Counting Bloom Filters for Pattern Matching
and Anti-Evasion at the Wire Speed

Gianni Antichi, Domenico Ficara, Stefano Giordano, Gregorio Procissi, and Fabio Vitucci,
University of Pisa

Abstract

Standard pattern-matching methods used for deep packet inspection and network
security can be evaded by means of TCP and IP fragmentation. To detect such
attacks, intrusion detection systems must reassemble packets before applying
matching algorithms, thus requiring a large amount of memory and time to
respond to the threat. In the literature, only a few efforts proposed a method to
detect evasion attacks at high speed without reassembly. The aim of this article is
to introduce an efficient system for anti-evasion that can be implemented in real
devices. It is based on counting Bloom filters and exploits their capabilities to
quickly update the string set and deal with partial signatures. In this way, the
detection of attacks and almost all of the traffic processing is performed in the fast
data path, thus improving the scalability of intrusion detection systems.

ntrusion detection systems (IDSs) are devices that pro-

tect a network by analyzing all the ingoing traffic and

detecting potentially malicious data. Standard detection

methods consist of searching by using pattern matching
algorithms in IP packets for predefined signatures that charac-
terize an attack. The more recent techniques involve the use
of finite automata (FA) or hybrid schemes such as Aho-Cora-
sick-Boyer-Moore, but their performance is still limited by
issues such as memory size and access delay.

Hence, for string matching, hardware architectures also
were proposed. For instance, to reach very high speeds, FA in
field programmable gate arrays (FPGAs) are used; however,
for adding and deleting strings, a hardware reconfiguration is
required, which is too expensive. The simplest approach is a
ternary-content addressable memory (TCAM), which stores
all the strings. Searches can be very fast (a single clock cycle);
however, the high cost makes TCAM infeasible for large sig-
nature sets.

Recently, Bloom filters (BFs) also were used for pattern
matching [1, 2]. They are hash-based structures that trade a
certain degree of accuracy for considerable savings in memory.
BFs were created to represent a set of elements and to per-
form membership queries so they can be adopted for pattern
matching simply by constructing filters according to a set of
signatures. The advantages are the compact representation
that is typical of BFs and a remarkable reduction of the
amount of traffic handled by the slow path, which result in a
general performance improvement and scalability of IDSs. The
work in [1] adopts parallel BFs: each of them represents the
strings of a specific length, in this way enabling a fast search.
The work in [2] instead combines BFs and parallel hashing:
first packets are passed through a BF, which detects some
strings by acting as an accelerator. Then, such strings are dis-
patched to the parallel hashing engine, which performs a hash
comparison, and in the case of a hash hit, compares the input
string to the actual string to eliminate any false positives.

Moreover, although the set of signatures to be detected
changes very frequently (due to the continuous creation of
new viruses and attacks), Bloom filters do not address the
issues of changing items in a set; hence, counting Bloom fil-
ters (CBFs) were designed. They are based on the same prin-
ciples as BFs but use counters to take into account the
occurrences of items — in this way allowing for quickly updat-
ing the string set and identifying candidates to be used in pat-
tern matching. The work in [3] proposes the use of a bit
vector in which each bit corresponds to a counter of the CBF
representing the string set. Whenever a member is added to
or deleted from the CBF, the corresponding counters are
increased or decreased, respectively. If a counter changes
from zero to one, the corresponding bit in the bit vector is set,
whereas it is cleared if the counter changes from one to zero.
Because the counters are changed only during addition and
deletion of strings in the set, and these updates are relatively
less frequent than the actual query process itself, the authors
suggest the CBF should be maintained in software and the
corresponding bit vector in hardware, thus saving memory
resources.

