
An Ultra High Throughput and Memory Efficient Pipeline
Architecture for Multi-Match Packet Classification

without TCAMs
Yang Xu, Zhaobo Liu, Zhuoyuan Zhang, H. Jonathan Chao

Polytechnic Institute of New York University
yangxu@poly.edu, {zliu01, zzhang04@students.poly.edu}, chao@poly.edu

ABSTRACT

The emergence of new network applications like network
intrusion detection system, packet-level accounting, and load-
balancing requires packet classification to report all matched
rules, instead of only the best matched rule. Although several
schemes have been proposed recently to address the multi-match
packet classification problem, most of them require either huge
memory or expensive Ternary Content Addressable Memory
(TCAM) to store the intermediate data structure, or suffer from
steep performance degradation under certain types of classifiers.
In this paper, we decompose the operation of multi-match packet
classification from the complicated multi-dimensional search to
several single-dimensional searches, and present an asynchronous
pipeline architecture based on a signature tree structure to
combine the intermediate results returned from single-dimensional
searches. By spreading edges of the signature tree in multiple hash
tables at different stages of the pipeline, the pipeline can achieve a
high throughput via the inter-stage parallel access to hash tables.
To exploit further intra-stage parallelism, two edge-grouping
algorithms are designed to evenly divide the edges associated with
each stage into multiple work-conserving hash tables with
minimum overhead. Extensive simulation using realistic
classifiers and traffic traces shows that the proposed pipeline
architecture outperforms HyperCut and B2PC schemes in
classification speed by at least one order of magnitude, while with
a similar storage requirement. Particularly, with different types of
classifiers of 4K rules, the proposed pipeline architecture is able
to achieve a throughput between 19.5 Gbps and 91 Gbps.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General Security

and protection (e.g., firewalls); C.2.6 [Internetworking]: Routers

General Terms

Algorithms, Performance, Design, Experimentation, Security

Keywords

Packet Classification, Signature Tree, TCAM, Hash Table

1. INTRODUCTION
As the Internet continues to grow rapidly, packet classification has
become a major bottleneck of high-speed routers. Most traditional
network applications require packet classification to return the
best or highest-priority matched rule. However, with the
emergence of new network applications like Network Intrusion
Detection System (NIDS), packet-level accounting [1], and load-
balancing, packet classification is required to report all matched
rules, not only the best matched rule. Packet classification with
this capability is called multi-match packet classification
[2][3][4][5], to differ from the conventional best-match packet
classification.

Typical NIDS systems, like SNORT [6], use multi-match packet
classification as a pre-processing module to filter out benign
network traffic and so that reduce the rate of suspect traffic
arriving at the content matching module [7][8] , which is more
complicated than packet classification, and usually can not run at
the line rate in the worst case situation. As a pre-processing
module, packet classification has to check every incoming packet
by comparing fields of the packet header against rules defined in a
classifier. To avoid slowing down the performance of NIDS
system, packet classification should run at the line rate in spite of
the classifiers and traffic patterns.

Many schemes have been proposed in literature aiming at
optimizing the performance of packet classification in terms of
classification speed and storage cost; however most of them focus
on only the best-match packet classification [9][10][11]. Although
some of them could also be used for multi-match packet
classification, they suffer from either huge memory requirement or
steep performance degradation under certain types of classifiers
[13][18]. Ternary Content Addressable Memory (TCAM) is well-
known for its parallel search capability and constant processing
speed, and is widely used in IP routing lookup and best-match
packet classification. Due to the limitation of its native circuit
structure, TCAM can only return the first matching entry and
therefore can not be directly used in multi-match packet
classification. To enable the multi-match packet classification on
TCAM, some research work published recently [2][3][4][5]
propose to add redundant intersection rules in TCAM. However,
the introduction of redundant intersection rules further increases
the already high implementation cost of TCAM system.

The objective of this paper is to design a high throughput and
memory efficient multi-match packet classification scheme
without using TCAMs. Given the fact that single-dimensional
search is much simpler and has already been well studied, we
decompose the complex multi-match packet classification into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ANCS’09, October 19-20, 2009, Princeton, New Jersey, USA.
Copyright 2009 ACM 978-1-60558-630-4/09/0010...$10.00.

ANCS 2009

189

two steps. In the first step, single-dimensional searches are
performed in parallel to return matched fields on each dimension.
In the second step, a well-designed pipeline architecture combines
the results from single-dimensional searches to find all matched
rules. Simulation results show that the proposed pipeline
architecture performs very well under all tested classifiers, and is
able to classify one packet within every 2~10 time slots. Our main
contributions in this paper are summarized as follows.

1. We model the multi-match packet classification as a
concatenated multi-string matching problem, which could be
solved by traversing a signature tree structure.

2. We propose an asynchronous pipeline architecture to
accelerate the traversal of the signature tree. By distributing
edges of the signature tree into hash tables at different stages,
the proposed pipeline can achieve a very high throughput.

3. We propose two edge-grouping algorithms to partition the
hash table at each stage of the pipeline into multiple work-
conserving hash tables, so that the intra-stage parallelism
could be exploited. By taking advantage of the properties of
the signature tree, the proposed edge-grouping algorithms
well solve the location problem, overhead minimization
problem, and balancing problem involved in the process of
hash table partition.

The rest of the paper is organized as follows. Section 2 reviews
the related work. Section 3 formally defines the multi-match
packet classification problem, and presents terms to be used in
this paper. Section 4 introduces the concept of signature tree,
based on which Section 5 proposes an asynchronous pipeline
architecture. Section 6 presents two edge-grouping algorithms
which are used to exploit intra-stage parallel query. In Section 7,
we discuss the implementation issues and present the
experimental results. Finally Section 8 concludes the paper.

2. RELATED WORK
Many schemes have been proposed in literature to address the
best-match packet classification problem, such as trie based
schemes [9][12], decision tree based schemes[11][13], TCAM
based schemes [14][15], and two-stage schemes[12][18][19][20].
However, most of them can not be used directly in multi-match
packet classification.

In this paper, we focus on the two-stage schemes, in which the
multi-dimensional search of packet classification is first
decomposed into several single-dimensional searches, and then
the intermediate results of single-dimensional searches are
combined to get the final matched rule. To facilitate the
combination operation, each field of rules in two-stage schemes is
usually encoded as either one range ID or several segment IDs.
Consider the classifier shown in Figure 1, which has three 2-
dimensional rules, each represented by a rectangle. Ranges are
defined as the projections of the rectangles along a certain axis.
For example, the projections of rule R1, R2, and R3 along axis X
form three ranges denoted by X_RG1, X_RG3, and X_RG2,
respectively. In contrast, segments are the intervals divided by the
boundaries of projections.

