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Abstract—Hash table is used in many areas of networking 

such as route lookup, packet classification, per-flow state 

management and network monitoring for its constant access time 

latency at moderate loads. However, collisions may become 

frequent at high loads in traditional hash tables, which may lead 

the access time complexity to be linear and intolerable to 

applications like high-speed route lookups. While some schemes 

were proposed to help resolve this problem and most of them 

may achieve O(1) average memory access per lookup, very few of 

them are able to cut down the access to a  deterministic single one.  

In this paper, we design a structure called deterministic and 

efficient hash table (DEHT). In DEHT, a novel data structure on 

on-chip memory is built, with the help of which the off-chip 

memory access can be decreased to a single one at most per 

lookup even when the load of the hash table is very high. What’s 

more, the on-chip data structure also plays a similar role as 

Bloom Filter to do membership screening, which can avoid most 

lookups of nonexistent items of the hash table visiting the off-chip 

memory. Through theoretical analysis and simulations, we show 

that our scheme is faster than other schemes in lookup operations; 

the usable load of the off-chip hash table, the memory efficiency 

and the false positive rate of the on-chip data structure are also 
favorable. 

Keywords—Network processing; Collison-free hashing; Cuckoo 

hashing; Hash table 

I.  INTRODUCTION 

Hash table is prevalently used in various fields of 
networking such as route lookup, packet classification, per-
flow state management and network monitoring as it can 
achieve O(1) latency for query, insert and delete operations at 
moderate loads. However, measures like chaining and linear 
probing will have to be taken to solve the collision problem at 
the cost of additional memory access when the load of the hash 
table increases. Thus, the lookup latency becomes uncertain, 
which poses threats to some time-critical systems. Specifically, 
some network packet processing modules are typical 
components in the data-path of a high-speed router which must 
be able to process packets at very high line speed. Non-
determinism also influences multi-threaded systems because 
the slowest thread will be the bottleneck and determines the 
overall throughput.  So, it is very vital to keep the lookup 
operations fast and deterministic while not hurting the usable 
load of the hash table at the same time. Several schemes 

[1][2][3][4] utilizing embedded memory technology were 
proposed to help solve this problem, but there are still some 
difficulties unsolved in these solutions. First, though some of 
them achieve O(1) average memory access per lookup, few of 
them are able to perform lookup operation with a single access 
to the off-chip memory. Second, not all of them support highly 
loaded hash table. Third, few of them are able to perform 
membership screening in the on-chip data structure. 

Cuckoo hashing [5], a representative multi-choice hashing, 
is famous for its high usable load ratio of hash table. The load 
ratio of Cuckoo hash table can be up to 0.9 without collision 
with 3 independent hashing functions. When performing the 
lookup operations, Cuckoo hashing requires one memory 
access for each hash function respectively to determine which 
one of its candidate slots actually stores the element. If we can 
foresee which hash function corresponds to the actual slot 
where the element is stored in the Cuckoo hash table, the 
memory access will be cut down to a single one while keeping 
the load ratio unchanged.  

More specifically, the deterministic and efficient hash table 
lookup can be designed as follows. First, due to its large 
memory requirement, we store the actual elements in a Cuckoo 
hash table in the slower off-chip DRAM. Second, we may 
design a compact data structure in the high-speed on-chip 
SRAM to assist the lookup operations of the hash table. With 
some computation based on the on-chip data structure we may 
determine which hash function is actually used to determine the 
location of the queried element in the hash table. The on-chip 
data structure should be compact, simple and fast and easy to 
be implemented. In this paper, we design such a deterministic 
and efficient hash table scheme called DEHT that can minimize 
access to the off-chip Cuckoo hash table. 

In general, we make the following contributions: 

 We designed a compact data structure in small high-
speed on-chip memory (e.g. on-chip SRAMs) and a 
Cuckoo hash table in slow off-chip DRAMs. The 
lookup operation requires at most one access to the off-
chip DRAMs even at high loads by combining these 
two data structures. This feature enables the lookup 
operations of the hash table take deterministic latency. 