However, several research efforts [4, 5] show how to evade
standard pattern matching techniques by splitting into several
packets or by changing (e.g., by UTF-8 synonyms) the mali-
cious strings slightly, thus making useless the pattern matching
on single packets. Many software tools (e.g., FTester, Fra-
gRoute, or Nikto) even implement such evasion attacks. This
work focuses on the “fragmentation” evasion (throughout the
article we use the term evasion to refer to it). Currently, the
only way to deal with this problem is to reassemble the overall
packet flows and afterward apply standard pattern-matching
algorithms. This dramatically increases requirements for secu-
rity systems in terms of both memory and processing power,
especially for securing traffic at wire speed. Moreover, to face
a few malicious flows, an IDS must reassemble all passing
flows. In [4], it is shown that the processing for TCP reassem-

30 0890-8044/09/$25.00 © 2009 IEEE

IEEE Network ¢ January/February 2009

Authorized licensed use limited to: National Cheng Kung University. Downloaded on July 5, 2009 at 09:22 from IEEE Xplore. Restrictions apply.

CBF representing string set

bly can be reduced remarkably by optimizing for
the expected case when most TCP segments are

‘1213122014

in order. However, the costs for both memory
and processing remain too high.

Some work tries to avoid the requirement for
flow reassembly to detect evasion attacks. The
authors of [6] propose an architecture composed
of a flow processor and a payload processor. The
former maintains per flow state information for

New string:

hs Updated CBF
h, h;

Signature

multi-packet signature detection, whereas the lat-
ter uses a combination of parallel BFs. More pre-
cisely, the payload processor adopts, for each
length, a BF that represents all the strings of that length, as
well as a BF that represents all the string pieces of that
length. When a packet arrives, a complete check is performed
on all the filters (an expensive process). If a match is detect-
ed, the flow database is updated, and the state becomes mali-
cious (if a whole signature is found) or suspicious (if a simple
piece is found). Whenever the flow state is malicious, the flow
is passed to an analyzer for a further deterministic check. This
scheme assumes that packets are not ambiguous, in order, and
not overlapped, thus neglecting many real issues. Moreover,
the use of filters for prefixes of one or two bytes appears too
expensive for memory requirements, processing power, and
alert rate, thus making such a system inefficient.

The basic idea of [7] is to split the signatures to be searched
by pattern-matching algorithms into small substrings. In this
way, if a sufficiently large piece is completely inserted in a
packet, it is easily detected. Otherwise, the attacker is forced
to use several very small or out-of-order packets, and such
abnormal behaviors are revealed by adopting proper heuris-
tics. Both techniques are performed in the fast data path, thus
guaranteeing a big saving in terms of both time and memory
with respect to the overall flow reassembly. However, this
solution presents some weaknesses: when the counter of small
or out-of-order packets of a specific flow exceeds a threshold,
such a flow is diverted to the slow data path. The article
claims that this threshold is set according to the signature
length that the small packets belong to. Unfortunately, it is
not possible to know such a parameter before the flow has
been reassembled and the entire signature has been detected;
hence, this heuristic appears difficult to use.

Anti-evasion is a difficult problem and to find a conclusive
solution is very difficult. Hence, our work is an attempt to
address the problem in an alternate and effective way, thus
creating new opportunities for future research on this topic.
The main goal is the same as that of [6] and [7]: avoid flow
reassembly for detecting an evasion attack. First, we show how
CBFs can be used for anti-evasion techniques due to their
appealing features in terms of compactness and speed, update
capability, and emptying feasibility. Then, a comprehensive
CBF-based solution for anti-evasion is illustrated. More pre-
cisely, the article is organized as follows. The next section
illustrates the usefulness of CBFs in pattern matching and
anti-evasion. Then, we describe the main concepts of our sys-
tem, its overall functioning, and the heuristics used for specif-
ic patterns of attacks. Finally, we present some potential
improvements of our solution, and an experimental evaluation
concludes the article.

CBFs for Pattern Matching and Anti-Evasion

A Bloom filter represents a set S of n elements from a uni-
verse U by using an array of m bits, denoted as B[1], ..., B[m],
initially all set to 0. The filter uses k independent hash func-
tions Ay, ..., hy with logy(m) bits long output, which indepen-
dently map each element in the universe to a random number

M Figure 1. Addition of a new string in a CBF.

uniformly over the range. For each element x in S, the bits
Blhi(x)] are set to 1 for 1 <i < k (a bit can be set to 1 multiple
times).

