
Deterministic and Efficient Hash Table Lookup

Using Discriminated Vectors

Dagang Li, Junmao Li

School of Electronics and Computer Engineering

Peking University

Shenzhen, China

Zheng Du

National Supercomputing Center in Shenzhen

Shenzhen, China

Abstract—Hash table is used in many areas of networking

such as route lookup, packet classification, per-flow state

management and network monitoring for its constant access time

latency at moderate loads. However, collisions may become

frequent at high loads in traditional hash tables, which may lead

the access time complexity to be linear and intolerable to

applications like high-speed route lookups. While some schemes

were proposed to help resolve this problem and most of them

may achieve O(1) average memory access per lookup, very few of

them are able to cut down the access to a deterministic single one.

In this paper, we design a structure called deterministic and

efficient hash table (DEHT). In DEHT, a novel data structure on

on-chip memory is built, with the help of which the off-chip

memory access can be decreased to a single one at most per

lookup even when the load of the hash table is very high. What’s

more, the on-chip data structure also plays a similar role as

Bloom Filter to do membership screening, which can avoid most

lookups of nonexistent items of the hash table visiting the off-chip

memory. Through theoretical analysis and simulations, we show

that our scheme is faster than other schemes in lookup operations;

the usable load of the off-chip hash table, the memory efficiency

and the false positive rate of the on-chip data structure are also
favorable.

Keywords—Network processing; Collison-free hashing; Cuckoo

hashing; Hash table

I. INTRODUCTION

Hash table is prevalently used in various fields of
networking such as route lookup, packet classification, per-
flow state management and network monitoring as it can
achieve O(1) latency for query, insert and delete operations at
moderate loads. However, measures like chaining and linear
probing will have to be taken to solve the collision problem at
the cost of additional memory access when the load of the hash
table increases. Thus, the lookup latency becomes uncertain,
which poses threats to some time-critical systems. Specifically,
some network packet processing modules are typical
components in the data-path of a high-speed router which must
be able to process packets at very high line speed. Non-
determinism also influences multi-threaded systems because
the slowest thread will be the bottleneck and determines the
overall throughput. So, it is very vital to keep the lookup
operations fast and deterministic while not hurting the usable
load of the hash table at the same time. Several schemes

[1][2][3][4] utilizing embedded memory technology were
proposed to help solve this problem, but there are still some
difficulties unsolved in these solutions. First, though some of
them achieve O(1) average memory access per lookup, few of
them are able to perform lookup operation with a single access
to the off-chip memory. Second, not all of them support highly
loaded hash table. Third, few of them are able to perform
membership screening in the on-chip data structure.

Cuckoo hashing [5], a representative multi-choice hashing,
is famous for its high usable load ratio of hash table. The load
ratio of Cuckoo hash table can be up to 0.9 without collision
with 3 independent hashing functions. When performing the
lookup operations, Cuckoo hashing requires one memory
access for each hash function respectively to determine which
one of its candidate slots actually stores the element. If we can
foresee which hash function corresponds to the actual slot
where the element is stored in the Cuckoo hash table, the
memory access will be cut down to a single one while keeping
the load ratio unchanged.

More specifically, the deterministic and efficient hash table
lookup can be designed as follows. First, due to its large
memory requirement, we store the actual elements in a Cuckoo
hash table in the slower off-chip DRAM. Second, we may
design a compact data structure in the high-speed on-chip
SRAM to assist the lookup operations of the hash table. With
some computation based on the on-chip data structure we may
determine which hash function is actually used to determine the
location of the queried element in the hash table. The on-chip
data structure should be compact, simple and fast and easy to
be implemented. In this paper, we design such a deterministic
and efficient hash table scheme called DEHT that can minimize
access to the off-chip Cuckoo hash table.

In general, we make the following contributions:

 We designed a compact data structure in small high-
speed on-chip memory (e.g. on-chip SRAMs) and a
Cuckoo hash table in slow off-chip DRAMs. The
lookup operation requires at most one access to the off-
chip DRAMs even at high loads by combining these
two data structures. This feature enables the lookup
operations of the hash table take deterministic latency.

 The data structure we designed on-chip is also able to
play a similar role in membership screening like the
bloom filter. Though some other schemes may have a
similar feature, the false positive rate (fpr) of our on-

This work was supported by Guangdong Science & Technology

Project 2014B010117007, Shenzhen Basic Research Program
JCYJ20140509093817684 & JCYJ20150626110611869.