With segment encoding method, each rule is represented by
multiple segment ID combinations, which may cause serious
storage explosion problem [12][18]. Several schemes [19][20]

have been proposed to address the storage explosion problem by
using TCAM and specially designed encoding scheme. However,
the use of TCAM increases the power consumption and
implementation cost, and more importantly, it limits the use of the
schemes only in best-match packet classification.

With range encoding method, the representation of each rule
requires only one range ID combination, and therefore the storage
explosion problem involved in the segment encoding is avoided.
The low storage requirement comes at a price of slow query speed,
which prevents the range encoding method from being used in
practical systems. To the best of our knowledge, the only
published two-stage classification scheme using range encoding is
B2PC [16], which uses multiple Bloom Filters to fasten the
validation of range ID combinations. In order to avoid the slow
exhaustive validation, B2PC examines range ID combinations
according to a predetermined sequence, and returns only the first
matched range ID combination, which may not always correspond
to the highest-priority matched rule due to the inherent limitation
of B2PC scheme. Furthermore, B2PC can not support multi-
match packet classification.

X

Y

X_RG1

X_RG2

X_RG3

X_SG1 X_SG2 X_SG3 X_SG4 X_SG5

Rule 1

Rule 2

Rule 3

P

Figure 1. Segment encoding vs. range encoding.

3. PROBLEM STATEMENT
A classifier C is a set of N rules, sorted in descending order of
priorities. The priorities of rules are usually defined by their rule
IDs, where a smaller rule ID means a higher priority. Each rule
includes d fields, each of which represents a range on a certain
dimension. From a geometric point of view, each rule represents a
hyper-rectangle in the d-dimensional space. Since each packet
header corresponds to a point P in the d-dimensional space, the
problem of conventional best-match packet classification is
equivalent to finding the highest-priority hyper-rectangle
enclosing point P, while the problem of multi-match packet
classification is equivalent to finding all hyper-rectangles
enclosing point P.

In order to perform the multi-match packet classification
efficiently, given a classifier, we covert it to an encoded
counterpart by assigning each unique range a unique ID on each
dimension. Given the classifier in Table 1, its encoded counterpart
is shown in Table 2, in which fij is the ID of the jth

 unique range
appeared on the ith dimension of the classifier.

190

Table 1. A classifier with seven rules

Rule Src IP Dest IP Src Port Dest Port Protocol

r1 128.238.147.3 169.229.16.* 135 * TCP

r2 128.238.147.3 169.229.16.* <1024 80 UDP

r3 128.238.147.3 169.229.16.* * 21 TCP

r4 128.238.147.3 169.229.16.* * 21 *

r5 169.229. 4.* 128.238.147.3 <1024 <1024 TCP

r6 128.238.147.3 169.229.4.* 110 80 TCP

r7 169.229.4.* * * 21 TCP

Table 2. The classifier after range encoding

Rule Src IP Dest IP Src Port Dest Port Protocol

r1 f11 f21 f31 f41 f51

r2 f11 f21 f32 f42 f52

r3 f11 f21 f33 f43 f51

r4 f11 f21 f33 f43 f53

r5 f12 f22 f32 f44 f51

r6 f11 f23 f34 f42 f51

r7 f12 f24 f33 f43 f51

Table 3. A packet to be classified

Src IP Dest IP Src Port Dest Port Protocol

128.238.147.3 169.229.16.2 135 21 TCP

Table 4. Range IDs returned by single-dimensional searches

Src IP Dest IP Src Port Dest Port Protocol

f11 f21 f31 f41 f51

f24 f32 f43 f53

f33 f44

Given a packet header and an encoded classifier with d
dimensions, the multi-match packet classification scheme
proposed in this paper consists of two steps. In the first step, d
relevant fields of the packet header are each sent to a single-
dimensional search engine, where either prefix-based matching or
range-based matching will be performed to return all matched
range IDs. Consider a packet header given in Table 3, the range
IDs returned from five single-dimensional search engines are
shown in Table 4, and can form 1x2x3x3x2=36 different range ID
combinations. Since we have no idea in advance of which
combinations among the 36 appear in the encoded classifier, we
have to examine all 36 combinations, without exception, in the
second step to return all valid combinations. Since the single-
dimensional search problem have been well addressed in literature
[17], in this paper we focus on only the second step. In the left
part of the paper, packet classification will specifically refer to
this second step unless special notation is given.

If we view each range ID as a character, the multi-match packet
classification problem could be modeled as a concatenated multi-
string matching problem. In this problem, the encoded classifier
could be regarded as a set of strings with d characters. From the
encoded classifier, we can get d universal character sets, each of
which includes characters in one column of the encoded classifier.
The set of range IDs returned by each single-dimensional search
engine is called matching character set, which is a subset of the

corresponding universal character set. The concatenated multi-

string matching problem is to identify all strings in the

encoded classifier which could be constructed by

concatenating one character from each of d matching

character sets. The main challenge of the concatenated multi-
string matching problem is to examine a large number of
concatenated strings at an extremely high speed to meet the
requirement of high-speed routers.

4. SIGNATURE TREE
To facilitate the operation of concatenated multi-string matching,
we present a data structure named signature tree to store strings in
the encoded classifier. Figure 2 shows a signature tree
corresponding to the encoded classifier in Table 2. Each edge in
the tree represents a character, and each node represents a prefix
of strings in the encoded classifier. The ID of each leaf node
represents the ID of a rule in the encoded classifier.

Figure 2. An example of signature tree.

The concatenated multi-string matching could be performed by
traversing the signature tree according to the inputs of d matching
character sets. If any of the d matching character sets is empty, the
result would be NULL. Otherwise, the matching is performed as
follows. At the beginning, only the root node is active. The
outgoing edges of the root node are examined against the
characters in the first matching character set. Each time when a
match is found, the corresponding node (at level one) pointed by
the matched edge will be activated. After the examination, the
root node is deactivated, and one or multiple nodes (if at least one
matching edge is found) at level one become active. Then the
active nodes at level one will be examined one by one against the
characters in the second matching character set. Similar procedure
will repeat to examine characters in the remaining matching
character sets. In this procedure, active nodes move from low
levels to high levels of the signature tree, and eventually IDs of
the active leaf nodes represent the matched rules.