To answer a query of the form “Isy in $?”, one checks
whether all B[h;(y)] are set to 1. If not, y is not a member of S,
by construction. If all B[A;(y)] are set to 1, it is assumed that y
is in S; hence, a BF may yield a false positive. The probability
of a false positive (f) can be tuned opportunely by choosing
the proper values for m and k.

However, BFs do not allow changes in the item set. In fact,
deletion cannot be accomplished simply by changing ones into
zeros, as a single bit may correspond to multiple elements.
Therefore, CBFs were introduced, which are based on the
same idea of BFs, but use fixed-size counters (also called
bins) instead of single bits of presence. When an item is
inserted, the corresponding counters are increased; then, dele-
tions can be performed safely by decreasing the counters.

CBFs are used in representing elements for their well-
known compactness and speed. Our idea is also to use them
for pattern matching and anti-evasion due to their innovative
capabilities of quickly updating the set they represent and
counting the occurrences of elements. The first property can
be used to rapidly take into account each new virus definition,
with no need to rebuild the overall structure: to add a new
string to be matched, it is sufficient to apply the hash func-
tions to such a string and increase the proper CBF bins (as
shown in Fig. 1, where the new string SIGNATURE is added
and h; are the hash functions). The same principles can be
used for removing an obsolete string.

Counting the occurrences of elements makes CBFs appeal-
ing just for anti-evasion. Indeed, a CBF can be set to repre-
sent the different substrings composing a string: the arrival of
any pieces belonging to the string triggers a decrease of the
proper bins and when the filter is completely reset to zero, the
overall match is detected. In this way, to reveal an evasion
attack, it is no longer necessary to divert a flow to a slow data
path engine, which must reassemble the flow and perform pat-
tern matching. The detection, unlike when using BFs, can be
performed completely in the fast data path, thus speeding up
the overall performance of an IDS.

The Anti-Evasion System

Motivations and Ideas

The main idea of our system is to split a priori the strings to
be searched in three-byte-long substrings and create a CBF
representing them (hereafter called “substring CBF” or simply
subCBF) for preliminary pattern matching. When a substring
is detected through the subCBF, a bank of further filters
(called string CBFs, or striCBFs) is properly set for the specif-
ic flow: more precisely, a filter is initialized for each string
that the detected substring belongs to. In this way, all the next
packets of that flow are processed in search of the remaining
characters of the strings: whenever a striCBF is completely
reset to zero, the attack is detected and the flow is blocked.

IEEE Network ¢ January/February 2009

31

Authorized licensed use limited to: National Cheng Kung University. Downloaded on July 5, 2009 at 09:22 from IEEE Xplore. Restrictions apply.

PME
s N
Cl-d-0-T-0-T-0-T-1T-15
SD StriCBF °
Cl-1-f-T-0-T-0T-{-T-]p
SubCBF
: F
L1]2]o]3]1]1]2]o]0f4] B :
Cl-1-T-T-0-T-0T-7-T-1f
2
\ J
PME
s N
Cl-f-r-T-0-0-1-0-1T-1/5
SD StriCBF \(/)v
Cl-f-f-T-0-0-T-7-1T-1]3
Class UDP SubCBF : .
[3[1]2]o]1]o]2]2]0]1] R ;
Cl-T-T-T-0-T-0T-7-T-1w
4
\ J
PME
r N
Cl-f-f-T-0-0-1-0-1T-1/
SD StriCBF o
Cl-1-T-T-7-T-0T-T-T-1]J¢
SubCBF .
L1[2]1]3]of1]o]2]3]3] e :
Cl-f-0-T-0-T-7-7-1-1w
7
\ J

B Figure 2. The scheme of our system.