978-1-5090-1328-9/16/$31.00 ©2016 IEEE

chip structure is low enough compared to other schemes
and more importantly the fpr will not impact the
property of single access to off-chip memory.

The rest of this paper is organized as follow. We discuss the
related work in Section II. The data structure and algorithm
will be presented in Section III. And we make analysis of the
performance of our design in Section IV. Simulations and the
results are presented in Section V, while we conclude this
paper at last in Section VI.

II. RELATED WORK

Ideas that combine the use of on-chip and off-chip data
structures to reduce off-chip memory access can be found in
[1-7]. However, they cannot meet all the requirements of many
networking applications that require fast and deterministic
speed. Solution in [1] extends multiple hash technique and
Bloom Filter to perform exact match. Each Element is stored
into the shortest one of the off-chip linked lists, and on-chip
Counting Bloom Filter is used as summary to indicate one
linked list used for the search. Analysis of [1] shows that its
expected external memory access can be O(1). A scheme was
proposed in [2] to improve the performance of method in [1].
By using off-chip multilevel hash table and an array of parallel
Bloom filters, the space cost of summary and underlying hash
table are both reduced compared to method in [1]. Though
achieving O(1) lookup speed, the latency is still not
deterministic because they use chaining technique to solve the
collision problems. Schemes in [3] combined on-chip summary
vectors and Bloom filter to make sure only one single access to
off-chip memory is needed. However, when inserting one
element, some existing elements of the hash table may be
moved to other slots. And the usable load ratio of the hash table
can not be as high as in a standard Cuckoo hash table. A
structure called FCHT based on on-chip Bloom filter and off-
chip multi-choice hash table was proposed in [4]. Several
Bloom filters corresponding to hash functions were built on-
chip. When looking up an element, if one Bloom filter outputs
a positive result, the system will use its corresponding hash
function to calculate a location of the off-chip hash table.
However, because of the false positive possibility of Bloom
filter, when two or more on-chip Bloom filter output positive
results, the off-chip memory accesses will increase. And this
phenomenon will be more severe with higher number of
inserted elements. Solutions in [6][7] have similar problems
and can not meet all requirements that we listed above. Cuckoo
hashing [5] is a simple multiple choice hashing scheme that
allows elements to move to solve collision. Its space usage is
similar to that of binary search trees. For insertion, each
element is hashed to d possible buckets, and may kick existing
elements away until every element is moved to an appropriate
bucket. The insertion time complexity is O(logn) for d=2 and
the upper bound of it have been proved more difficult for d>=3
[8]. The occupancy of Cuckoo hash table can be up to about
half and 90% for d=2 and d=3 respectively.

III. DEHT: ALGORITHM AND DATA STRUCTURE

The data structure of DEHT is shown in Fig.1. For an off-chip
Cuckoo hash table with k hash functions, there are k+1
discriminated vectors (DVs) on the on-chip memory which all

have the same length as the off-chip hash table. The first vector
is called VH and the others are called V1, V2,…,Vk. The initial
value of the VH is set to 0 while for all other DV vectors the
initial values are set to 1. Basically the VH vector stores value
indicates that who determines the location in the off-chip hash
table and the other Vi vectors store values that can be
interpreted as weights which determine if such location is valid.
The DVs will be changed accordingly when insert and delete
operations are performed. When looking up an element, some
simple logic operations on slots of Vi will be executed and
exactly one possible location in the off-chip hash table will be
returned if the element has been inserted before, thus only one
access to the off-chip memory is needed in lookup operation.
For queries to nonexistent elements, most of them will not
cause off-chip memory access because the DVs can also
perform membership test like a Bloom Filter and screen them
out. The algorithms of lookup, insert and delete operations will
be described in detail below, where 3 hash functions are used
as an example.

A. Lookup

When looking up an item X, we first calculate its possible
location of 3 candidate slots by hash functions H1, H2 and H3
and obtain locations L1, L2 and L3. We compare the values at
V1[L1], V2[L2], V3[L3] and choose the one with the minimum
value, let’s say it is Vi[Li]. Then we will check whether VH[Li]
equals Hi or not. If so, we confirm that HT[Li] should be
checked for X, or else X is not in the off-chip hash table at all.