The traversal complexity of the signature tree depends on many
factors, including the size of each matching character set, the
number of active nodes at each level when the signature tree is
being traversed, as well as the implementation method of the
signature tree. One way of implementing the signature tree is to
store each node as a whole data structure, and connect parent and
child nodes together by points in the parent nodes. However, our
analysis on the real classifiers shows that the numbers of outgoing

191

edges of nodes have a very large deviation (due to the inherent
non-uniform distribution of field values in classifiers), which
makes the design of a compact node structure a very challenging
task. Even if we came up with a compact node structure using
pointer compressing scheme [21], incremental updates and query
operations on the signature tree would become extremely difficult.
Therefore in this paper, rather than storing each node as a whole
structure, we break up the node and store edges directly in a hash
table. More specifically, each edge on the signature tree takes one
entry of the hash table in the form of <source node ID:character,
destined node ID>. Here “source node ID : character” means the
concatenation of “source node ID” and “character” in binary
mode, and works as the key of the hash function, while “destined
node ID” is the result we hope to get from the hash table access.

Apparently, the processing speed of the signature tree based
packet classification is determined by the number of hash table
accesses required for classifying each packet. In the following
sections, we divide the hash table into multiple partitions to
exploit parallel hash table access to improve the performance.
Here, we introduce two properties about the universal character
set and the signature tree, which will be used later.

Property 1. Characters in each universal character set could be

encoded as any bit strings as long as there are no two characters

being given the same encoding.

Property 2. Nodes on the signature tree could be given any IDs,

as long as there are no two nodes being given the same IDs at the

same level.

5. ASYNCHRONOUS PIPELINE

ARCHITECTURE
To improve the traversal speed of the signature tree, we separate
the signature tree into d-1 partitions, and store edges of each
partition into an individual hash table. More specifically, the
outgoing edges of level-i nodes (i=1,…,d-1) are stored in hash
table i. An example of the signature tree after partition is shown in
Figure 2, which has four partitions. The corresponding hash tables
of these four partitions are shown in Figure 3. It’s worth noting
that outgoing edges of the root node are not stored. This is
because the root node is the only node at level 0, and each of its
outgoing edges corresponds to exactly one character in the first
universal character set. According to property 1, we can encode
each character of the first universal character set as the ID of the
corresponding destined level-1 node. For instance, in Figure 2 we
can let f11=N11 and f12=N12. So given the first matching character
set, we can immediately get the IDs of level-1 active nodes.

For a d-dimensional packet classification application, we propose
an asynchronous pipeline architecture with d-1 stages. Figure 3
gives an example of the proposed pipeline architecture with d=5.
It includes d-1 processing modules (PM). Each PM is attached
with an input Character FIFO (CFIFO), an input Active node
FIFO (AFIFO), an output AFIFO, and a hash table. Each CFIFO
supplies the connected PM with a set of matching characters
returned by the single-dimensional search engine. Each AFIFO
delivers active node IDs between adjacent PMs. Each hash table
stores edges at a certain partition of the signature tree.

Since each packet may have multiple matching characters/active
nodes at each stage of the pipeline, two bits in each entry of

CFIFO/AFIFO are used to indicate the ownership of matching
characters/active nodes, as shown in Figure 4. An “S” bit set to 1
means that the entry is the first matching character/active node of
a packet, while an “E” bit set to 1 means that the entry is the last
matching character/active node of a packet. If both “S” and “E”
bits are set to 1, it means that the entry is the only matching
character/active node of a packet.

 Figure 3. Pipelining architecture for packet classification.

Figure 4. The format of entries in CFIFO/AFIFO.

When a packet is going to be classified, the d relevant fields of the
packet header are first sent to d single-dimensional search engines.
Each search engine returns a set of matching characters
representing the matched ranges on the corresponding dimension
to the attached CFIFO (the first search engine returns matching
characters to the attached AFIFO 1). If no matching character is
found, a NULL character encoded as all “0” is returned.

In the pipeline, all PMs work in exactly the same way, therefore
we focus on a certain PM i (i=1,…,d-1) and consider the
procedure that a packet P is being processed at PM i.

Suppose that packet P have x active node IDs in AFIFO i, which
are denoted by n1, n2, …, nx, and y matching characters in CFIFO
i, which are denoted by c1, c2, …, cy. The processing of packet P at
PM i could be decomposed to the processing of x active node IDs.
In the processing of each active node ID, say nj, PM i takes out
matching character c1, c2, …, cy from the attached CFIFO, and
concatenate each of them (if the character is not NULL) to nj to
form y hash keys to access the attached hash table. Results from
the hash table indicate the IDs of nj’s child nodes, and will be
pushed into the output AFIFO when the output AFIFO is not full.
If the output AFIFO is currently full, the push-in operation along
with the operation of PM i will be suspended until one slot of the
output AFIFO becomes available.

During the processing of packet P, if PM i can not find any match
in the hash table, it will push a “NULL” node ID encoded as all
“0” into the output AFIFO to indicate the downstream PMs that
the packet won’t match any rule.

The number of hash table accesses required by PM i to process
packet P is equal to the product of the numbers of associated
active nodes and matching characters of packet P, i.e. x·y in this
case, if we omit the overhead caused by the hash collision.

192

6. INTRA-STAGE PARALLEL QUERY
The asynchronous pipeline architecture introduced above deploys
one hash table at each stage. The processing of each active node
ID at each PM may involve multiple hash table accesses. To
accelerate the processing of each active node ID, we plan to
further partition the hash table at each stage to exploit intra-stage
parallelism. After the intra-stage partition, each PM might be
associated with multiple hash tables, which could be accessed in
parallel. To keep the pipeline easy to control and avoid the packet
out-of-sequence, each PM will process active node IDs in the
strict serial way. That is, if there is an active node ID currently
being processed (some hash tables are therefore occupied), the
processing of next active node ID could not be started, even if
there are hash tables available to use.

Before introducing schemes for the intra-stage hash table partition,
we present several concepts, among which the concept of
independent range set is similar but not exactly the same as the
concept of independent rule set proposed by Sun et al. in [23].

Definition 1. Independent ranges

Let 1f and 2f 1 2()f f≠ be two ranges on a dimension. 1f is called

independent to 2f if 1 2f f φ=∩ .

Definition 2. Independent range set

Let T be a set of ranges. T is called an independent range set if

any two ranges in T are independent.