However, not all the attacks can be detected in this way; for
instance, a string split in several very small packets (less than
three bytes) is not revealed because the substring detectors
search only for substrings of three bytes. Therefore, we plan
to divert such packets (very infrequent in real traffic) to the
slow data path for flow reassembly and pattern matching.
Moreover we set a threshold on the maximum number of
flows to be diverted, thus avoiding denial of service attacks.

The only assumption we make is that packets entering our
anti-evasion system are not ambiguous, that is, packets do not
overlap. To force this condition, we assume a traffic normaliz-
er (like the one described in [8]) before our system, which
keeps traffic flows consistent and solves any ambiguities. The
arrival of out-of-order packets does not affect the correct
functioning of the system and the proper detection of attacks.

System Architecture

Our architecture, shown in Fig. 2, is composed of several
modules. At first, traffic flows are divided by a classifier
according to transport protocols and forwarded to different
engines, named substring detectors (SDs). Such a first division
enables the balancing of the load among the SDs and decreas-
es the size of their relative filters. Each SD performs a pattern
matching on the overall content of packets by using its specific
subCBF, which represents the set of strings that identifies the
valid attacks for that protocol. More precisely, a subCBF rep-
resents substrings of three bytes; such a specific length has
been selected also to reveal the shortest strings, which are six
bytes long, as pointed out from the analysis of SNORT data
sets.

Consequently, a substring detector processes all the ingoing
traffic of a specific transport protocol, by moving along an
inspection window of three bytes. When all the hash functions

applied to a group of three bytes point to full bins of the sub-
CBF, the SD determines that the substring was detected. As
previously mentioned, the use of CBFs in this phase allows for
a fast update of a string set. In particular, we choose multilay-
ered compressed counting Bloom filters [9] to implement sub-
CBFs: the first layer, which is used for the frequent lookups,
can be placed in a fast and small memory, whereas the other
layers, useful for string-set updates, can be stored in a slower
memory.

After a malicious substring is detected by one of the SDs, a
block of striCBFs are set to determine if such an alert actually
corresponds to a complete attack. These filters are built a pri-
ori and stored in memory: they are addressed by simple hash
tables, which in turn are efficiently indexed by the bins of the
subCBFs (as suggested in [10]). Then, the striCBFs are han-
dled by other modules, the so-called pattern-matching engines
(PMESs), which process the specific traffic flow that the classi-
fication stage forwards to it (by means of a classification rule
that is set by the SD after the substring detection). The goal
of each PME is to perform an overall pattern matching on the
flow to determine if the detected substring is actually a piece
of a string or simply a false positive. For this purpose, the
PME sets a striCBF for each string that the detected substring
belongs to. Such a CBF represents all the remaining charac-
ters of the string in the format (char, pos), where pos is, for
example, the TCP sequence number of the character char.
More precisely, the sequence number of the byte that gets off
the string is associated to the filter, so pos is actually the rela-
tive position with respect to such a value. Whenever a striCBF
is completely reset to zero, it is assumed that the string was
detected, and the packets must be dropped to nullify the
attack.

Furthermore, the string length also is associated to the fil-

32

IEEE Network ¢ January/February 2009

Authorized licensed use limited to: National Cheng Kung University. Downloaded on July 5, 2009 at 09:22 from IEEE Xplore. Restrictions apply.

AAAAASI GNATU REAAAAAA

W Figure 3. The string is SIGNATURE. The piece SI is not out-
right detected, and when the piece GNA generates an alert, it
has already been processed.

ter; from such a value and from the beginning point of the
string, the engine can understand which bytes of the flow it
must process and which bytes cannot belong to the string. In
addition, by processing the proper fields of the TCP header,
the engine can determine when the filter must be removed
because it “has expired.”

Clearly, the bins corresponding to the characters of the
detected substring that started the filter are decreased in the
initialization phase. In this way, the functioning of PMEs is
independent of the arrival order of packets: also a “middle”
substring that arrives as first leads off the striCBF setting, and
this does not affect the correct functioning of the system.