 The data structure we designed on-chip is also able to 
play a similar role in membership screening like the 
bloom filter. Though some other schemes may have a 
similar feature, the false positive rate (fpr) of our on-
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chip structure is low enough compared to other schemes 
and more importantly the fpr will not impact the 
property of single access to off-chip memory. 

The rest of this paper is organized as follow. We discuss the 
related work in Section II. The data structure and algorithm 
will be presented in Section III. And we make analysis of the 
performance of our design in Section IV. Simulations and the 
results are presented in Section V, while we conclude this 
paper at last in Section VI. 

II. RELATED WORK 

Ideas that combine the use of on-chip and off-chip data 
structures to reduce off-chip memory access can be found in 
[1-7]. However, they cannot meet all the requirements of many 
networking applications that require fast and deterministic 
speed. Solution in [1] extends multiple hash technique and 
Bloom Filter to perform exact match. Each Element is stored 
into the shortest one of the off-chip linked lists, and on-chip 
Counting Bloom Filter is used as summary to indicate one 
linked list used for the search. Analysis of [1] shows that its 
expected external memory access can be O(1). A scheme was 
proposed in [2] to improve the performance of method in [1]. 
By using off-chip multilevel hash table and an array of parallel 
Bloom filters, the space cost of summary and underlying hash 
table are both reduced compared to method in [1]. Though 
achieving O(1) lookup speed, the latency is still not 
deterministic because they use chaining technique to solve the 
collision problems. Schemes in [3] combined on-chip summary 
vectors and Bloom filter to make sure only one single access to 
off-chip memory is needed. However, when inserting one 
element, some existing elements of the hash table may be 
moved to other slots. And the usable load ratio of the hash table 
can not be as high as in a standard Cuckoo hash table. A 
structure called FCHT based on on-chip Bloom filter and off-
chip multi-choice hash table was proposed in [4]. Several 
Bloom filters corresponding to hash functions were built on-
chip. When looking up an element, if one Bloom filter outputs 
a positive result, the system will use its corresponding hash 
function to calculate a location of the off-chip hash table. 
However, because of the false positive possibility of Bloom 
filter, when two or more on-chip Bloom filter output positive 
results, the off-chip memory accesses will increase. And this 
phenomenon will be more severe with higher number of 
inserted elements. Solutions in [6][7] have similar problems 
and can not meet all requirements that we listed above. Cuckoo 
hashing [5] is a simple multiple choice hashing scheme that 
allows elements to move to solve collision. Its space usage is 
similar to that of binary search trees. For insertion, each 
element is hashed to d possible buckets, and may kick existing 
elements away until every element is moved to an appropriate 
bucket. The insertion time complexity is O(logn)  for d=2 and 
the upper bound of it have been proved more difficult for d>=3 
[8]. The occupancy of Cuckoo hash table can be up to about 
half and 90% for d=2 and d=3 respectively. 

III. DEHT: ALGORITHM AND DATA STRUCTURE 

The data structure of DEHT is shown in Fig.1. For an off-chip 
Cuckoo hash table with k hash functions, there are k+1 
discriminated vectors (DVs) on the on-chip memory which all 

have the same length as the off-chip hash table. The first vector 
is called VH and the others are called V1, V2,…,Vk. The initial 
value of the VH is set to 0 while for all other DV vectors the 
initial values are set to 1. Basically the VH vector stores value 
indicates that who determines the location  in the off-chip hash 
table and the other Vi vectors  store values that can be 
interpreted as weights which determine if such location is valid.  
The DVs will be changed accordingly when insert and delete 
operations are performed. When looking up an element, some 
simple logic operations on slots of Vi will be executed and 
exactly one possible location in the off-chip hash table will be 
returned if the element has been inserted before, thus only one 
access to the off-chip memory is needed in lookup operation. 
For queries to nonexistent elements, most of them will not 
cause off-chip memory access because the DVs can also 
perform membership test like a Bloom Filter and screen them 
out. The algorithms of lookup, insert and delete operations will 
be described in detail below,  where 3 hash functions are used 
as an example. 

