
Dynamic Traffic Diversion in SDN:
Testbed vs Mininet

Robert Barrett, Andre Facey, Welile Nxumalo, Josh Rogers, Phil Vatcher and Marc St-Hilaire
School of Information Technology

Carleton University, Ottawa, Ontario, Canada
Email: marc st hilaire@carleton.ca

Abstract—In this paper, we first propose a simple Dynamic
Traffic Diversion (DTD) algorithm for Software Defined Net-
works (SDN). After implementing the algorithm inside the con-
troller, we then compare the results obtained under two different
test environments: 1) a testbed using real Cisco equipment and 2)
a network emulation using Mininet. From the results, we get two
key messages. First, we can clearly see that dynamically diverting
important traffic on a backup path will prevent packet loss and
reduce jitter. Finally, the two test environments provide relatively
similar results. The small differences could be explained by the
early field trial image that was used on the Cisco equipment
and by the many setting parameters that are available in both
environments.

Index Terms—SDN, testbed, Mininet, comparison, dynamic
traffic diversion.

I. INTRODUCTION

In traditional switching, the networking device consists of
two planes; the control plane (and a management plane which
is within the control plane) and the data plane. These two
planes are predefined with the capabilities and functions set
out by the vendor for the specific device model. In traditional
switching, both planes are implemented in the firmware of
routers and switches. The control plane provides high level
control and signalling for the switch. It populates, prunes and
updates the routing information base (i.e. the routing table) and
provides information used to build the forwarding table. The
data plane then forwards traffic according to the control plane
logic. The traditional structure has proven to be limiting. The
devices are bound by the capabilities of the software shipped
with the hardware. Thus, there is no room for improvement
without investing in upgraded hardware, which can become
costly in the long run. To overcome these limitations, the
concept of Software Defined Networks (SDN) was introduced.

Software Defined Networking is a new method of designing
and managing networks that is not only dynamic, but also
cost-effective. This makes SDN an ideal solution for today’s
bandwidth hungry applications. The basic concept behind SDN
is simply to separate the network’s control plane from the
data plane. By separating the two, the control plane can then
be managed by a central controller, bypassing any need for
proprietary control of individual devices. The central controller
then allows for direct programming of the network control
plane creating an agile, centrally controlled network. SDN
addresses the main concerns of traditional networking, which
is how does one make a network think and react as one? The

answer is the underlying model of controller-based network-
ing. The centralized controller will have a complete view of
the network, as well as knowledge of all available paths. As
a result, the controller can calculate paths based on a number
of factors, like traffic type and source/destination. Since SDN
does not depend on proprietary software, programmers can
write programs that allow for quick and dynamic optimization
of network resources that can be controlled in the manner
which suites the necessity. The network can be provisioned
to become more scalable, adaptable and less time consuming
to manage. The day when vendor dependence is no longer an
issue is soon approaching.

SDN is a hot topic and a lot of research was done in several
different networking fields. For example, SDN was used in
the area of cellular networks [1], sensor networks [2], optical
networks [3], [4], for the convergence of packet and circuit
switched networks [5], for virtualization [6], etc. However,
when evaluating a new algorithm or a new method relying
on SDN, most researchers rely on a network emulator called
Mininet [7]. Mininet is a widely used tool but how does
it compare to a real SDN testbed implementation? Are the
emulated results going to hold in a real implementation?
This is one of the goals of this paper. After proposing and
implementing a simple Dynamic Traffic Diversion (DTD)
algorithm, we want to compare the results that are obtained
with a real SDN testbed and with Mininet.

The remaining of this paper is organized as follow. Sec-
tion II presents the design of the network topology and how it
was implemented using 1) a real testbed and 2) Mininet. Then,
Section III introduces the dynamic traffic diversion algorithm
that was implemented within the controller. Finally, the results
and analysis are presented in Section IV followed by the
conclusion in Section V.