Fig.2 gives an example of looking-up item A from a DEHT
that has already 3 elements inserted including A, B and C. We
first input A to the 3 hash functions H1, H2, H3 and get 0, 2, 4
which are the indexes for the candidate slots. Then we fetch the
corresponding values from V1, V2 and V3, i.e., V1[0], V2[2]
and V3[4]. Among these 3 values V1[0] is the minimum, so we
get index 0 and then we check the value at VH[0]. Because

Fig.2.The lookup operations of DEHT

Fig.1.The data structure of DEHT

VH[0] equals H1 which is the label of hash function that
corresponds to V1, so we should check HT[0] for the item X.

B. Insertion

We first get the three indexes L1, L2, L3 and then check
whether any of VH [L1], VH[L2], VH[L3] equals 0. VH[Li]
equals 0 indicates that HT[Li] is empty. Given that VH[Li] is 0,
we can insert the new element into HT[Li]. After that, we set
VH[Li] with Hi, which means that HT[Li] stores an element
that is mapped to this slot by hash function Hi. Assuming that

the other two indexes are Lm and Ln (m ≠ n , 1≤ m, n≤3), we
should add Vi[Li] to Vm[Lm] and Vn[Ln] respectively in order
to make sure that Vi[Li] is smaller than Vm[Lm] and Vn[Ln].
At last, we should check whether VH[Lm] equals Hm and
whether VH[Ln] equals Hn. If VH[Lm] equals Hm, it means
that an element was hashed to HT[Lm] by hash function Hm at
an earlier time, so we should fetch HT[Lm] and use hash
function H1, H2, H3 to calculate and get indexes Lm, Lx, Ly (x

≠ y , 1≤ x, y≤3). Then we should add value Vi[Li] also to
Vx[Lx] and Vy[Ly]. This operation should be executed
recursively, or else adding Vi[Li] to Vm[Lm] may increase
Vm[Lm] higher than Vx[Lx] and/or Vy[Ly] and cause the
looking-up for the element of HT[Lm] fail. If all the 3
candidate slots of the HT are occupied, we move away any one
of the occupying item to another location according to Cuckoo
hashing. When moving away an element, we may divide this
action into two stages including deletion and insertion.

Fig.3 shows the process of inserting A, B and C into the
DEHT that is initially empty. We first calculate 3 hash
functions with input A and get the corresponding indexes 0, 2,
4. VH[0], VH[2] and VH[4] are all 0, which indicates that in
off-chip hash tale HT[0], HT[2] and HT[4] are all empty. So
we randomly select HT[0] to insert element A. Index 0 is
obtained from the calculation of hash function H1. So we fetch
the values of slot with index 0 from the vector that corresponds
to hash function H1, i.e. vector V1. And we will add this value
V1[0] to V2[2] and V3[4]. At last we set VH[0] with H1,
which means HT[0] stores an element and this element was
mapped to this location by hash function H1. Then we insert
the element B. We input B to hash functions H1, H2, H3 and
get the subscripts 2, 0, 5. Because VH[2] equals 0, we insert B
to HT[2] and add V1[2] to V2[0] and V3[5]. And we set VH[2]
with H1. Inserting C is a bit more complicated. We get the
indexes 0, 2 and 5 at this time. Only VH[5] is empty and we
insert C to HT[5]. And then we add V3[5] to V1[0] and V2[2].
When adding V3[5] to V1[0], we find that VH[0] is H1, which
means at an early time an element was stored in HT[0]
mapping by hash function H1 and the value of V1[0] was
added to two other slots in V2 and V3 respectively. However,
adding a value to V1[0] may lead V1[0] to be no-smaller than
that of the other two slots mapped by function H2 and H3 in
V2 and V3 respectively. So we make an auxiliary lookup of the
element stored at HT[0], i.e., A, and get the mapping indexes 0,
2, 4. We then add V3[5] to V2[2] and V3[4], which ensures
that V1[0] is still smaller than V2[2] and V3[4].

C. Deletion

 Deletion of the DEHT is actually the inverse operation of

insertion. When deleting an item X, we first perform the lookup

operation to get the actual location Li (1≤ i ≤3) from L1, L2,
L3 of HT that item X may lie in. If HT[Li] does not contain X,
the operation should terminate since we get a false positive
here. Otherwise we set VH[Li] with 0 to indicate that HT[Li]
now becomes empty. Assuming that the other two indexes

calculated are Lm and Ln (m ≠ n , 1≤ m, n≤3). Then we
subtract the value of Vi[Li] from Vm[Lm] and Vn[Ln]
respectively. A similar recursive operation as the one used in

(a)

(b)

(c)

(d)

Fig.3.The insertion operations of DEHT

insertion should also be used here: if VH[Lm] equals Hm,
HT[Lm] should be fetched to calculate its corresponding

indexes Lm, Lx, Ly (x ≠ y , 1≤ x, y≤3), and then Vi[Li]
should be subtracted from Vx[Lx] and Vy[Ly] because the
values of Vx[Lx] and Vy[Ly] were increased before by Vi[Li]
from the location of Vi[Li].