Definition 3. Independent characters

Let c1 and c2 be two characters associated with range f1 and f2. c1

is called independent to c2 if f1 is independent to f2.

Definition 4. Independent character set

Let U be a set of characters. U is called an independent character
set if any two characters in U are independent.

Definition 5. Independent edges

Suppose e1=<s1:c1, d1> and e2=<s2:c2, d2> are two edges in a
certain partition of the signature tree. e1 is called dependent to e2 if
s1=s2 and c1 is dependent to c2; otherwise, e1 is called independent
to e2.

Definition 6. Independent edge set

Let E be a set of edges in a certain partition of the signature tree.

E is called an independent edge set if any two edges in E are
independent.

Definition 7. Work-conserving hash tables

Suppose we have M hash tables associated with PM i of the
pipeline, where an active node ID, say nid1, is being processed.
We say these hash tables are work-conserving for processing nid1,
if no hash table is left idle when there are matching characters
associated with nid1 waiting for query; in other words, we can
always find a free hash table in which an un-queried edge1 of nid1

is stored if not all hash table are occupied. Hash tables associated
with PM i are called work-conserving hash tables, if they are
work-conserving for processing any active node IDs.

1 An un-queried edge of an active node ID could be either a real

edge or an unreal edge on the signature tree. The query for an
unreal edge will cause a return of search failure.

6.1 Edge Grouping
The main objective of the intra-stage hash table partition is to
guarantee the work-conserving property of the partitioned hash
tables, so that the processing throughput of PM could be
maximized and more predictable. Given M work-conserving hash
tables and y matching characters, the processing of each active

node ID can be finished within /y M   parallel hash accesses.

Suppose we want to partition the original hash table associated to
PM i into M work-conserving hash tables. The most
straightforward way is to divide edges of the original hash table
into M independent edge sets, and store each of them in an
individual hash table. This way, we can guarantee the work-
conserving property of the partitioned hash tables, because edges
to be queried for an active node ID must be dependent to each
other, and stored in different hash tables.

However, since M is a user-specified parameter, M hash tables
may not be sufficient to avoid the dependency among all edges.
Therefore, instead of dividing edges of the original hash table into
M independent sets, we would divide them into M+1 sets denoted

by (1,.., 1)kG k M= + , among which the first M sets are all

independent edge sets, and the last set is a residual edge set,
which stores edges not fitting into the first M sets. The above
action is called edge-grouping. We call edges in the independent
edge sets regular edges, and call edges in the residual edge set
residual edges.

Given the M+1 edge sets after the edge-grouping, we could store
edges of each independent edge set into an individual hash table,
while duplicate edges of the residual edge set into all M hash
tables. When an active node is being processed, we first query its
regular edges, and then its residual edges. It’s easily seen that no
hash table would be left idle if there is an un-queried edge.
Therefore the work-conserving property of the partitioned hash
tables is guaranteed.

Actually, the problem of edge-grouping itself is not difficult. The
main challenge comes from the following three aspects.

(1) Given an edge (real or unreal edge), how to locate the
partitioned hash table in which the edge is stored?

(2) How to minimize the overhead caused by the redundancy of
residual edges?

(3) How to balance the sizes of partitioned hash tables?

We name these three problems as location problem, overhead
minimization problem, and balance problem, respectively, and
present two edge-grouping schemes to deal with them.

6.2 Character-Based Edge-Grouping
The first edge-grouping scheme is named character-based edge-

grouping (CB_EG). Its basic idea is to divide edges according to
their associated characters, and embed the grouping information
in the encodings of characters. More specifically, we reserve the

first 2log (1)M +   bit of each character to be the locating prefix,

whose value is between 0 and M. If the locating prefix of a
character is 0, edges labeled with the character are residual edges,
and can be found in any partitioned hash tables. Otherwise, edges
labeled with the character are regular edges, and can only be
found in the partitioned hash table indexed by the locating prefix.
The location problem of edge-grouping is solved.

193

To address the overhead minimization problem and the balance
problem, we model the CB_EG scheme as a weighted character

grouping (WCG) problem.

Let U be the universal character set associated with PM i. Let Uk

(k=1,…,M+1) be M+1 non-overlapping character sets divided
from U.

Let c be an arbitrary character in U, and W(c) be its weight
function, meaning the number of edges labeled with c in the
original hash table.

Let W(Uk) (k=1,…,M+1) be the weight of character set Uk.

Let L() be the dependence indicator. ∀ c1,c2 ∈ U, if c1 is
dependent to c2, L(c1, c2):=1; otherwise, L(c1, c2):=0.

The WCG problem is formally described in Table 5, which is to
find a valid configuration of Uk (k=1,…,M+1) achieving the given
objective. We have proved that WCG problem is an NP-hard
problem (due to space limitations, the proof is not given in the
paper). Thus, we use the greedy algorithm in Table 6 to solve the
WCG problem.

According to M+1 character sets returned by the greedy WCG
algorithm, we assign each character a locating prefix, and divide
edges of the original hash table into M+1 edge sets. The principle
is that for each character in Uk (k=1,…,M), we let k be its locating
prefix, and allocate its associated edges to edge set Gk; for each
character in UM+1, we let 0 be its locating prefix, and allocate its
associated edges to edge set GM+1. After that, we could get M
partitioned hash tables by allocating edges of Gk (k=1,…,M) to
hash table k, and duplicating edges of GM+1 to every hash table.

Let’s consider an example, which partitions the last hash table of
Figure 3 into two work-conserving hash tables with CB_EG
scheme. First of all, we get the universal character set associated
with PM 4. It has three characters: f51, f52, and f53, whose weights
are 5, 1, and 1, respectively. With the greedy WCG algorithm, the
three characters are divided into two independent character sets
(U1 and U2) and one residual character set (U3), among which U1
contains f51, U2 contains f52, and U3 contains f53. Therefore edges
labeled with character f51 and f52 are allocated to the first
partitioned hash table and the second partitioned hash table
respectively, while edges labeled with character f53 are duplicated
to both partitioned hash tables. The final partition result is shown
in Figure 5(a).

We use PE to denote the partition efficiency of a hash table
partition, and define it in (1).

of edges in the original hash table

of edges in the largest partitioned hash table
PE

M
=

×
 (1)

In the example above, the partition efficiency is only 58.3%,
which is because of two reasons. The first reason is the
redundancy caused by the residual edge <N43:f53, 4>. The second
reason is the extreme unbalance between two partitioned hash
tables. This unbalance is caused by the inherent property of
CB_EG scheme, which has to allocate edges labeled with the
same character into the same hash table. In the last hash table of
Figure 3, five out of seven edges are labeled with the same
character f51. According to CB_EG scheme, these five edges have
to be allocated to the same hash table, which results in the
unbalance between partitioned hash tables.