II. DESIGN AND IMPLEMENTATION

The design of the network topology was dictated by the
number of switches that were available in the lab. Since only
three SDN capable switches were available, we implemented
the topology shown in Figure 1 in two different environments:
1) in a testbed using real Cisco equipment and 2) in Mininet.
For testing purposes, we decided to have hosts connected to
switches 1 and 3, and have two paths between them, which
could be changed dynamically. The goal here was to represent
a real world environment where there would be traffic from

2017 International Conference on Computing, Networking and Communications (ICNC): Network Algorithms and Performance
Evaluation

978-1-5090-4588-4/17/$31.00 ©2017 IEEE

Fig. 1. Network topology used for testbed and Mininet

different applications with different priorities. As an example,
voice/video application traffic is well known to be delay
intolerant compared to web of ftp traffic. If the main Internet
connection for a company is congested, a second backup link
will take the important traffic so the latency and jitter are
kept to a minimum. In order to meet these criteria, it was
determined that the optimal logical topology needed a link
from one switch to each other switch, simulating a short path
and a normally blocked redundant path to prevent looping.
In the sections below, we describe each component in more
details.

A. OpenDaylight Controller

Different open source controllers such as NOX [8] and
POX [9] are available for many platforms and in many pro-
gramming languages. However, for this work, OpenDaylight
(hydrogen) [10] was selected. OpenDaylight is an open source
controller platform implemented strictly in software and is
contained within its own java virtual machine. Because it is
built on Java, it can be used on any operating system that
supports Java. We ran a virtual linux Ubuntu server to host
our controller. The choice of controller was dependent mostly
on the type of equipment we were using on the physical
setup. While OpenDaylight worked seamlessly on our Mininet
environment, we had to do a few tweaks to get it to work with
our Cisco switched environment. Is it important to mention
that the same controller was used to control the testbed and
the Mininet topologies.

B. Testbed Environment

Despite the SDN popularity, it is still difficult to find SDN
compatible hardware. To implement our testbed, we used three
Cisco Catalyst 3650 switches all running an Early Field Trial
(EFT) version of IOS-XE featuring Cisco’s implementation
of OpenFlow. After installing the Cisco plug-in for Open-
Flow [11] on our Cisco 3650’s, we initially configured Open-
Flow [12] protocol 1.3 for functionality and communication

Fig. 2. Openflow configuration for switch 1 from Figure 1

between our switches and the controller. As per documenta-
tion, only protocol version 1.3 was to be supported, yet the
controller had no communication with the switches. We ran
a few tests and switched to version 1.0 which finally seemed
to have connection to the Cisco switches which enabled the
desired functionality.

After connecting the switches together, we needed to con-
figure the switches to connect to the OpenDaylight controller.
As an example, Figure 2 shows the OpenFlow configuration
for switch 1. In addition, with our limits of traffic generation
during testing, we set the bandwidth limit on all of the switch’s
ports to 100 Mbps.

Finally, each of the physical hosts were installed with
Lubuntu as their operating system, as well with an additional
NIC to provide access to both management and user VLANs.
Also, on each host, Iperf [13] was installed for traffic gener-
ation, and gathering measurements for testing and analysis.

C. Mininet Environment

A pre-built Mininet virtual machine was used, which is
available from mininet.org. This was useful as it meant that
our configuration exactly matched the documentation from that
website. The configuration of our Mininet topology can be
seen in Figure 3.

III. DYNAMIC TRAFFIC DIVERSION APPLICATION

Once the two environments were set up, we created a simple
dynamic traffic diversion application. The goal behind this
application is to be able to compare the results from the testbed
with the results from Mininet. Figure 4 shows a high level
overview of the controller application used to manage traffic
in the network. At regular intervals, the application polls the
transmitted bytes for that interval of the interface of the switch
1 that connects to switch 3, and turns it into a percentage of
the maximum link capacity. If this value is more than a preset
upper threshold, the link is considered to be congested, and
the backup link takes precedence. If the value drops below a
preset lower threshold, the link is considered to be no longer
congested, and the main link takes precedence again.

We chose to use python to create our application, as
much of our initial testing was done using cURL command
line commands, and python was able to incorporate a lot
of the same syntax. cURL was used to get the interface

2017 International Conference on Computing, Networking and Communications (ICNC): Network Algorithms and Performance
Evaluation

Fig. 3. Mininet topology configuration

Fig. 4. Flowchart of the dynamic traffic diversion application

information from an XML document provided and refreshed
by the OpenDaylight Northbound REST interface. Another
method to achieve the same goal would be to make a plug-
in for OpenDaylight, so our program loaded as a part of the
OpenDaylight controller. This was something we investigated,
but did not pursue, as an external program was as efficient,
and less complex.