Small Packets

If an attacker splits the signature in several one- or two-byte
long packets (hereafter, we call them small packets), the sys-
tem cannot detect the attack because the substring detectors
search for substrings of three bytes. Fortunately, packets of
one to two bytes are very rare in real traffic,! except for cer-
tain applications such as telnet and ssh; therefore, we can use
their presence as an alert and adopt proper expedients.

In previous work on anti-evasion systems, this type of
attack was faced only partially. In [6], a prefix Bloom filter is
set for each substring length, but filters representing pieces of
one or two bytes require an excessive amount of memory;
moreover, they trigger a hard processing for each packet and
an intolerable alert rate (each time a character belonging to a
string is found, an alert is generated). Instead, the authors of
[7] propose a heuristic that is very difficult to apply in prac-
tice, as illustrated in the first section.

Our idea to thwart this type of attack is to divert all the
small packets to a slow path engine; this policy is based on the
consideration that they are very infrequent in real traffic. The
slow path engine must reassemble such flows and perform a
deterministic pattern matching on them to verify the actual
presence of an attack. To face denial of service attacks, we
also select a threshold on the maximum number of flows to be
diverted. Otherwise, attackers could inject a small packet for
each flow and force the system to divert and reassemble all
the flows.

System Optimization

Our system can be improved, in terms of both functioning and
performance, by adopting a series of refinements.

Analyzing real data sets of malicious signatures, we noticed
the presence of a few substrings that are very frequent, both
in the malicious strings and in normal traffic. We plan to
delete such substrings from the filters, thus saving memory
(smaller filters) and processing load (less substrings that gen-
erate an alert). What are the potential drawbacks? Deleting
such frequent strings from the subCBFs could result in a
lower detection capability because fewer substrings signal an
attack. Furthermore, the deletion from the striCBFs could
increase false positives because filters can be more easily reset
to zero. However, the experimental results in the next section
show just a slight increase of detection capability and decrease

! As shown for example by data at http://netflow.internet2.edu/

of false positives, hence the adoption of such an expedient
turns out to be convenient.

Our standard system does not detect all possible patterns of
attacks. For example, in some cases the beginning of a signa-
ture is missed, because it is too short to be revealed by the
substring detectors, whereas it belongs to a packet that is too
long to be classified as small (as SI in Fig. 3). Therefore, the
packet is identified as normal and whenever another fragment
(GNATU in the figure) triggers a striCBF setting, this piece
already has been processed. In this way, some bins continue to
be full, and the filter is never completely reset to zero. More-
over, to speed up processing, one might consider not waiting
for the overall emptying of filters. Therefore, for the efficien-
cy of our system, it seems advisable to set an “emptying
threshold” o for the striCBFs: when o is exceeded, the attack
is considered as detected. Such a threshold is computed as the
ratio between the number of bin decrements and the sum of
all the bin counters, where o equal to 1 means that the overall
filter must be depleted, whereas lowering the threshold results
in a faster detection. It is necessary to find the correct trade-
off between a higher speed and a larger number of potential
false positives (as shown in the next section).

With respect to the memory efficiency, whereas CBFs (or
their improved versions, multilayer compressed counting
Bloom filters [ML-CCBF] [9]), blooming trees [11], or dI-CBF
[12]) are the best choices for subCBFs, striCBFs may not
require the minimum amount of memory for their function,
that is, to recognize simple characters. Thus, striCBFs can be
replaced by the actual signature string and a bitmap (one bit
per signature byte) that indicates whether each character has
been found or not; by pursuing this approach, we use nine bits
per signature byte. Instead, with a plain CBF, we would need
a number of bits per character equal to 4k/In2 (k = log2f
where f is the false positive probability), which falls down
approximately to k/In2 bits if a blooming tree (BT) is used. Of
course when k is large, this amount can be larger than nine
bits.