A. Lookup 

When looking up an item X, we first calculate its possible 
location of 3 candidate slots by hash functions H1, H2 and H3 
and obtain locations L1, L2 and L3. We compare the values at 
V1[L1], V2[L2], V3[L3] and choose the one with the minimum 
value, let’s say it is Vi[Li]. Then we will check whether VH[Li] 
equals Hi or not. If so, we confirm that HT[Li] should be 
checked for X, or else X is not in the off-chip hash table at all. 

Fig.2 gives an example of looking-up item A from a DEHT 
that has already 3 elements inserted including A, B and C. We 
first input A to the 3 hash functions H1, H2, H3 and get 0, 2, 4 
which are the indexes for the candidate slots. Then we fetch the 
corresponding values from V1, V2 and V3, i.e., V1[0], V2[2] 
and V3[4]. Among these 3 values V1[0] is the minimum, so we 
get index 0 and then we check  the value at VH[0]. Because 

 

Fig.2.The lookup operations of DEHT 

 

 

 

 

 

 

Fig.1.The data structure of DEHT 

 

 

 

 



VH[0] equals H1 which is the label of  hash function that 
corresponds to V1, so we should check HT[0] for the item X. 

B. Insertion 

We first get the three indexes L1, L2, L3 and then check 
whether any of VH [L1], VH[L2], VH[L3] equals 0. VH[Li] 
equals 0 indicates that HT[Li] is empty. Given that VH[Li] is 0, 
we can insert the new element into HT[Li]. After that, we set 
VH[Li] with Hi, which means that HT[Li] stores an element 
that is mapped to this slot by hash function Hi. Assuming that 

the other two indexes are Lm and Ln (m ≠ n , 1≤ m, n≤3), we 
should add Vi[Li] to Vm[Lm] and Vn[Ln] respectively in order 
to make sure that Vi[Li] is smaller than Vm[Lm] and Vn[Ln]. 
At last, we should check whether VH[Lm] equals Hm and 
whether VH[Ln] equals Hn. If VH[Lm] equals Hm, it means 
that an element was hashed to HT[Lm] by hash function Hm at 
an earlier time, so we should fetch HT[Lm] and use hash 
function H1, H2, H3 to calculate and get indexes Lm, Lx, Ly (x 

≠ y , 1≤ x, y≤3). Then we should add value Vi[Li] also to 
Vx[Lx] and Vy[Ly]. This operation should be executed 
recursively, or else adding Vi[Li] to Vm[Lm] may increase 
Vm[Lm] higher than Vx[Lx] and/or Vy[Ly] and cause the 
looking-up for the element of HT[Lm] fail. If all the 3 
candidate slots of the HT are occupied, we move away any one 
of the occupying item to another location according to Cuckoo 
hashing. When moving away an element, we may divide this 
action into two stages including deletion and insertion.  

Fig.3 shows the process of inserting A, B and C into the 
DEHT that is initially empty. We first calculate 3 hash 
functions with input A and get the corresponding indexes 0, 2, 
4. VH[0], VH[2] and VH[4] are all 0, which indicates that in 
off-chip hash tale HT[0], HT[2] and HT[4] are all empty. So 
we randomly select HT[0] to insert element A. Index 0 is 
obtained from the calculation of hash function H1. So we fetch 
the values of slot with index 0 from the vector that corresponds 
to hash function H1, i.e. vector V1. And we will add this value 
V1[0] to V2[2] and V3[4]. At last we set VH[0] with H1, 
which means HT[0] stores an element and this element was 
mapped to this location by hash function H1. Then we insert 
the element B. We input B to hash functions H1, H2, H3 and 
get the subscripts 2, 0, 5. Because VH[2] equals 0, we insert B 
to HT[2] and add V1[2] to V2[0] and V3[5]. And we set VH[2] 
with H1. Inserting C is a bit more complicated. We get the 
indexes 0, 2 and 5 at this time. Only VH[5] is empty and we 
insert C to HT[5]. And then we add V3[5] to V1[0] and V2[2]. 
When adding V3[5] to V1[0], we find that VH[0] is H1, which 
means at an early time an element was stored in HT[0] 
mapping by hash function H1 and the value of V1[0] was 
added to two other slots in V2 and V3 respectively.  However, 
adding a value to V1[0]  may lead V1[0] to be no-smaller than 
that of the other two slots mapped by function H2 and H3 in 
V2 and V3 respectively. So we make an auxiliary lookup of the 
element stored at HT[0], i.e., A, and get the mapping indexes 0, 
2, 4. We then add V3[5] to V2[2]  and V3[4], which ensures 
that V1[0] is still smaller than V2[2] and V3[4].  