IV. TESTING AND ANALYSIS

In this section, we compare the Cisco testbed and Mininet
in terms of packet loss and Jitter. Packet loss is the failure
of transmitted packets arriving to their destination, while

jitter is the measurement of the variance in time between
packet delivery. With these measurements, we will be able
to determine whether the dynamic traffic diversion application
can decrease the delivery time and increase the rate of traffic
if there was an alternative path to be taken. It will also allow
us to compare the results between the two environments.

Three different scenarios are evaluated using the network
shown in Figure 5. As can be seen, some traffic is categorized
as background traffic in order to create congestion over the
primary link (i.e. link between switch 1 and switch 3 and
also referred to as path 1) and some traffic is categorized as
important traffic, meaning that it should avoid congested paths.

To trigger the dynamic traffic diversion application, we set
an upper threshold to mark path 1 as congested once the traffic
reaches 90% of the link capacity (i.e. 90 Mbps). Once the
amount of traffic crosses that threshold, flows will be created to
diverge the marked traffic to travel across path 2 (i.e. switch 1
- switch 2 - switch 3) instead of path 1. A lower threshold of
70% of the link capacity (i.e 70 Mbps) is also set to trigger
the dynamic traffic diversion application to remove the created
flow to diverge the traffic back to the no longer congested
path 1.

For each test, Host 1 (H1) was used to send traffic to Host 3
(H3), and Host 2 (H2) was used to send traffic to Host 4
(H4). The traffic between H2 and H4 was used only to create
congestion on path 1, while the traffic between H1 and H3
was used to test the dynamic traffic diversion application. We
used Iperf to generate the traffic needed to run the tests and
gather the measurements of packet loss and jitter for analysis.

Finally, for each scenario discussed below, 10 independent
tests were evaluated and the results of each test are displayed
on the x-axis of each graph.

A. Scenario 1 - Baseline Testing

The objective in this scenario is to define a baseline for
each environment when there is no congestion on path 1. To
achieve that, H1 sends 600 MB of UDP traffic at a data rate
of 50 Mbps to H3 through path 1. As there was no traffic on
path 1 other than H1’s, there was, as expected, no packet loss
in both environments. Similarly, as shown in Figure 6, there
was very low jitter with a mean of 0.0097ms, and 0.0081ms
for the testbed and the Mininet environments respectively. We
can conclude that the two environments perform similarly.

B. Scenario 2 - Performance without Dynamic Traffic Diver-
sion

The objective of this scenario is to determine a baseline
while there was congestion on path 1. To accomplish that, H1
sends 600 MB of UDP traffic at a data rate of 50 Mbps to
H3 through path 1, while H2 congests path 1 with a large
amount of UDP traffic (to keep the link congested over a long
period of time) at a data rate of 95 Mbps. In this scenario, the
dynamic traffic diversion application is not running meaning
that all the traffic must go through path 1.

As expected, the traffic between H1 and H3 was greatly
affected by the congestion traffic between H2 and H4. As

2017 International Conference on Computing, Networking and Communications (ICNC): Network Algorithms and Performance
Evaluation

Fig. 5. Topology of the test environment for both testbed and Mininet networks

Fig. 6. Jitter measurements between testbed and Mininet for scenario 1

Fig. 7. Packet loss measurements between testbed and Mininet for scenario 2

shown in Figure 7 and Figure 8, the packet loss within the
physical environment had a mean of 50% packet loss, and
7.829 ms of jitter, while the packet loss within the Mininet
environment had a mean of 34% packet loss, and 6.2207 ms
of jitter.

Fig. 8. Jitter measurements between testbed and Mininet for scenario 2

C. Scenario 3 - Performance with Dynamic Traffic Diversion

The purpose of this test was to determine whether the
dynamic traffic diversion application will decrease the delivery
time and increase the delivery rate of the marked traffic. In this
scenario, H1 sends 600 MB of UDP traffic at a data rate of
50 Mbps to H3 through path 1, while H2 congested path 1
with a large amount of UDP traffic at a data rate of 95 Mbps
with the DTD application running.

Our hypothesis of no packet loss in both environments was
correct. As the congestion threshold was passed on path 1,
and the DTD application changed the flow between H1 and
H3 to pass through path 2 which has no congestion resulting
in no packet loss. Also, as expected there was very low jitter
in both environments during the test. However, the difference
in jitter between the two environments was not expected. The
lower jitter average of the Mininet environment compared to
the physical environment is thought to be the result of Mininet
being an integrated system.