As a matter of fact, in real classifiers, the second reason degrades
the partition efficiency more severely than the first reason. This is
because many fields of real classifiers have very unbalanced
distributions on field values. For instance, the transport-layer
protocol field of real classifiers is restricted to a small set of field
values, such as TCP, UDP, ICMP, and etc. Most of entries, say
80%, of real classifiers are associated with TCP protocol. With
CB_EG scheme, edges labeled with TCP have to be allocated to
the same hash table, which may cause extreme unbalance of hash
tables, and thus result in a low partition efficiency.

Table 5. The weighted character grouping problem

Subject to.

kU U⊆ (1,..., 1)k M= + ; (2)

 k
k

U U=∪ ; (3)

 1 2 (1, 2 1,..., 1& 1 2)k kU U k k M k kφ= = + ≠∩ (4)

1 2 1 2

1 2

1 2 1 2

1 (,)
(,) :

0 (,)

c is depedent to c c c U
L c c

c is independent to c c c U

∈
= 

∈
 (5)

 1 2 1 2(,) 0 , (1,...,)
k

L c c c c U k M= ∀ ∈ = (6)

 () : ()
k

k

c U

W U W c
∈

= ∑ (7)

Objective.

 Minimize: 1
1,...,

(() ())k M
k M
Max W U W U +
=

+ (8)

Table 6. Greedy algorithm for the WCG problem

Input: U: the universal character set; M: the number of
independent character sets; W(c): the weight of character c.

Output: Independent character sets U1,… ,UM ; and residual
character set UM+1.

: (1,..., 1)kU k Mφ= = + ;

() : 0 (1,...,)kW U k M= = ; //the weight of set
kU

Sort U in decreasing order of the character weight.
(1) if U is empty, return (Uk (k=1,…,M+1));
(2) From U select the character c with the largest weight;

(3) Select the set 'U with the smallest weight among sets

U1,… ,UM whose characters are all independent to c. If
there is more than one such set, select the first one. If no
such set is found, put c into set UM+1, remove c from set U,
and go to step (1);

(4) Put c into set 'U ; remove c from set U; '() ()W U W c+ = ;

Go to step (1).

 (a) CB_EG scheme (b) NCB_EG scheme

Figure 5. Two partitioned hash tables from the last hash table

in Figure 3

194

6.3 Node-Character-Based Edge-Grouping
The second edge-grouping scheme is named Node-Character-
Based Edge-Grouping (NCB_EG), which divides edges not only
based on their labeled characters, but also based on the IDs of
their source nodes.

According to property 2, the ID of each node on the signature tree
could be assigned to any values as long as there are no two nodes
at the same level assigned the same ID. With this property,
NCB_EG scheme stores the grouping information of each edge in
both the encoding of the edge’s associated character, and the ID
of the edge’s source node. More specifically, NCB_EG scheme

reserves the first 2log (1)M +   bit of each character to be the

locating prefix, and the first 2log M   bits of each node ID to be

the shifting prefix. Given an arbitrary edge <s1:c1, d1>, suppose
the locating prefix of c1 is loc, and the shifting prefix of s1 is sft. If
loc equals 0, the edge is a residual edge, and could be found in
any partitioned hash tables. Otherwise, the edge is a regular edge,
and could only be found in the partitioned hash table indexed by
(sft+loc-1) mod M +1.

In order to locate the partitioned hash table in which a given edge
is stored using the above principle, we have to divide edges into
different edge sets following the same principle. In contrast to
CB_EG, NCB_EG scheme solves the overhead minimization
problem and the balance problem in two different steps, which are
named Locating Prefix Assignment (LPA), and Shift Prefix
Assignment (SPA).

The overhead minimization problem is solved in the step of LPA,
in which the universal character set associated with PM i is
divided into M independent character sets and one residual
character set. Each character is assigned a locating prefix ranging
from 0 to M according to the character set it is allocated to. The
LPA step could also be described by the WCG problem given in
Table 5 with only the objective changed from (8) to (9).

 Minimize: 1()MW U +
 (9)

We can not find a polynomial time optimal algorithm to solve the
WCG problem with the objective in (9), therefore we use the
greedy WCG algorithm given in Table 6 to solve it.

The purpose of the SPA step is to balance the sizes of
independent edge sets. This is achieved by assigning shift prefix
to each node to adjust the edge sets in which the outgoing edges
of the node are allocated. A heuristic algorithm for the shift prefix
assignment is given in Table 7.

Consider using NCB_EG scheme to partition the last hash table of
Figure 3 into two work-conserving hash tables. The LPA step of
NCB_EG is same to the CB_EG. With the greedy WCG algorithm,
we can get two independent character sets (U1 and U2) and one
residual character set (U3), among which U1 contains f51, U2
contains f52, and U3 contains f53. Therefore the locating prefixes of
f51, f52, and f53 are 1, 2, and 0, respectively. Then SPA algorithm is
used to assign each level-4 node of the signature tree a shift prefix.
Since Node N43 has two outgoing edges, while other nodes have
only one, it will be first assigned a shift prefix. Since all
independent edge sets (G1 and G2) are empty at the beginning, we
assign a shift prefix of 0 to N43. Based on the shift prefix on the
N43, and the locating prefix on characters, regular edge <N43:f51,
3> is allocated to G1, and residual edge <N43:f53, 4> is allocated to

G3. N41 is the second node to be assigned a shift prefix. In order to
balance the sizes of G1 and G2, the shift prefix of N41 is set to 1,
so that the edge <N41:f51, 1> is allocated to G2 according to the
locating prefix of f51. Similarly, N42, N44, N45, and N46 will be
each assigned a shift prefix, and their outgoing edges are allocated
to the corresponding edge sets. After the edge-grouping, the final
partitioned hash tables are shown in Figure 5(b), where the
residual edge <N43:f53, 4> is duplicated in both hash tables.

In this example, the hash table partition efficiency is 7/8=87.5%,
which is higher than that with CB_EG scheme. The main reason
for this improved partition efficiency is that NCB_EG scheme is
capable of spreading edges labeled with character f51 into different
hash tables, so that a better balance between partitioned hash
tables is achieved.