C. Deletion 

 Deletion of the DEHT is actually the inverse operation of 

insertion. When deleting an item X, we first perform the lookup 

operation to get the actual location Li (1≤ i ≤3) from L1, L2, 
L3 of HT that item X may lie in. If HT[Li] does not contain X, 
the operation should terminate since we get a false positive 
here. Otherwise we set VH[Li] with 0 to indicate that HT[Li] 
now becomes empty. Assuming that the other two indexes 

calculated are Lm and Ln (m ≠ n , 1≤ m, n≤3). Then we 
subtract the value of Vi[Li] from Vm[Lm] and Vn[Ln] 
respectively. A similar recursive operation as the one used in 
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Fig.3.The insertion operations of DEHT 

 

 

 

 

 

 

 

 



insertion should also be used here: if VH[Lm] equals Hm, 
HT[Lm] should be fetched to calculate its corresponding 

indexes Lm, Lx, Ly (x ≠ y , 1≤ x, y≤3), and then Vi[Li] 
should be subtracted from Vx[Lx] and Vy[Ly] because the 
values of Vx[Lx] and Vy[Ly] were increased before by Vi[Li] 
from the location of Vi[Li]. 

D. Complexity Analysis 

The lookup operation needs to compare 3 values and output 
the minimum one on-chip. And then a value from the off-chip 
hash table will be fetch accordingly. So the total complexity of 
lookup is O(1) and the off-chip memory access is 1 at most.  

As for the delete operation, the complexity of off-chip 
access is equal to that of an ordinary Cuckoo hashing, i.e., O(1). 
For the on-chip part, we need to subtract a value from two 
locations of the on-chip DVs and each location has probability 
of 0.25 (situation of 3 hash functions) to evoke a recursion. So 
the time frequency of the delete operations on-chip can be 
obtained by 
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Because k is a fixed number ranging from 2 to 4 in most 

situations, so the on-chip complexity is also O(1).  
When inserting an element, if any of the candidate slots of 

the hash table is empty, the on-chip time complexity O(1) 
similar to that of delete operation. However, if all candidates 
slots are occupied, one of them need to be moved to another 
slot to make room for the current inserted one and the 
relocation may be recursive. Relocation may be divided into 
two stages including deletion and insertion. Because the on-
chip time complexity of the insertion and deletion are both O(1) 
for every relocation, so the time complexities of on-chip and 
the whole insert operation are equal to the ordinary Cuckoo 
hashing. 

IV. PERFORMANCE ANALYSIS 

A. Memory Efficiency Analysis 

What we are concerned about is how many elements can be 
store in this hash table. We define the load factor f as n/m 
where n is the number of stored elements in a hash table of size 
m. And we define the insertion failure rate ifr as k/n where k is 
the number of failures to insert an element into any slot of the 
hash table allowing moving away elements. 

 We perform experiments to see the insertion failure rate of 
our DEHT respectively with 2 and 3 hash functions. And we 
compare the results with the ordinary Cuckoo hash. The results 

of Fig.4 show that our DEHT has nearly the same performance 
in usable load ratio of hash table with Cuckoo hashing. When 
the number of the hash function is 2, the off-chip hash table of 
size m of DEHT can store about 0.5m elements. And the 
number can be up to 0.9m when there are three hash functions. 
If more than 0.9m elements are going to be inserted, some of 
them will not find any candidate empty slot at any situations. 