D. Complexity Analysis

The lookup operation needs to compare 3 values and output
the minimum one on-chip. And then a value from the off-chip
hash table will be fetch accordingly. So the total complexity of
lookup is O(1) and the off-chip memory access is 1 at most.

As for the delete operation, the complexity of off-chip
access is equal to that of an ordinary Cuckoo hashing, i.e., O(1).
For the on-chip part, we need to subtract a value from two
locations of the on-chip DVs and each location has probability
of 0.25 (situation of 3 hash functions) to evoke a recursion. So
the time frequency of the delete operations on-chip can be
obtained by

,
4

1
*22 tt 

where we get t=4.

,
1

2
2 t

k
t




where we get

 .
1

4
2



k

t

Because k is a fixed number ranging from 2 to 4 in most

situations, so the on-chip complexity is also O(1).
When inserting an element, if any of the candidate slots of

the hash table is empty, the on-chip time complexity O(1)
similar to that of delete operation. However, if all candidates
slots are occupied, one of them need to be moved to another
slot to make room for the current inserted one and the
relocation may be recursive. Relocation may be divided into
two stages including deletion and insertion. Because the on-
chip time complexity of the insertion and deletion are both O(1)
for every relocation, so the time complexities of on-chip and
the whole insert operation are equal to the ordinary Cuckoo
hashing.

IV. PERFORMANCE ANALYSIS

A. Memory Efficiency Analysis

What we are concerned about is how many elements can be
store in this hash table. We define the load factor f as n/m
where n is the number of stored elements in a hash table of size
m. And we define the insertion failure rate ifr as k/n where k is
the number of failures to insert an element into any slot of the
hash table allowing moving away elements.

 We perform experiments to see the insertion failure rate of
our DEHT respectively with 2 and 3 hash functions. And we
compare the results with the ordinary Cuckoo hash. The results

of Fig.4 show that our DEHT has nearly the same performance
in usable load ratio of hash table with Cuckoo hashing. When
the number of the hash function is 2, the off-chip hash table of
size m of DEHT can store about 0.5m elements. And the
number can be up to 0.9m when there are three hash functions.
If more than 0.9m elements are going to be inserted, some of
them will not find any candidate empty slot at any situations.

Now let’s look into the memory cost of the on-chip
Discriminated Vectors. In the situation of 3 hash functions,
there are four vectors VH, V1, V2 and V3 on chip. In every
slot of VH there are 4 possible values, so 2 bits are enough for
the slots of VH. We conducted an experiment of inserting 30
millions elements into the hash table to see the frequency
distribution of values in V1, V2 and V3, and the result can be
seen in Fig.5. We find that the cumulative frequency of the
values 1-4 and 1-8 are 0.93 and 0.99 respectively and the vast
majority of them are very small integers. Methods in order to
save memory cost can be applied in such situation [9-12]. They
reduce the space requirement at the cost of additional
computation and the shuffling of memory, while still keeping
worst-case time bounds unchanged on various primitive
operations. Method in [12] exploits the idea of hierarchical
structure to compress a great deal of wasted space
corresponding to zero counters. An original vector is divided
into several hierarchical sub-vectors. The sub-vector of the first
level has a same length as the original vector, and higher level
sub-vectors can be dozens of time shorter than the level below
it. In this structure all the slots now only cost very little
memory, so the total memory cost is greatly reduced. For
example when each slot costs 2 bits and the length of sub-
vectors is 10 times smaller up each level, let n denote the total
length of the vector, the memory cost of each of V1, V2 and
V3 will be

.
9

20
...

100

1
*2

10

1
*22)(nnnnnCost 

So the total memory cost of the on-chip Discriminated Vectors
is the sum of V1, V2, V3 and VH which is

.
3

26
2

9

20
*3)(nnnnCost 

So if the off-chip hash table has 1 million slots, we need just
only 1 MB memory on chip for all the DVs.

