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Abstract— Deep Packet Inspection (DPI) systems have been 

becoming an important element in traffic measurement ever 

since port-based classification was deemed no longer appropriate, 

due to protocol tunneling and misuses of well-defined ports. 

Current DPI systems express application signatures using 

regular expressions and it is usual to perform pattern matching 

through the use of Finite Automaton (FA). Although DPI systems 

are essentially more accurate, they are also resource-intensive 

and do not scale well with link speeds. Looking to this area of 

interest, this paper proposes a novel Deterministic Finite 

Automaton, called Ranged Compressed Deterministic Finite 

Automaton (RCDFA), that compresses transitions without 

additional memory lookups. Experimental results show that 

RCDFA yields space savings of 97% over the original DFA and 

up to 93% better compression when compared to the DFA’s 

state-of-the-art compression techniques. 

Index Terms— DFA Optimizations, Deep Packet Inspection, 

Performance Evaluation, Computer Networks 

I. INTRODUCTION

N the past few years, network traffic characterization has 

become an important tool for accurate network management 

and traffic profiling. It is well known that port-based 

classification is inaccurate, due to traffic tunneling, for 

applications that use other ports assigned to well-known 

services in order to evade firewalls rules, such as P2P 

applications [4][7][5]. For that reason, traffic classification 

techniques have been recently relying on Deep Packet 

Inspection (DPI) engines. Such systems frequently perform a 

set of time-critical operations to verify certain application 

patterns or behaviors, while trying to minimize packet 

processing delays. Although DPI systems are essentially more 

accurate, they frequently perform a set of time-critical 

operations and are consequently resource-intensive. Therefore, 

if not proper designed, they may not scale well with link 

speeds. In general, a DPI system works as follows: first it has 

to collect packets from the network interface cards (NIC), 

create a data structure to represent incoming packets as 

network flows (usually as a hash table), and forward or store 

the received packets for further processing. After that it 

searches for well-known patterns within the packet payload 

(i.e. application signatures) for each flow. Pattern matching 

procedures in DPIs are usually performed at the user-space 

level and are highly processing intensive, which causes 

significant packet losses. In other words, even though NICs 

and Operating Systems’ (OS) kernel can keep up with packets 

arriving at wire-speed, the pattern-matching component of the 

DPI system may not be able to deal with all the incoming 

packets without strangling the processor, thus incurring losses.  

Currently, DPI systems express patterns using regular 

expressions [10]. Therefore, it is natural for them to perform 

pattern matching through the use of Finite Automaton (FA). 

State-space explosion of Deterministic FAs (DFA) may 

require an unacceptable amount of memory space [10]. 

Decreasing the complexity of matching procedures and 

reducing the memory consumption of DFAs are the main 

goals of research studies in this field. This paper proposes and 

evaluates a novel DFA that aims to decrease space 

requirements when used to perform pattern matching in DPI 

systems.  

The contributions of this paper are two-fold: first, we have 

proposed a novel Deterministic Finite Automaton, called 

Ranged Compressed Deterministic Finite Automaton 

(RCDFA). RCDFA is based on the following key observation: 

several consecutive transitions lead to the same destination 

state. Smart transition representations result in huge space 

savings over a standard DFA. Second, we have developed an 

algorithm for converting FAs from the original DFA to 

RCDFA. This implies that previously developed and well-

tested algorithms for parsing from a regular expression to 

Non-Deterministic FAs (NFA) and DFAs can be reutilized. 

We also evaluate and compare the performance of RCDFA to 

state-of-the-art DFA variations for traffic identification. 

The remainder of this paper is organized as follows. Section 
II presents related work. Section III presents our new 
Automaton model. Section IV shows the methodology used on 
RCDFA evaluation and Section V presents experimental 
results. We discuss our findings in Section VI. Concluding 
remarks and suggestions for future work are presented in 
Section VII. 