Now let’s look into the memory cost of the on-chip 
Discriminated Vectors. In the situation of 3 hash functions, 
there are four vectors VH, V1, V2 and V3 on chip. In every 
slot of VH there are 4 possible values, so 2 bits are enough for 
the slots of VH. We conducted an experiment of inserting 30 
millions elements into the hash table to see the frequency 
distribution of values in V1, V2 and V3, and the result can be 
seen in Fig.5. We find that the cumulative frequency of the 
values 1-4 and 1-8 are 0.93 and 0.99 respectively and the vast 
majority of them are very small integers.  Methods in order to 
save memory cost can be applied in such situation [9-12]. They 
reduce the space requirement at the cost of additional 
computation and the shuffling of memory, while still keeping 
worst-case time bounds unchanged on various primitive 
operations. Method in [12] exploits the idea of hierarchical 
structure to compress a great deal of wasted space 
corresponding to zero counters.  An original vector is divided 
into several hierarchical sub-vectors. The sub-vector of the first 
level has a same length as the original vector, and higher level 
sub-vectors can be dozens of time shorter than the level below 
it. In this structure all the slots now only cost very little 
memory, so the total memory cost is greatly reduced. For 
example when each slot costs 2 bits and the length of sub-
vectors is 10 times smaller up each level, let n denote the total 
length of the vector, the memory cost of each of V1, V2 and 
V3 will be 
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So the total memory cost of the on-chip Discriminated Vectors 
is the sum of V1, V2, V3 and VH which  is 
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So if the off-chip hash table has 1 million slots, we need just 
only 1 MB memory on chip for all the DVs. 

 

Fig.4. Insertion failure rate of different load factor by experiment 

 

 

 



 

 

B. False Positive Rate Analysis 

Remember that when performing lookup operations the on-
chip Discriminated Vectors can distinguish most nonexistent 
items from the existent ones and avoid unnecessary off-chip 
memory access. However, there is still a small probability of 
mistaking a nonexistent item for an existent one which is called 
false positive rate, i.e. fpr. Given that n elements have been 
inserted into the hash table whose length is m with k hash 
functions. Remember that every time an element is inserted, the 
total number of slots whose value are increased in V1, 
V2,…,Vk is 
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So after inserting n elements into the hash table with length of 
m, the probability that a slot can still maintain its initial value 
of 1 in V1, V2, …, Vk is 
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When looking up a nonexistent item, we get the indexes L1, 
L2, … , Lk by hash functions and let’s say the minimum value 
is Vm[Lm] from V1[L1], V2[L2], …, Vk[Lk]. If k-1 or k values 
of V1[L1], V2[L2], …, Vk[Lk] are more than 1 and VH[Lm] 
equals Hm, we will visit the off-chip HT[Lm]. So the fpr can be  
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The curve of the fpr with different k can be seen in Fig.6. We 
can find that no matter with which load factor (n/m) the fpr will 
always decrease quickly as k increases. And in the case of 3 
hash functions or k=3, the fpr is always smaller than 0.18 
which are trivial compared to other methods. We will compare 
our results with other methods in section V. 

V. EXPERIMENTAL ANALYSIS 

A. Experiment Settings 

We evaluate the performance of DEHT under different 
configurations and compare it with FCHT [4] because the 
targets of FCHT are very similar to our DEHT. DEHT and 
FCHT both aim at achieving deterministic lookups with 
multiple hash functions. A class of universal hash functions 
described in [13] is suitable for hardware implementation [14].  
For any item X with b-bits representation as 

 xbxxxX ,...,3,2,1  

the ith hash function over X, hi(x) is calculate as: 
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where ‘×’ is simple multiplication operator and ‘⊕’ is bitwise 
XOR operator. 