2017 International Conference on Computing, Networking and Communications (ICNC): Network Algorithms and Performance
Evaluation

Fig. 9. Jitter measurements between testbed and Mininet for scenario 3

D. Overall Analysis

In comparison, our hypothesis was correct. Without the
DTD application, the marked traffic experienced high packet
loss and jitter, resulting in an increase in delivery time, and
decrease in delivery rate. However, with the DTD application,
the marked traffic decreased its delivery time and increased the
delivery rate, with no packet loss, and low jitter. Furthermore,
some of the results in the Mininet environment had better
results than the physical environment which is believed to be
caused by Mininet being an all-in-one box, and not having the
traffic travel across actual physical links. Furthermore, a delay
parameter may have been used to add on the Mininet links,
but we did not have any way to accurately measure the delay
of the physical links. Therefore, the algorithms for supporting
real world testing are based within the implementation. Lastly,
in comparison to the environments, from the results the
Mininet environment is a suitable test environment if testing
for scalability is an issue.

V. CONCLUSION AND FUTURE WORK

In this paper, we came up with a software defined network
that could dynamically divert traffic through a layer 2 network.
This enabled us to have a basis for testing and comparing
statistical differences between two different test environments:
a physical Cisco network run off of beta software and an
emulated Mininet network.

As expected and demonstrated by the three scenarios de-
scribed above, dynamically deviating important traffic on a
backup path can prevent packet loss and minimize jitter. By
comparing the two environments, we were able to ascertain

that the emulated Mininet network is suitable for testing
purposes on the basis that all applicable metrics were encoded
into the algorithms that produce the network performance
statistics. The Mininet environment, excels at design and
scalability testing. Different factors such as the early field trial
image from Cisco and the various parameter settings available
in both environments could explain the slight differences.

There are several areas that could see future research and
have the potential for improvement. First, we want to do a
deeper investigation into the sources of the similarities and
discrepancies between the two approaches. Also, our program
currently works with a fixed network topology, with all flow
options predetermined. The future could see this program
become more diverse, allowing for scalable networks and a
wide range of traffic filters. Finally, we are also planning to
work with more recent version of Openflow and Cisco IOS-
XE.

REFERENCES

[1] D. Venmani, D. Zeghlache, and Y. Gourhant, “Demystifying link
congestion in 4G-LTE backhaul using openflow,” in 5th International
Conference on New Technologies, Mobility and Security (NTMS), 2012,
pp. 1–8.

[2] T. Luo, H.-P. Tan, and T. Quek, “Sensor openflow: Enabling software-
defined wireless sensor networks,” IEEE Communications Letters,
vol. 16, no. 11, pp. 1896–1899, 2012.

[3] S. Gringeri, N. Bitar, and T. Xia, “Extending software defined network
principles to include optical transport,” IEEE Communications Letters,
vol. 51, no. 3, pp. 32–40, 2013.

[4] M. Shirazipour, W. John, J. Kempf, H. Green, and M. Tatipamula, “Real-
izing packet-optical integration with SDN and openflow 1.1 extensions,”
in IEEE International Conference on Communications (ICC), 2012, pp.
6633–6637.

[5] S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew, and L. Ong,
“Packet and circuit network convergence with openflow,” in Conference
on Optical Fiber Communication (OFC), collocated with the National
Fiber Optic Engineers Conference, (NFOEC), 2010, pp. 1–3.

[6] R. D. Corin, M. Gerola, R. Riggio, F. D. Pellegrini, and E. Salvadori,
“Vertigo: Network virtualization and beyond,” in European Workshop
on Software Defined Networking (EWSDN), 2012, pp. 24–29.

[7] Mininet, Online: http://mininet.org/.
[8] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker, “NOX: towards an operating system for networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, 2008.

[9] M. McCauley, NOXREPO, Online: http://www.noxrepo.org/.
[10] Linux Foundation, OpenDaylight, Online: http://www.opendaylight.org/.
[11] Cisco, Cisco Plug-in for OpenFlow Configuration Guide 1.1.5, San Jose,

Cisco Press, 2014.
[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[13] Iperf - The TCP/UDP Bandwidth Measurement Tool, Online:
http://sourceforge.net/projects/iperf2/.

2017 International Conference on Computing, Networking and Communications (ICNC): Network Algorithms and Performance
Evaluation