II. RELATED WORK

Although flexible and expressive, automata-evaluated 

regular expressions traditionally are memory-greedy and 

severely limit performance in most platforms. Developing DPI 

systems at multi-gigabit rates is a difficult task as they need to 

achieve high processing speeds while limiting memory 

consumption or access. Research studies have been adding 

some features to the original automata formalism in order to 

meet such speed and memory consumption requirements. 

I
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In [11] Yu et al. proposed two rewrite rules that can 

dramatically reduce the size of the resulting DFAs. They 

developed techniques to combine multiple DFAs into a small 

number of groups in order to improve matching speeds. 

Kumar et al. [8] introduced a new representation for regular 

expressions, namely Delayed Input DFA (D
2
FA). D

2
FA is 

based on a technique used in the Aho-Corasick string 

matching algorithm. They observed that, in the case of 

practical rule-sets commonly used in network intrusion 

detection systems, many groups of states share sets of 

outgoing transitions. Therefore, in order to explore the 

redundancy present in these DFAs, they introduced a special 

type of transition, called default transitions. With such a 

modification, when matching an input string a default 

transition is used to determine the next state, whenever the 

current state has no outgoing edge labeled with the current 

input character. In [9], Kumar et al. proposed a new 

representation for the D
2
FA, namely Content Addressed 

Delayed Input DFA (CD
2
FA), which aims to improve its 

throughput. CD
2
FA provides a compact representation of 

regular expressions that match the throughput of traditional 

uncompressed DFAs. Becchi et al. [3] introduced a general 

compression technique to reduce the number of transitions of a 

DFA with lower provable bounds on memory bandwidth, 

namely Fast Compression. Similar to D
2
FA, this modification 

reduces the amount of memory needed to represent a DFA by 

exploiting its redundancy. In [6], Ficara et al. developed a new 

DFA variation called DeltaFA. DeltaFA’s compression comes 

from the following observations: most default transitions are 

directed to states closer to the initial state; and, for any given 

input symbol most transitions are directed to the same state. 

Becchi et al. [2] proposed a hybrid automaton which 

addressed the exponential increase in the number of DFA 

states by combining the benefits of deterministic and non-

deterministic finite automata. Basically, their automaton is a 

mix of Deterministic and Non-Deterministic Automata. In 

[10], Smith et al. proposed the Extended Finite Automata 

(XFAs), which augment traditional finite automata by using a 

temporary memory manipulated by instructions attached to 

states and edges. The author also presented a formal definition 

for their XFA and created a technique to build a XFA out of a 

regular expression. 

Our work differs from the above-mentioned state-of-the-art 

models by exploring consecutive transitions in order to reduce 

space requirements. The central idea is simple, but very 

effective and not simplistic. Our model also proves to 

maintain a stable compression ratio when applied to a number 

of data sets, while previous work yields different results for 

datasets with different characteristics. 

III. TECHNICAL BACKGROUND AND THE RANGED 

COMPRESSED DETERMINISTIC FINITE AUTOMATON (RCDFA) 

FA formalism is a well-known and well-established theory. 

It was developed over decades and applied to several different 

fields as pattern recognition, lexical analysis in compilers, and 

recently to computer networks for network security and traffic 

classification. Although FA formalism is solid and general 

enough to deal with the above-mentioned applications, for 

some specific applications, it can exceed available resources, 

causing poor performance. One could make FA faster and 

improve resource consumption by reducing its generality, i.e., 

by modifying the formalism or the algorithms to adapt them to 

specific applications. This can create a FA variation, or even a 

new kind of abstract machine. In fact, some previous studies 

have created new FA variations. Strictly speaking, some of 

them are not FA variations, but new abstract machines, which 

use part of the FA theory to support themselves. Most 

previous research studies do not specify how to convert from a 

RE to its abstract machine. Instead, they use a FA as a base to 

create its abstract machine. From a practical view point, this is 

acceptable, as we are using a well-developed theory as base 

for a new and more specific one. However, we must keep in 

mind that these modifications are not standard FA and can 

have restricted use. 