Therefore, the choice of using either the string itself or a
CBF (or, better, a BT) is related to the parameter f, which is,
in turn, computed according to the total number of times n,
we query that particular filter. In fact, the mean number of
false positives is given by the product of f and n,; as we do
not have overlapping packets (because of the normalizer), the
number of times n, we check a given striCBF that represents
a n-bytes string is exactly n. Then, by simply selecting f xn =
2k xn << 1, we can cope with false positives largely by limit-
ing their mean number. In practice, we have found that when
n < 10 (remember that striCBFs do not include the three-
byte substrings found by subCBFs, thus further reducing n),
we can achieve to use less than nine bits per character without
increasing the amount of false positives. In the experiments
shown in the next section, we used the combinations of BTs
and strings+bitmaps that minimize the amount of memory
used.

Experimental Results

For the experimental runs, a cluster of PCs that generate traf-
fic toward a LAN is used: one of them runs FTester, which is
a software tool designed for testing IDS capabilities, while the
other ones generate background traffic. A general purpose PC
running our anti-evasion system is placed before the LAN to
protect it. We are not required to use a normalizer (included
by our system) because we set FTester to generate attacks
with no ambiguities.

FTester can create evasion attacks, by splitting signatures
among several packets and with different lengths and number

IEEE Network ¢ January/February 2009

33

Authorized licensed use limited to: National Cheng Kung University. Downloaded on July 5, 2009 at 09:22 from IEEE Xplore. Restrictions apply.

Normal attacks

Small attacks Total attacks

Trace (slizzytes)

Generated Detected False pos. Generated Detected False pos. Generated Detected False pos.
Tr1 224 4240 99.8% 0.23% 312 100% 4.8% 4552 99.8% 0.5%
Tr2 190 3800 98.9% 0.1% 310 100% 4.8% 4110 99% 0.46%
Tr3 160 1418 99.9% 0.35% 200 100% 3.5% 1618 99.9% 0.74%
Trd 100 1213 100% 0.32% 185 100% 4.3% 1398 100% 0.85%
Tr5 50 789 99.2% 0.25% 108 100% 6.4% 897 99.2% 1%

W Table 1. Performance of the standard system in terms of detected attacks and false positives..

Detected att. (%) False pos. (%)

Trace

NFS ST NFS ST
Tr1 99.7 99.8 0.26 0.23
Tr2 98.9 98.9 0.13 0.1
Tr3 99.8 99.8 0.35 0.35
Tra 99.8 100 0.41 0.32
Tr5 99.2 99.2 0.5 0.25

B Table 2. The effects of deleting the most frequent substrings.

100 1.4
I I I I I - - -Detections (%)

—e—False positives (%)

Detections (%)
False positives (%)

M Figure 4. Detection percentage and false positives by varying o.

of signatures, order of pieces, and so on. In particular, we use

the following options of FTester (let us suppose the malicious

string is ATTACK):

e -—¢ stream (simple splitting of the TCP stream): packet =
[packet](ATT) + packet2(ACK)]

* ——e fragl (out of order packets): packet = [fragment3(C) +
fragment2(TA) + fragment1(AT) + fragment4(K)]

e ——e frag2 (like fragl but send the last fragment first): packet
= [fragment4(K) + fragment3(C) + fragment2(TA) +
fragment1(AT)]

The lengths of substrings in our runs are alternated to have
both “normal” evasion attacks (with substrings of almost three
bytes) and attacks with small packets (less than two bytes). In
Table 1, for traces of different sizes and by distinguishing

between normal and small attacks, the following data are
reported:

* The number of attacks that are generated

* The percentage of real attacks we detect

» The percentage of false positives

The last three columns enumerate the total values. Such
measurements refer to the standard functioning of the system;
the effects of the optimizations listed in the previous section
are shown later.

These results exhibit high percentages of detection, whereas
the number of false positives remains small. As foreseen, the
technique used against the attacks performed with small pack-
ets generates the largest number of false alerts because each
small packet is signaled as a potential attack.