Table 7. Shift Prefix Assignment Algorithm

Input:
M: the number of independent character sets; Independent
character set U1,…,UM, and residual character set UM+1;
S: the set of nodes at level i of the signature tree;
E: the set of outgoing edges of nodes in S;

Output:
Shift prefixes of nodes in S;
Independent edge sets G1,…,GM, and residual edge set GM+1;

: (1,..., 1)kG k Mφ= = + ;

Sort nodes of S in decreasing order of the number of outgoing
edges;

(1) for each node n in S do
(2) Divide the outgoing edges of n into M+1 sets. The

principle is that for characters in Uk (k=1,…,M+1), put
their associated outgoing edges to Zk;

(3) Select the largest edge set Zt among Zk (k=1,…,M); if
there are multiple largest edge set, select the first one;

(4) Select the smallest edge set Gv among Gk (k=1,…,M); if
there are multiple smallest edge set, select the first one;

(5) Let p:= (v-t) mod M, and set the shift prefix of n as p;
//align Zt to Gv to achieve balance among Gk (k=1,…,M);

(6) for each set Zk (k=1,…,M) do
(7) Move edges from set Zk to set G(k+p-1) mod M +1;

(8) rof;
(9) Move edges from set ZM+1 to set GM +1;

(10) rof;

7. IMPLEMENTATION ISSUES AND

PERFORMANCE EVALUATION

7.1 Scalability and Incremental Update
The proposed pipeline architecture supports an arbitrary number
of dimensions. To add/delete a dimension, we only need to
add/remove a PM along with its associated single-dimensional
search engine, CFIFO, AFIFO, and hash tables.

The pipeline architecture also supports incremental updates of
rules. To add/remove a rule, we traverse the signature tree along
the path representing the rule, and add/remove the corresponding
edges in hash tables. Since the complexity of insertion/remove
operation in hash table is O(1), the pipeline architecture has a very
low complexity for incremental update.

195

7.2 Hash Tables and Storage Complexity
Suppose the maximum number of rules supported by the proposed
pipeline architecture is N, the maximum number of hash tables
used at each stage is M, and the number of total dimensions is d.
The storage requirement of the pipeline architecture mainly comes
from two parts. (1) d single-dimensional search engines; (2) hash
tables and AFIFOs/CFIFOs in the pipeline.

The storage requirement of each single-dimensional search engine
depends greatly on the type of field associated to the dimension.
For instance, if the type of field is transport-layer protocol, a 256-
entry table could be used as the search engine, which requires no
more than 1 Kbytes of memory. If the type of field is
source/destination IP address, an IP lookup engine is required to
be the single-dimensional search engine, which might require
70~100 Kbytes of memory [17].

For hash tables in the pipeline, we use a low load factor (LF) of
0.5 to lower the chance of hash collisions, and use the simple
linear probing scheme to resolve the hash collision [22]. The
storage requirement for hash tables at each stage (H) is
determined by the number of edges associated to that stage (T),
the number of bits used to represent each edge (B), the load factor
of hash tables, and the partition efficiency (PE) when multiple
hash tables are used. H could be represented by (10).

1 1

H T B
PE LF

= × × × (bits) (10)

Since each edge e1 is represented by <s1:c1, d1>, where s1 is the ID
of the source node of e1, c1 is the character labeled on e1, and d1 is
the ID of the destination node of e1, the number of bits required to
represent each edge is equal to the sum of the numbers of bits
used for representing s1, c1, and d1. It is easily seen that the
number of nodes at each level of the signature tree is no more than
N, therefore s1 and d1 can each be represented by

2 2log logM N+       bits, where the first 2log M   bit are the

shift prefix, and the last 2log N   bit are used to uniquely identify

the node at each level of the signature tree. The number of
characters in the universal character set on each dimension is
equal to the number of unique ranges on that dimension. It is easy
to see that the unique range on each dimension is no more than N.

Therefore c1 could be encoded as 2 2log (1) logM N+ +       bits,

where the first 2log (1)M +   bits are the locating prefix, and the

last 2log N   bits are used to uniquely identify the character

(range) on the dimension. Sum up, the number of bits used for
representing each edge could be obtained in (11).

 2 2 23 log 2 log log (1)B N M M≤ + + +           (11)

The number of edges to be stored at each stage of the pipeline is

bounded by N, therefore T N≤ . If we assume the hash table

partition efficiency is 1 (Shortly, we will show that the partition
efficiency of NCB_EG scheme is close to 1), and substitute it
along with LF, T and (11) into (10), we can get the total storage
requirement of the hash tables at each stage as in (12).

 2 2 26 log 6 log (bits) log (bytes)H N N N M N N≈ + ≈       (12)

Since there are d-1 stages in the pipeline, the total memory
requirement is about N(d-1)log2N bytes.

Regarding AFIFOs and CFIFOs, later we will show that each
AFIFO/CFIFO only needs a small piece of memory, say 8 entries,
to achieve a good enough performance. If d=5, the total storage
requirement for 5 AFIFOs and 4 CFIFOs is less than 200 bytes,
which could be ignored compared to the storage requirement of
hash tables.

As a whole, the total storage requirement of the pipeline
architecture excluding the single dimensional search engines is
about N(d-1)log2N bytes. If we substitute N=4K, d=5 in it, the
storage requirement is about 192 Kbytes, which is among the
compact packet classification schemes proposed in literature even
if we count in the memory required by the single dimensional
search engines.

7.3 Performance Evaluation
To evaluate the performance of the proposed pipeline architecture,
we use ClassBench tool suites developed by Taylor to generate
classifiers and traffic traces [24]. Three types of classifiers are
used in the evaluation, which are Access Control Lists (ACL),
Firewalls (FW), and IP Chains (IPC). We generate two classifiers
for each type using the provided filter seed files, and name them
as ACL1, ACL2, FW1, FW2, IPC1, and IPC2, each of which has
five dimensions and about 4K rules2.

We first evaluate the partition efficiency. Table 8 shows the
partition efficiencies of CB_EG and NCB_EG under classifier
ACL1, FW1, and IPC1 with the number of partitioned hash tables
(M) at each stage changed from 2 to 4. Apparently, NCB_EG
always outperforms CB_EG, and can achieve a partition
efficiency higher than 90% in most situations. The only exception
is the Destination IP field, where the partition efficiency achieved
by NCB_EG ranges from 67% to 96%. The reason for this
relatively low partition efficiency is because Destination IP field
corresponds to level 1 of the signature tree, which has fewer
nodes than other levels, although each node at level 1 has a large
fan-out. The small number of large fan-out nodes lowers the
efficiency of SPA algorithm, and thus increase the unbalance
between partitioned hash tables. Fortunately, the number of edges
associated to the first stage of the pipeline is far less than that
associated to other stages. Therefore the relatively low partition
efficiency would not increase too much of the storage requirement.
In the left part of this section, all simulations are conducted with
NCB_EG scheme.