Following this trend, we looked into the original FA 

formalism and explored opportunities to reduce space 

requirements. We found some room for optimization by 

observing consecutive transitions leading to the same 

destination. Optimizing this aspect of a FA will decrease 

memory usage for storing transitions and will consequently 

decrease the memory footprint during the pattern matching 

procedure. Some previous work [2][3] applied a similar 

technique to export a FA to dot format
1
 for later graphical 

representation conversion. However, they neither used it for 

compressing FA purposes nor described it as a new abstract 

machine model. 

In this work, we aim to decrease the matching complexity 

and to provide memory savings on DFAs. Basically, we 

explore an algorithm to compress transitions without 

additional memory lookups. In other words, we aim at finding 

a good tradeoff between compression and matching speed. In 

addition, we tolerate the decrease of the model generality in 

order to obtain additional memory savings and performance 

gains. Therefore, our solutions are restricted to the traffic 

classification domain. 

A. Motivational Example 

Some previous studies focused on decreasing the number of 

transitions by looking for similar transitions in different states. 

For instance, D
2
FA [8] tries to reduce the number of 

transitions by removing the ones common to pair of states and 

by introducing a default transition into it (default transitions 

are triggered without consuming an input symbol). Although 

that technique is efficient in compressing transitions, it also 

introduces additional memory accesses per input symbol.  

In order to make things clearer, let’s analyze the DFA 

created for recognizing the regular expression (regex) 

^\x01[\x08\x09][\x03\x04] (from L7-Filter’s FreeNet 

                                                          
1Dot Language.  http://www.graphviz.org/doc/info/lang.html
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additional per symbol (C2
) in the state. Hence its time 

complexity would be O(N x C2
), O(n

3
). However, each 

transition represents a range of symbols, and a range could be 

at maximum C symbols length. As a result, the time 

complexity actually is O(N x C), i.e. O(n
2
).

D. Converting DFA to RCDFA 

The algorithm to convert DFA to RCDFA is 

straightforward. In a nutshell, it receives as input an already 

computed DFA and then converts it to a RCDFA. It is also 

possible to derive a RCDFA directly from a regular 

expression. Figure 4 describes the conversion algorithm. In 

line 2 it iterates over all states present in the DFA received as 

parameter. Lines 3 to 20 initialize an array with one position 

for every symbol present in the input alphabet. Then, for every 

symbol in the alphabet, it creates a range transition if the 

subsequent symbols go to the same destination (lines 6 to 20). 

As far as we are concerned with complexity, the conversion 

algorithm requires one step per state (N) and two more per 

symbol (2C). This results in O(N X 2C) complexity, i.e. O(n
2
).

FIGURE 4 – ALGORITHM FOR CONVERTING DFA INTO RCDFA 

E. RCDFA’s Matching Process 

The matching procedure is now quite different from the 

original DFA. With the RCDFA, the matching procedure 

looks to see if the input matches on a character range instead 

of a single character. Figure 5 shows the matching process for 

a RCDFA.  is the transition table mapping from a 

state s and a input char j to a next state d. First, the algorithm 

loads the information for the state s and then it looks for the 

next state. Basically, the lookup process is similar to the DFA; 

however the transition table’s internal organization is totally 

different. It has transitions represented as ranges, therefore it 

verifies if c belongs to a range  (where ) instead 

of comparing with a single character transition. 

FIGURE 5 – ALGORITHM FOR LOOKING UP ON A RCDFA 

F. Combining Models 

RCDFA is orthogonal to other models, i.e. it can also be 

combined with most of previously developed automaton 

models. Therefore, applying RCDFA over other automaton 

model could lead to additional compression. Although some 

previous techniques claim to be orthogonal to the others, we 

need to carefully analyze which techniques could be used this 

way. Misuses of such a tool can result in non-equivalent 

automata, i.e., different results for the automata’s Delta 

functions. For example, both Fast Compression and D
2
FA 

techniques reduce the automaton’s transitions by adding 

default transitions to it. Those default transitions are organized 

by taking into account the likelihood of destination states of 

neighbors’ state transitions. In fact, they use the insertion of 

default transitions for deleting transitions. Actually, one could 

consider them as the same technique with different policies for 

organizing default transitions and deleting labeled transitions. 