In Table 2, the potential drawbacks of deleting off-line the
most frequent substrings from the filters are shown. The
traces under test are the same as in Table 1, and we refer only
to the normal attacks (i.e., columns 3-5 in Table 1) because
the small attacks are not affected by such a modification. The
number of detected attacks by deleting such substrings (“No
Frequent Substrings,” NFS in the table) is practically equal to
those revealed by the standard system (ST), whereas the num-
ber of false positives increases slightly. These results justify
the adoption of such a refinement, which without remarkable
additional cost, improves the efficiency of the system in terms
of both memory and speed. Specifically, by adopting such an
expedient, we observe a mean reduction of memory footprint
by a factor of four in the experiments, thus requiring less than
100 bytes for each flow processed by the PMEs.

Finally, for the processing of the trace Trl, Fig. 4 shows the
effects of the “emptying threshold” o that enables us to detect
a string even though the relative striCBF was not reset to zero
completely. It is clear that choosing low values of o results in
a higher percentage of detection but also in a larger number
of false positives, whereas for high values, the opposite hap-
pens. In any case, the number of detected attacks is sufficient-
ly high (i.e., beyond 99 percent).

Conclusions

This article presents a CBF-based system for anti-evasion.
CBFs are very appealing structures for this purpose because
they efficiently represent elements, perform fast lookup,
quickly update the string sets, and enable detecting a split sig-
nature.

In detail, in our system the traffic flows are divided by a
classifier according to the transport protocol and forwarded to
the substring detectors, which reveal the presence of danger-
ous substrings; such a preliminary detection enables a pattern-
matching engine to search for the remaining characters of the
malicious string.

The improvement of our proposal is that all the traffic is

34

IEEE Network ¢ January/February 2009

Authorized licensed use limited to: National Cheng Kung University. Downloaded on July 5, 2009 at 09:22 from IEEE Xplore. Restrictions apply.

processed in the fast data path, thus achieving a large increase
in speed. Indeed, by using the CBF, we can perform an over-
all string matching, with no need to reassemble the flow in the
slow data path; the cost is a given probability of false posi-
tives, which is inherent in CBFs and can be properly tuned
when setting the filters. For very small packets only (shorter
than three bytes), we are forced to divert the flows to the slow
data path. A series of refinements were presented to solve
some issues or improve system performance.

As for results, this solution achieves a detection rate of
nearly 99 percent. We plan to perform more accurate mea-
surements to illustrate the advantages in terms of processing
speed and to determine the maximum number of attacks per
second that can be revealed and the memory consumption per
flow.

Acknowledgments

This work was partially sponsored by the European Project
FP7-ICT PRISM, contract number 215350 and by the “Fon-
dazione Cassa di Risparmio di Pisa” research program
FRINP.

References

[1] S. Dharmapurikar et al., “Deep Packet Inspection Using Parallel Bloom Fil-
ters,” IEEE Micro, vol. 24, no. 1, 2004, pp. 52-61.

[2] M. Nourani and P. Katta, “Bloom Filter Accelerator for String Matching,”
Proc. 16th Intl. Conf. Comp. Commun. Net., pp. 185-90.

[3] L. Fan et al., “Summary Cache: A Scalable Wide-Area Web Cache Sharing
Protocol,” SIGCOMM Comp. Commun. Rev., vol. 28, no. 4, 1998, pp.
254-65.

[4] T. H. Ptacek and T. N. Newsham, “Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection,” Secure Networks, Inc., T2R-0Y6, Tech.
Rep.},] Alberfo, Canada, 1998; http://citeseer.ist.psu.edu/ ptacek98inser-
tion.htm|

[5] M. Handley, V. Paxson, and C. Kreibich, “Network Intrusion Detection: Eva-
sion, Traffic Normalization, and End-to-End Protocol Semantics,” Proc. 10th
Conf. USENIX Sec. Symp., 2001, p. 9.