In the proposed pipeline, when an AFIFO becomes full, the
backpressure would prevent the upstream PM from processing
new active node IDs, therefore the size of AFIFO might affect the
throughput of the pipeline to a certain extent. Figure 6 shows the
relationship between AFIFO size and the average time slots for
exporting one classification result, where one time slot is defined
as the time for one memory access. Curves in the figure show that
the throughput of the pipeline is not sensitive to the AFIFO size.
When AFIFO size is large than 8, the pipeline can achieve stable
throughputs regardless of the classifier types and the value of M.
Further increasing the AFIFO size can not lead to significant
throughput improvement. Therefore, in the left part of simulations,
the sizes of AFIFOs are all set to 8 entries.

2 The generated rules are slightly less than 4K because of the

existence of redundant rules.[24]

196

Table 8. The partition efficiency of CB_EG and NCB_EG at different stages of the pipeline with different classifiers

of

edges
CB_EG NCB_EG

of

edges
CB_EG NCB_EG

of

edges
CB_EG NCB_EG

of

edges
CN_EG NCB_EG

ACL1 2 1568 93.44% 96.43% 1568 50.00% 100.00% 3273 65.83% 95.65% 3429 54.26% 99.97%

3 1568 88.59% 93.84% 1568 33.33% 99.94% 3273 78.66% 95.03% 3429 37.41% 100.00%

4 1568 86.92% 93.11% 1568 25.00% 100.00% 3273 80.38% 94.05% 3429 28.37% 99.91%

FW1 2 2400 74.77% 90.50% 2625 68.65% 97.87% 3509 73.13% 93.42% 3601 76.58% 98.87%

3 2400 93.24% 94.90% 2625 47.14% 99.89% 3509 91.45% 99.80% 3601 52.21% 97.75%

4 2400 73.89% 85.47% 2625 35.36% 99.89% 3509 79.03% 99.80% 3601 41.51% 96.59%

IPC1 2 2691 52.17% 67.61% 2889 62.40% 98.07% 3488 77.79% 90.04% 3588 73.16% 100.00%

3 2691 56.27% 69.27% 2889 42.50% 99.59% 3488 61.32% 97.70% 3588 83.06% 99.92%

4 2691 65.32% 77.24% 2889 31.87% 99.21% 3488 46.81% 99.32% 3588 64.12% 99.89%

Dest Port Protocol

Classifer
of Hash

Tables (M)

Dest IP Src Port

1 2 4 8 16 32 64

4

6

8

10

12

14

16

18

20

22

24

26

28

30

 IPC1 (M=1)
 IPC1 (M=2)

 IPC1 (M=4)

 FW1 (M=1)
 FW1 (M=2)
 FW1 (M=4)

T
im

e
 S

lo
t

AFIFO Size

 ACL1 (M=1)
 ACL1 (M=2)
 ACL1 (M=4)

Figure 6. Time slots for generating one result vs. AFIFO Size

In Table 9, we compare the proposed pipeline architecture with
HyperCut [13] and B2PC scheme [16] in terms of the average
time slots for each classification operation. Since the original
B2PC scheme was designed to return only the most specific rule,
we made changes on it to return all matched rules. The bucket size
of HyperCut is set to 16, and its space factor is set to 4 (optimized
for speed). We suppose that each memory access of HyperCut
could read 64 bits. When measuring the time slots of processing
each packet for the proposed pipeline, we don’t count in the time
spent for single-dimensional searches. This is because single-
dimensional search engines [17] are able to return a search result
in every 2.2 memory accesses (time slots), which is smaller than
the time spent by the pipeline. When single-dimensional search
engines operate in parallel with the pipeline architecture, they
won’t affect the pipeline’s throughput.

Table 9 shows that for IPC2 the proposed pipeline can complete
one classification operation in every 3.79 time slots even there is
only one hash table at each stage. The performance improvement
is not obvious when M increases from 2 to 4, because the packet
classification speed has already reached the speed limitation of
single-dimensional search engines. In contrast, for ACL1 and
ACL2, the proposed pipeline architecture needs more than 20
time slots to finish a packet classification when M=1. The
performance gets significantly improved when M increases to 4.
When we put 4 hash tables at each stage, the proposed pipeline
can export one classification result in every 10.52 time slots even
with the worst classifier. The proposed pipeline architecture has

very strong robustness. It significantly outperforms HyperCut and
B2PC schemes for all tested classifiers. Although part of the
performance improvement is gained from the parallelism of the
pipeline (in fact, B2PC scheme also employs many parallel bloom
filters to accelerate its classification speed), the use of parallelism
doesn’t increase the overall storage cost thanks to the high
partition efficiency provided by NCB_EG scheme.

For ACL2, FW1, and IPC1, HyperCut scheme requires more than
200 time slots on average to perform each packet classification.
The reason for this slow processing speed is because that these
classifiers have lots of overlapping ranges/fields at
source/destination IP address fields and source/destination port
fields. The large number of overlapping ranges can cause a large
number of rules replicated in leaves [13], which leads to a steep
increase in the number of memory accesses. Although authors in
[13] claimed that the performance of HyperCut could be improved
by using pipeline, it is unclear yet what performance the
pipelined-version HyperCut would achieve, since the last stage of
the pipelined-version HyperCut still need to search a large number
of replicated rules in leaf nodes.