At this point it must be clear that those two techniques cannot 

be applied orthogonally one to another. Applying D
2
FA over 

Fast Compression would disorganize the transition 

arrangements of the latter.  We analyzed the RCDFA’s 

orthogonality and found out it is very suitable for default 

transitions’ based models. Consequently, RCDFA can be 

applied over D
2
FA and Fast Compression with minor 

adaptations. We do not show the complete algorithm for 

converting between D
2
FA/Fast Compression to RCDFA due 

to lack of space. Actually, RCDFA conversion algorithm 

needs only to take into account D
2
FA/Fast Compression’s 

default transition to be fully compatible.  Figure 6 presents the 

difference between the conversion of DFA to RCDFA and 

D
2
FA/Fast automata. Before line 21, the algorithm is the same 

as presented in Figure 5. After line 21, the algorithm had to be 

changed to deal with default transitions. In summary, this 

piece of code checks if there is a default transition for the 

current state. If so, it adds the default transition to the new 

automaton.  

FIGURE 6 – ALGORITHM FOR CONVERTING D2FA/FAST INTO RCDFA

RCDFA is also orthogonal to DeltaFA and, even better, 

conversion from DeltaFA to a RCDFA does not require 

1: function RcdaLookup( s, c ) 
2: read( s );

3:    d := ;
4: return d; 
5: end function 

1: function compressDFA( DFA ) 
2: for each state in DFA
3: for each symbol in alphabet do
4:     mark[symbol] := not marked; 
5: end for;
6: for each symbol in alphabet do
7: if mark[symbol] = not marked then
8:       mark[symbol] := marked; 
9:       target:=GetNextState(DFA,state, 

symbol);
10:   ranged := false; 
11:   begin_range = symbol; 
12:   end_range = next symbol; 
13: while end_range < alphabet size and
14:    GetNextState(DFA, state, end_range) =

target do
15:     mark[end_range] := marked; 
16:     end_range := next symbol; 
17: end while;
18:   transitions_table[state] := new 

transition(begin_range, end_range); 
19: end if;
20: end for;
21: end for;
22: end function

21:    defdst=GetDefaultTransitions(DFA,
state)

22:    if ( defdst  EMPTY )then
23: defaulttransitions[state]=deftrans;
24: endif;
25: end for;
26: end function
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changes to the algorithm presented in Figure 5. Therefore, we 

only need to have a DeltaFA as an input instead of a standard 

DFA. The output is then a combination of DeltaFA and 

RCDFA. 

The Deterministic Automata created by such combinations 

is summarized in TABLE  I. Basically, we applied the ranged 

compression over the other three models, namely Fast 

Compression, D
2
FA, and DeltaFA.   

TABLE  I – Combined Automata 

Automaton’s 

Name 

Description 

RcFast Ranged compression applied over a Fast compressed 

automaton 

RcD2FA Ranged compression applied over a D2FA automaton 

RcDelta Ranged compression applied over a DeltaFA automaton 

IV. METHODOLOGY

This section shows the methodology used for evaluating our 

new automaton model. We collect metrics directly from the 

Automaton, i.e., we convert a signature (from a given 

signature set) into an automaton which recognizes it. We then 

apply the compression algorithms creating each automaton 

model. Finally, we compute performance metrics. 