Fig.4. Insertion failure rate of different load factor by experiment

B. False Positive Rate Analysis

Remember that when performing lookup operations the on-
chip Discriminated Vectors can distinguish most nonexistent
items from the existent ones and avoid unnecessary off-chip
memory access. However, there is still a small probability of
mistaking a nonexistent item for an existent one which is called
false positive rate, i.e. fpr. Given that n elements have been
inserted into the hash table whose length is m with k hash
functions. Remember that every time an element is inserted, the
total number of slots whose value are increased in V1,
V2,…,Vk is

.
1

4
2



k

tot

So after inserting n elements into the hash table with length of
m, the probability that a slot can still maintain its initial value
of 1 in V1, V2, …, Vk is

.
)1(

22
11

)1(

)22(

kmk

nknn

e
kmk

k

km

tot
p









































When looking up a nonexistent item, we get the indexes L1,
L2, … , Lk by hash functions and let’s say the minimum value
is Vm[Lm] from V1[L1], V2[L2], …, Vk[Lk]. If k-1 or k values
of V1[L1], V2[L2], …, Vk[Lk] are more than 1 and VH[Lm]
equals Hm, we will visit the off-chip HT[Lm]. So the fpr can be

 .)1()1(
1

1 1





kk
pkpp

k
fpr

The curve of the fpr with different k can be seen in Fig.6. We
can find that no matter with which load factor (n/m) the fpr will
always decrease quickly as k increases. And in the case of 3
hash functions or k=3, the fpr is always smaller than 0.18
which are trivial compared to other methods. We will compare
our results with other methods in section V.

V. EXPERIMENTAL ANALYSIS

A. Experiment Settings

We evaluate the performance of DEHT under different
configurations and compare it with FCHT [4] because the
targets of FCHT are very similar to our DEHT. DEHT and
FCHT both aim at achieving deterministic lookups with
multiple hash functions. A class of universal hash functions
described in [13] is suitable for hardware implementation [14].
For any item X with b-bits representation as

 xbxxxX ,...,3,2,1

the ith hash function over X, hi(x) is calculate as:

)(...)()()(
2211 bibiii

xdxdxd•xh 

where ‘×’ is simple multiplication operator and ‘⊕’ is bitwise
XOR operator.

B. Experiment Results

The false positive rate of DEHT and FCHT with 3 and 4 hash
functions can be seen in Fig.7. The overall fpr increases with
the load factor becoming larger. However, the growth rate of
DEHT is much smaller than that of FCHT. With 3 hash
function, the fpr of FCHT is up to 0.3 and 0.5 when the load
factor is 0.6 and 0.9 respectively. Remember that the FCHT
needs to access off-chip memory once for every one positive
result outputs by the on-chip Bloom Filters. So this high fpr
may result in more than one on-chip Bloom Filters outputting
positive results and more than one memory access. In contrast,
the fpr of our DEHT with 3 hash functions is 0.1 and 0.18
when the load factor is 0.6 and 0.9 respectively. However,
because the characteristics of the Discriminated Vectors in
DEHT are different from the Bloom Filters in FCHT, the fpr
will not influence the off-chip memory access which will keep
at most one access all the time. The rise of the fpr may increase

Fig.7. False positive rate of different k by experiment

Fig.6. False positive rate of different k by theoretical analysis

Fig.5. Frequency distribution of numbers in on-chip structures

 by experiment

the possibility of DEHT to visit the off-chip memory when
looking up a nonexistent item. However, the fpr of DEHT can
still keep low and will not hurt the performance even at high
loads.

The comparisons of off-chip memory access are in Fig.8
and Fig.9. We build a hash table of size 30 million and test the
lookup operations with load factor of 0.3, 0.6 and 0.9
respectively. Fig.8 shows the results when performing lookups
on a random querying dataset and most of the items of the
dataset are not in the hash table. We can see from the result that
our DEHT is able to distinguish most of the nonexistent items
from existent ones and no off-chip memory access is needed
for these lookups. And with the load factor rising, the
percentage of 0 off-memory access decreases because of the fpr
ascending. However, this phenomenon is much more obvious
with FCHT than DEHT because the rising trend of fpr of
FCHT is much steeper than DEHT. And when the load factor is
0.9, nearly 10 percent of lookups of FCHT need 2 off-chip
memory access and 2 percent of lookups need even 3 off-chip
memory access while all lookups of DEHT need at most 1
access. Next we use a querying dataset that has 80 percent of
elements existing in the hash table, which is more common in
network applications. The result of this querying dataset is in
Fig.9. We can see similar result in Fig.9 with Fig.8 except that
the percentage of 0 off-memory access becomes much less
because the number of nonexistent item of querying is much
smaller. There are 12 percent and 28 percent of lookups of
FCHT taking 2 off-chip memory accesses with 0.6 and 0.9 load
factor respectively. And nearly 4 percent of lookups of FCHT
need 3 off-chip memory access with 0.9 load factor. In contrast,

the performance of DEHT keeps stable and always need 1
access at most.