[6] N. S. Artan and H. J. Chao, ”Muﬁi-Pccket Signature Detection Using Prefix
Bloom Filters,” Proc. IEEE GLOBECOM, vol. 3, 2005, pp. 1811-16.

[7] G. Varghese, J. A. Fingerhut, and F. Bonomi, “Detecting Evasion Attacks at
High Speeds without Reassembly,” SIGCOMM Comp. Commun. Rev., vol.
36, no. 4, 2006, pp. 327-38.

[8] M. Vutukuru, H. Balakrishnan, and V. Paxson, “Efficient and Robust TCP
Stream Normalization,” IEEE Symp. Sec. Privacy, Oakland, CA, May 2008.

[9] D. Ficara et al., "Multilayer Compressed Counting Bloom Filters," Proc.
INFOCOM “08, Apr. 2008.

[10] H. Song et al., "Fast Hash Table Lookup Using Extended Bloom Filter: An
Aid to Network Processing," Proc. 2005 Conf. Apps., Tech., Architectures,
Protocols Comp. Commun., New York, NY, 2005, pp. 181-92.

[11] D. Ficara et al., "Blooming Trees: Space-Efficient Structures for Data Repre-
sentation," Proc. IEEE ICC ‘08, May 2008.

[12] F. Bonomi et al., "An Improved Construction for Counting Bloom Filters,"
LNCS 4168, 14th Annual Euro.Symp. Algorithms, 2006, pp. 684-95.

Biographies

GIANNI ANTICHI (fgianni.antichi@iet.unipi.it) received his Master’s degree in
telecommunication engineering in September 2007 from the University of Pisa,
by discussing a thesis on implementation of a high-performance IP traffic genera-
tor. In January 2008 he entered, as a Ph.D. student, the Department of Informa-
tion Engineering at the University of Pisa, where he is currently doing research in
the areas of packet classification, network processors, and FPGA

DOMENICO FICARA (domenico.ficara@iet.unipi.it) received a Master's degree in
telecommunication engineering from the University of Pisa in 2005, discussing a
thesis on resource scheduling in network processors. In January 2007 he joined
the Department of Information Engineering at the University of Pisa as a Ph.D.
student, where he is currently doing resectri in the area of network algorithmics,
deep packet inspection, network tomography, and topology discovery.

STEFANO GIORDANO (stefano.giordano@iet.unipi.it) received a Laurea degree in
electronics engineering and a Ph.D. degree in information engineering, both
from the University of Pisa. He is an associate professor with the Department of
Information Engineering of the University of Pisa. He is a referee for the Euro-
pean Union, the NSF, and the ltalian MIUR and MAP Ministries. His research
interests are telecommunication networks analysis and design, simulation of com-
munication networks, and multimedia communications.

GREGORIO PROCISSI (gregorio.procissi@iet.unipi.it) received a graduate degree in
telecommunication engineering in 1997 and a Ph.D. degree in information engi-
neering in 2002 from the University of Pisa. From 2000 to 2001 he was a visit-
ing scholar at the Computer Science Department of University of California at
Los Angeles. In September 2002 he became a researcher with CNIT. Since 2005
he hasgbeen an assistant professor with the Department of Information Engineer-
ing of the University of Pisa. His research interests are measurements and perfor-
mance evaluation of IP networks.

FABIO ViTuccl (fabio.vituccig@iet.unipi.if) received, from the University of Pisa, his
Master’s degree in telecommunication engineering in October 2004 with a thesis
on simulative analysis of MPLS networks, and a Ph.D. degree in information
engineering in June 2008 with a thesis on network processors. He is currently
doing research at the Department of Information Engineering of the University of
Pisa in the areas of packet classification, pattern matching, and network proces-
sors.

IEEE Network ¢ January/February 2009

35

Authorized licensed use limited to: National Cheng Kung University. Downloaded on July 5, 2009 at 09:22 from IEEE Xplore. Restrictions apply.