TABLE  II presents the factors and levels we used in our 

experiments. In summary, to test our model we used five 

different signature sets, namely L7-Filter, Bro, Snort-Web, 

Snort-ActiveX, and Snort-Spyware. TABLE  III shows the most 

important parameters of each set, following the classification 

method proposed in [1]. L7-Filter base is the smallest one, but 

with moderate complexity. Bro is medium size, but with low 

complexity. SnortWEB also presents medium size although 

with high complexity. The largest base (SnortActiveX) is also 

very complex. Finally, SnortSpyware is not complex and is 

medium size. Those signature sets give us a good sample of 

real world expressions which DPI engines must tackle. These 

signatures were collected on October 2010. 

TABLE  II – Evaluation Factors and Levels 

Factor Levels 

Signature Set SnortWEB, SnortSpyware, SnortActiveX, Bro and L7-

Filter 

Automata model RCDFA, Fast Compression, DeltaFA, and D2FA 

TABLE  III – Signature sets’ main characteristics 

Sig-Set Base Size Sub-Pattern 

number 

Overall 

complexity 

L-7 Filter Small  Medium  Moderate  

Bro  Medium Low  Low  

Snort-Web Medium Medium  High  

Snort-ActiveX  Large High  High  

Snort-Spyware  Medium  Medium  Low  

We adopted the following metrics in our evaluation: 

• Total of transitions: Number of automaton’s transitions; 

• Single character transitions: Transitions which cannot 

be collapsed with others forming character ranges; 

• Ranged transitions: Transitions which can be triggered 

by character ranges; 

• Space reduction: space reduction percentage over 

original DFA and other techniques; 

• Transitions per state: the average number of transitions 

per state. 

V. EXPERIMENTAL RESULTS

Firstly, we compare the total transitions number of each 

model (D
2
FA, RCDFA, DeltaFA and Fast Compression). 

Secondly, we show the compression rate over the original 

DFA model. Then, we compute how much better RCDFA 

compress over D
2
FA, DeltaFA, and Fast Compression. And, 

finally, we show the average number of transitions per state 

for each model. 

A. L7 - Filter 

For L7-Filter signatures, Fast Compression algorithm 

presented the largest number of transitions; around 1.4M 

transitions were used to represent all expressions whereas Fast 

yielded 900K. D
2
FA utilized 500K transitions and RCDFA 

used only 55K transitions, where 17.5K were single transitions 

and 38.5K were ranged transitions. 

Figure 7 shows the compression rates for every DFA 

modification. As we can see, DeltaFA technique had the worst 

result, since it reduced the DFA size in only 34.2%. Fast 

compression reduced the number of transitions in 59.2%. 

D
2
FA achieved 76% and RCDFA was able to remove 97.4% 

of the original DFA’s transitions. In fact, RCDFA compressed 

96%, 93.8% and 89% better than DeltaFA, Fast Compression 

algorithm and D
2
FA, respectively. RCDFA yielded far 

superior compression for the L7-Filter data set, which makes it 

more suitable for application/protocol identification signatures 

and more adequate for platforms where memory consumption 

is an issue. 

FIGURE 7 – COMPRESSION RESULTS FOR L7 FILTER

TABLE  IV depicts the average number of transitions per 

state. As one could notice, standard DFAs always have | |

symbols per state. For most DPI scenarios this is the ASCII 

table length (256 symbols). Therefore we take 256 symbols as 

our worst case. DeltaFA reduced this number to around 168 

transitions in average. Fast Compression presented 104 

transitions per state in average. D
2
FA had around 60 

transitions per state. Again, RCDFA has better results. It 

requires, in average, around six transitions per state. 
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 TABLE  IV – Average Number of Transitions per State 

Model StdDFA FastDFA D2FA RCDFA DeltaFA 

Number 256 104 60.2 6.4 168.4 

B. Bro 

This time, D
2
FA had the biggest number of transitions, 

137K. DeltaFA and Fast Compression had about half than 

D
2
FA, 75K and 68K transitions respectively. RCDFA shows 

only 19K transitions, where over 8.5K were single transitions 

and ranged transitions accounted for 10.6K. 

