection, Proceed-
ings of the IEEE Symposium on Field-Programmable Custom
Computing Machines (2005), 235–242.

[10] I. Sourdis and D.N. Pnevmatikatos, Pre-decoded CAMs for ef-
ficient and high-speed NIDS pattern matching, Proceedings of
the IEEE Symposium on Field-Programmable Custom Com-
puting Machines (2004), 258–267.

[11] SNORT official web site. http://www.snort.org.