VI. CONCLUSION

In this paper a deterministic and efficient hash table based
on Cuckoo hash is proposed. We designed an on-chip data
structure called Discriminated Vectors to reduce the access of
off-chip hash table to a single one at most when performing
lookup operations while keeping the usable load ratio of hash
table as high as Cuckoo hashing. The Discriminated Vectors
also play a similar role as Bloom Filter in membership
screening, which avoids most unnecessary off-chip memory
access for looking-up nonexistent items in the hash table.
Operations of lookup, insertion and deletion of this data
structure are elaborated. We make theoretical analysis and
evaluate this structure in experiments. The results show that the
memory efficiency is favorable and the false positive rate is
low. We ensure deterministic off-chip memory access per
lookup even when the hash table is at high loads, which is
unattainable for other methods.

REFERENCES

[1] Song H, Dharmapurikar S, Turner J, et al. Fast hash table lookup using

extended Bloom filter: an aid to network processing. Acm Sigcomm,
2005, 35(4):181--192.

[2] Kirsch A, Mitzenmacher M. Simple Summaries for Hashing With

Choices. IEEE/ACM Transactions on Networking, 2008, 16(1):218-231.

[3] D. Li, P. Chen, Optimized Hash Lookup for Bloom Filter Based Packet
Routing, 16th International Conference on Network-Based Information

Systems (NBiS) (2013) 31-37.

[4] Huang K, Xie G, Li R, et al. Fast and deterministic hash table lookup
using discriminative bloom filters. Journal of Network & Computer

Applications, 2013, 36(2):657-666.

[5] Pagh R, Rodler F F. Cuckoo hashing. Journal of Algorithms, 2004,
51(2):122-144.

[6] Kirsch A, Mitzenmacher M. The power of one move: hashing schemes

for hardware. In: IEEE INFOCOM; 2008b. p. 106–10.

[7] Kumar S, Turner J, Crowley P. Peacock Hashing: Deterministic and

Updatable Hashing for High Performance Networking. Proceedings -
IEEE INFOCOM, 2008:101-105.

[8] Frieze A, Melsted P, Mitzenmacher M. An Analysis of Random-Walk

Cuckoo Hashing, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques. Springer Berlin Heidelberg,

2009:490-503.

[9] Bonomi F, Mitzenmacher M, Panigrah R, et al. Beyond Bloom filters:
From approximate membership checks to approximate state machines.

SIGCOMM '06, 2006, 36(4):315-326.

[10] Bonomi F, Mitzenmacher M, Panigrahy R, et al. An Improved
Construction for Counting Bloom Filters// Algorithms - ESA 2006, 14th

Annual European Symposium, Zurich, Switzerland, September 11-13,
2006, Proceedings. 2006:684--695.

[11] HUA, N., ZHAO, H., LIN, B., AND XU, J. Rank-indexed hashing: A

compact construction of bloom filters and variants. In IEEE International
Conference on Network Protocols (ICNP 2008) (Oct. 2008), pp. 73–82.

[12] Ficara D, Giordano S, Procissi G, et al. MultiLayer Compressed

Counting Bloom Filters// Infocom Conference on Computer
Communications IEEE. IEEE, 2008:311-315.

[13] Carter J L, Wegman M N. Universal classes of hash functions. Journal
of Computer & System Sciences, 1979, 18(2):143-154.

[14] M.V. Ramakrishna, E. Fu, and E. Bahcekapili. A performance study of

hashing functions for hardware applications. In Proc. of Int. Conf. on
Computing and Information, pages 1621–1636, 1994.

Fig.9. Off-chip memory accesses of DEHT and FCHT under various load
factors with inputs of 80% true elements.

Fig.8.Off-chip memory accesses of DEHT and FCHT under various load
factors with random inputs.