B. Experiment Results 

The false positive rate of DEHT and FCHT with 3 and 4 hash 
functions can be seen in Fig.7. The overall fpr increases with 
the load factor becoming larger. However, the growth rate of 
DEHT is much smaller than that of FCHT. With 3 hash 
function, the fpr of FCHT is up to 0.3 and 0.5 when the load 
factor is 0.6 and 0.9 respectively. Remember that the FCHT 
needs to access off-chip memory once for every one positive 
result outputs by the on-chip Bloom Filters. So this high fpr 
may result in more than one on-chip Bloom Filters outputting 
positive results and more than one memory access. In contrast, 
the fpr of our DEHT with 3 hash functions is 0.1 and 0.18 
when the load factor is 0.6 and 0.9 respectively.  However, 
because the characteristics of the Discriminated Vectors in 
DEHT are different from the Bloom Filters in FCHT, the fpr 
will not influence the off-chip memory access which will keep 
at most one access all the time. The rise of the fpr may increase 

 

Fig.7. False positive rate of different k by experiment 

 

 

 

 

 

Fig.6. False positive rate of different k by theoretical analysis  

 

 

 

 

 

Fig.5. Frequency distribution of numbers in on-chip structures 
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the possibility of DEHT to visit the off-chip memory when 
looking up a nonexistent item. However, the fpr of DEHT can 
still keep low and will not hurt the performance even at high 
loads. 

The comparisons of off-chip memory access are in Fig.8 
and Fig.9. We build a hash table of size 30 million and test the 
lookup operations with load factor of 0.3, 0.6 and 0.9 
respectively. Fig.8 shows the results when performing lookups 
on a random querying dataset and most of the items of the 
dataset are not in the hash table. We can see from the result that 
our DEHT is able to distinguish most of the nonexistent items 
from existent ones and no off-chip memory access is needed 
for these lookups. And with the load factor rising, the 
percentage of 0 off-memory access decreases because of the fpr 
ascending. However, this phenomenon is much more obvious 
with FCHT than DEHT because the rising trend of fpr of 
FCHT is much steeper than DEHT. And when the load factor is 
0.9, nearly 10 percent of lookups of FCHT need 2 off-chip 
memory access and 2 percent of lookups need even 3 off-chip 
memory access while all lookups of DEHT need at most 1 
access. Next we use a querying dataset that has 80 percent of 
elements existing in the hash table, which is more common in 
network applications. The result of this querying dataset is in 
Fig.9. We can see similar result in Fig.9 with Fig.8 except that 
the percentage of 0 off-memory access becomes much less 
because the number of nonexistent item of querying is much 
smaller. There are 12 percent and 28 percent of lookups of 
FCHT taking 2 off-chip memory accesses with 0.6 and 0.9 load 
factor respectively. And nearly 4 percent of lookups of FCHT 
need 3 off-chip memory access with 0.9 load factor. In contrast, 

the performance of DEHT keeps stable and always need 1 
access at most. 

VI. CONCLUSION 

In this paper a deterministic and efficient hash table based 
on Cuckoo hash is proposed. We designed an on-chip data 
structure called Discriminated Vectors to reduce the access of 
off-chip hash table to a single one at most when performing 
lookup operations while keeping the usable load ratio of hash 
table as high as Cuckoo hashing. The Discriminated Vectors 
also play a similar role as Bloom Filter in membership 
screening, which avoids most unnecessary off-chip memory 
access for looking-up nonexistent items in the hash table. 
Operations of lookup, insertion and deletion of this data 
structure are elaborated. We make theoretical analysis and 
evaluate this structure in experiments. The results show that the 
memory efficiency is favorable and the false positive rate is 
low. We ensure deterministic off-chip memory access per 
lookup even when the hash table is at high loads, which is 
unattainable for other methods. 
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Fig.9. Off-chip memory accesses of DEHT and FCHT under various load 
factors with inputs of 80% true elements. 

 

 

 

 

 

Fig.8.Off-chip memory accesses of DEHT and FCHT under various load 
factors with random inputs. 

 

 

 

 