Compression comparison among all techniques is shown in 

Figure 8. For the Bro base, the compression rate is not too 

different than it was for L7-Filter. D
2
FA had the smallest 

compression, around 82% followed by Delta with 90%. Fast  

Compression reduced the number of transitions in around 

92%. Again, RCDFA performed well, presenting almost the 

same compression rate as for L7-Filter, 97.5%.  For 

comparison,   RCDFA compressed 86% better than D
2
FA, 

74% better than Fast compression and around 72% better than 

Fast algorithm. 

FIGURE 8 – COMPRESSION RESULTS FOR BRO

TABLE  V shows the average number of transitions for each 

model. As we can we see, for Bro regex, all techniques greatly 

decreased this metric. D
2
FA has the worst result, around 46 

transitions per state, followed by DeltaFA with an average of 

25 transitions. Fast utilized around 23 transitions per state. 

RCDFA reduced far better, it achieved similar results for this 

base, around 6 transitions per state. 
TABLE  V – Average Number of Transitions per State 

Model StdDFA FastDFA D2FA RCDFA DeltaFA 

Number 256 23 46 6.4 25.9 

C. Snort-Web 

For Snort-Web rules, D
2
FA presented the highest number of 

transitions (572K) followed by DeltaFA with 456K 

transitions. Fast Compression had 339K transitions. RCDFA 

presented only 75K composed of 35K single transitions and 

40K ranged transitions. 

Figure 9 compares the compression ratio (CR) for each 

technique. D
2
FA compressed the original DFA about 76%, 

followed by DeltaFA with 81%. Fast Compression reduced the 

number of transitions by 86.3 %. RCDFA achieved 

compression of around 97% (96.9%). Summarizing, RCDFA 

compressed 77.7% better than Fast Compression and around 

83% compared to DeltaFA. It also outperformed D
2
FA by 

around 86%.  As far as we are concerned, in all bases analyzed 

so far, RCDFA has achieved a CR of  around 97%. 

FIGURE 9 – COMPRESSION RESULTS FOR SNORTWEB

The average number of transitions per state is presented in 

TABLE  VI. In this case, all techniques considerably reduced the 

average number of transitions per state. As expected, D
2
FA 

had the worst result, around 59 transitions. DeltaFA yielded 47 

and Fast Compression just about 35 transitions in average. 

RCDFA maintained its steady results presenting only 7 

transitions per state in average. 
TABLE  VI – Average Number of Transitions per State 

Model StdDFA FastDFA D2FA RCDFA DeltaFA 

Number 256 35 59 7.7 47 

D. Snort-ActiveX 

For this base, the results were different than the previous 

ones.  Fast Compression had almost the same number of 

transitions as RCDFA. The former had 5.6M transitions and 

the latter presented 6.6M. D
2
FA and DeltaFA presented 34M 

and 27M transitions respectively, far greater than the other 

bases. 

Following, Figure 10 depicts the compression comparison 

among the DFAs. At this time Fast Compression had slightly 

superior results compared to RCDFA, yielding 97.6% against 

97% for RCDFA. D
2
FA achieved 85% of reduction and 

DeltaFA had results of 88% for this signature set. For this 

base, Fast Compression algorithm performed 6% better than 

RCDFA, although RCDFA was still more efficient than D
2
FA 

and DeltaFA by around 93% and 88%, in that order. 

FIGURE 10 – COMPRESSION RESULTS FOR SNORT-ACTIVEX

TABLE  VII shows the average number of transitions per 

state. In this case D
2
FA had the worst result with 38 

transitions, followed by DeltaFA with 30 transitions per state 

in average. Fast Compression and RCDFA presented almost 

the same results, 6 transitions for the former and around 7 for 

the latter. 
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TABLE  VII – Average Number of Transitions per State 

Model StdDFA FastDFA D2FA RCDFA DeltaFA 

Number 256 6 38.3 7.5 30.5 

E. Snort-Spyware 

In this section, we show results from the last signature set, 

Snort-Spyware expressions. D
2
FA once more presented the 

highest number of transitions, around 642K transitions, 

followed by DeltaFA (414K). Fast had over 251K transitions 

and RCDFA around 93K, distributed as follows: 40K single 

transitions and 52K ranged transitions. 

FIGURE 11 – COMPRESSION RESULTS FOR SNORT-SPYWARE

Figure 11 compares the compression rates for every kind of 

DFA. RCDFA was able to reduce original DFA by 97.3%, 

followed by the Fast model with 92.9%. DeltaFA and D
2
FA 

had the lowest compression, 88.3% and 81.5%, in that order. 

In this base, RCDFA performed 63% better than the Fast 

technique and 77% better than the DeltaFA. RCDFA 

outperformed D
2
FA by 85%. TABLE  VIII presents the average 

number of transitions per state. Again, all techniques 

decreased considerately in this metric. D
2
FA yielded 46 

transitions per state followed by DeltaFA with 29 transitions. 

Fast Compression produced 18 transitions per state. RCDFA 

once again presented around 6 transitions per state in average. 
TABLE  VIII – Average Number of Transitions per State 

Model StdDFA FastDFA D2FA RCDFA DeltaFA 

Number 256 18 46.1 6.7 29.7 

Due to space constraints, this paragraph presents the 

variation related results for the average number of transitions 

per state for all techniques and signature bases. In summary 

D
2
FA, Fast Compression and DeltaFA presents at most 256 

transitions per state and at least one for all signature bases. 

Their standard deviations ranged from 32 to 123 (in general, 

greater than 70). On the other hand, RCDFA has at most 37 

and at least one to three transitions per state for all bases. Its 

standard deviation is very low, around 3 for every base. 

F. RcFast, RcD2FA and RcDelta Resuls 

This subsection presents the experimental results for all 

techniques used in conjunction with RCDFA. 

TABLE  IX presents the combined automata’ transition 

reduction over standard DFA, i.e., how many transitions 

RCDFA reduced over other techniques compared to standard 

DFA. RcFast (Ranged Compression over Fast Compression) 

reduced from 98.5% to 99.4% when compared to the original 

DFA’s transitions. RcD
2
FA (Ranged compression over D

2
FA) 

compressed around 99% for all signature bases. RcDelta 

(Ranged compression over DeltaFA) was able to reduce the 

original DFA from 97.8% to 98.6%. From these results, we 

argue that the best combination is RCDFA and Fast 

Compression. On average, together they are able to decrease 

the number of transitions in 99.16%.  
TABLE  IX – Combined Automata’ Reduction over DFA  

Model L7 Bro Snort 

Web 

Snort 

ActiveX 

Snort 

Spyware 

RcFast 98.5% 99.3% 99.2% 99.4% 99.4% 

RcD2FA 99.1% 99.1% 99% 99% 99.2% 

RcDelta 97.8% 98.6% 98.5% 98.6% 98.5% 

TABLE  X shows the combined automata’ reduction over the 

already compressed automaton. For example, for RcFast this 

means how better the combined technique (RCDFA + Fast) 

performed over the Fast Compression alone. For almost all 

cases, the Ranged Compression combined with other 

techniques is able to decrease more than 90% over the single 

compressed technique. The worst result on average is for 

Snort-ActiveX base. As Ranged Compression had its worst 

results with this base, this was implied within the combined 

automata as well. 

TABLE  X – Combined Automata’ Results over Compressed 

Technique 

Model L7 Bro Snort 

Web 

Snort 

ActiveX 

Snort 

Spyware 

RcFast 96.4% 93.5% 94.8% 75% 92.5% 

RcD2FA 96.5% 95.4% 95.8% 93% 95.6% 

RcDelta 96.7% 86.1% 92.1% 88% 90.7% 

VI. DISCUSSION

In the previous section we compared the transition’s 

number and compression ratio for each signature base and 

automata model. RCDFA presents very good results for L7-

Filter. This indicates applicability for detecting application 

and protocol. RCDFA also satisfactorily compresses 

signatures of IDS systems. It also presents compression of 

around 97% for IDS’s signature sets. However, for Snort-

ActiveX signatures, Fast algorithm performs 6% better than 

RCDFA. Scrutinizing this dataset, we noticed that these 

signatures have an elevated number of sub-patterns. Therefore, 

in datasets containing signatures with too many sub-patterns, 

Fast Compression presents additional compression and 

slightly better results. For all other scenarios, RCDFA 

outperforms Fast and D
2
FA and even better, its compression 

rate remains stable around 97% when applied over datasets 

with different characteristics.  

Additionally, we were able to apply RCDFA orthogonally 

to other techniques. From a practical point of view, techniques 

that rely on default transitions are very suitable for use with 

RCDFA. In such a case, the ones based on default transitions 

explore inter-state opportunities for compression and RCDFA 

would work on intra-state windows. 

Regarding performance, it is a common belief that space 

savings are usually possible only in exchange of processing 

costs, but in DFAs, this is not always true. Evaluating 

performance in terms of memory accesses, standard DFA 
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requires 1 memory access per input symbol, whereas D2FA 

and FastDFA require on average 2 accesses and DeltaFA 

requires 256 accesses. Actually, in [12], the authors showed 

that DeltaFA has performance losses of 99% in software 

implementation. On the other hand, RCDFA achieves good 

space compression while keeping one memory access per 

symbol. Therefore, RCDFA yields huge memory savings and 

its overall processing cost is comparable to the standard DFA 

(i.e., better than the state-of-the-art models). In addition, 

RCDFA has an advantage of improving the matching 

procedure performance by means of cache spatial locality. As 

RCDFA demands less memory space, all transitions will be 

closer to each other, therefore cache hit will also improve 

along with the overall performance. 

Orthogonally, some studies tried to process more than one 

input character per lookup, these techniques are known as 

multi-stride automata. They can improve matching speed at 

the expense of an increased alphabet. RCDFA fits well in this 

scenario, as the more symbols an alphabet has, the more 

opportunities for ranged compression. 

Looking at the experimental results, we can see that for 

RCDFA the average number of transitions is very low, around 

6 transitions. This opens space for smart memory layouts for 

representing RCDFA’s transitions and states. Naïve FA 

implementations would represent an automaton as a matrix 

mxn where m is |state| and n is |alphabet|. Additionally, each 

matrix element has length of (log2|alphabet| + size of pointer) 

bits (size of pointer is 32 or 64 bits depending of the hardware 

architecture). Obviously, for RCDFA this would result in 

memory space wasting as it uses only 6 transitions per state in 

average. Consequently, an RCDFA is not suitable for matrix 

based representations. Better choices would be linear and 

bitmapped memory layout. Particularly, as it has a really low 

number of transitions per states, linear encoding is a perfect 

match for representing RCDFA.   

VII. CONCLUDING REMARKS AND FUTURE WORK

In this paper we proposed a new automaton model, RCDFA. 

We have thoroughly described it and presented an algorithm 

for converting an original DFA to RCDFA. We also ensured 

DFA and RCDFA equivalence. Additionally, we showed how 

to combine RCDFA with previously developed techniques. 

Finally, we evaluated RCDFA and compared it with the state-

of-the-art automaton models for pattern matching. For the sake 

of fairness, the experimental evaluation was conducted using 

several well-known signature bases. According to the 

experimental results, RCDFA is able to compress DFA 

transitions in a stable rate of 97%. It also is able to reduce 

transitions up to 93% better than previous compression 

techniques. Additionally, by combining RCDFA with other 

compression techniques, we were able to reduce the number of 

standard DFA’s transitions by up to 99.4%.  

In the future, we aim to extend the work on optimizations in 

the RCDFA, by looking for matching speed improvements. 

Efficient ways of materialization of the RCDFA model, in 

terms of data structure representation, is also a good research 

challenge.  
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