Table 9. Average time slots required for classifying a packet

M=1 M=2 M=3 M=4

ACL1 27.14 13.73 11.05 10.52 52.02 105.78

ACL2 24.90 15.68 9.70 9.22 523.34 91.34

FW1 11.67 7.50 7.03 5.30 215.17 24.31

FW2 6.66 4.61 4.35 4.26 22.12 33.45

IPC1 18.81 10.46 9.48 9.46 803.64 95.19

IPC2 3.79 2.30 2.26 2.25 33.28 77.65

Proposed Pipeline
HyperCuts B2PCClassifier

Table 10. Storage requirement required by different schemes

ACL1 504K 611K 540K

ACL2 504K 214K 540K

FW1 504K 3536K 540K

FW2 504K 2766K 540K

IPC1 504K 445K 540K

IPC2 504K 1482K 540K

Classifier HyperCuts B2PCProposed Pipeline

In Table 10, we compare the storage costs of three algorithms.
According to the analysis in section 7.2, we know that the worst-
case storage requirement of the proposed pipeline is about 192
Kbytes. According to the single-dimensional search proposed in
[17], which requires 78Kbytes of memory, the total storage
requirement of the pipeline including four single dimensional

197

search engines is about 504 Kbytes (the storage requirement of
the single-dimensional search engine for transport-layer protocol
field is omitted here). The small storage requirement makes the
proposed pipeline be able to fit into a commodity FPGA, on
which the hash tables could be implemented by on-chip SRAM.
Suppose the on-chip SRAM access frequency is 400 MHz, the
smallest size of IP packet is 64 bytes. The proposed pipeline can
achieve a throughput between 19.5Gbps and 91Gbps with
different types of classifiers.

Table 11 shows the hash table collision rate under different
classifiers and settings of M. In fact, if we further reduce the load
factor of hash tables, a lower hash collision rate could be achieved,
which may bring an even higher pipeline throughput.

Table 11. Hash table collision rate

Classifier M=1 M=2 M=3 M=4

ACL1 0.31 0.20 0.12 0.12

ACL2 0.27 0.33 0.10 0.12

FW1 0.28 0.24 0.39 0.17

FW2 0.46 0.22 0.16 0.30

IPC1 0.31 0.22 0.18 0.20

IPC2 0.28 0.18 0.13 0.13

8. CONCLUSION
In this paper, we model the multi-match packet classification as a
concatenated multi-string matching problem, which could be
solved by traversing a flat signature tree. To speed up the traversal
of the signature tree, the edges of the signature tree are divided
into different hash tables in both vertical and horizontal directions.
These hash tables are then connected together by a pipeline
architecture, and work in parallel when packet classification
operations are performed. Because of the large degree of
parallelism and elaborately designed edge partition scheme, the
proposed pipeline architecture is able to achieve an ultra high
packet classification speed with a very low storage requirement.
Simulation results show that the proposed pipeline architecture
outperforms HyperCut and B2PC schemes in classification speed
by at least one order of magnitude with a similar storage
requirement of HyperCut and B2PC schemes.

9. REFERENCES
[1] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary.

Algorithms for Advanced Packet Classification with Ternary
CAMs. In Proc. ACM SIGCOMM 2005.

[2] M. Faezipour and M. Nourani. Wire-Speed TCAM-Based
Architectures for Multimatch Packet Classification. IEEE
Transactions on Computers, Volume, 58, Issue, 1, Jan. 2009.

[3] M. Faezipour and M. Nourani. A Customized TCAM
Architecture for Multi-Match Packet Classification. In Proc.
IEEE GLOBECOM 2006.

[4] F. Yu, R.H. Katz, and T.V. Lakshman. Efficient Multimatch
Packet Classification and Lookup with TCAM. In Proc.
IEEE HOTI 2004, pp. 28-34.

[5] F. Yu, T. V. Lakshman, M. A. Motoyama, and R. H. Katz.
SSA: A Power and Memory Efficient Scheme to Multi-
Match Packet Classification. In Proc. ACM/IEEE ANCS ’05.

[6] SNORT Network Intrusion Detection System,
www.snort.org.

[7] S. Kumar, J. Turner, and J. Williams. Advanced algorithms
for fast and scalable deep packet inspection. In Proc.
ACM/IEEE ANCS’06, pp. 81-92, 2005.

[8] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J.
Turner. Algorithms to Accelerate Multiple Regular
Expressions Matching for Deep Packet Inspection. In Proc.
ACM SIGCOMM, Sept 2006.

[9] P. Gupta and N. McKeown. Algorithms for Packet
Classification. IEEE Network. March/April 2001, v15, n2,
pp 24-32.

[10] H. J. Chao and B. Liu. High Performance Switches and
Routers. Wiley-IEEE Press, 2007.

[11] P. Gupta and N. McKeown. Packet Classification using
Hierarchical Intelligent Cuttings. In IEEE Micro, vol. 20:1,
Jan/Feb 2000, pp 34-41.

[12] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvagel. Fast
and scalable layer four switching. In ACM SIGCOMM,
Vancouver, Canada, Aug. 1998, pp. 191-202.

[13] S. Singh, F. Baboescu, G.Varghese, and J.Wang. Packet
classification using multidimensional cutting. In ACM
SIGCOMM, Karlsruhe, Germany, Aug. 2003, pp. 213-224.

[14] H. Liu. Efficient Mapping of range classifier into Ternary-
CAM. In Proc. of 10th Hot Interconnects, Stanford, CA,
Aug. 2002, pp. 95-100.

[15] A. X. Liu, C. R. Meiners, and Y. Zhou. All-Match Based
Complete Redundancy Removal for Packet Classifiers in
TCAMs. In Proc. IEEE INFOCOM’08, March 2008.

[16] I. Papaefstathiou and V. Papaefstathiou. Memory-Efficient
5D Packet Classification At 40 Gbps. In Proc. IEEE
INFOCOM’07, May 2007.

[17] I. Papaefstathiou and V. Papaefstathiou. An innovative low-
cost Classification Scheme for combined multi-Gigabit IP
and Ethernet Networks. In Proc. IEEE ICC’06, June 2006.

[18] T. V. Lakshman and D. Stiliadis. High-speed policy-based
packet forwarding using efficient multi-dimensional range
matching. In ACM SIGCOMM’98, pp. 203-214.

[19] J. van Lunteren and T. Engbersen. Fast and scalable packet
classification. IEEE Journal on Selected Areas in
Communications, vol. 21, May 2003, pp. 560-571.

[20] D. Pao, Y. K. Li, and P. Zhou. An encoding scheme for
TCAM-based packet classification. The 8th International
Conference on Advanced Communication Technology,
Volume 1, 20-22 Feb. 2006.

[21] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small
forwarding tables for fast routing lookups. In Proc. ACM
SIGCOMM 1997, pp. 3-14.

[22] G. L. Heileman and W. Luo. How caching affects hashing. In
Proc. the 7th Workshop on Algorithm Engineering and
Experiments (ALENEX '05), pp. 141-154.

[23] X. Sun, S.K. Sahni, and Y.Q. Zhao. Packet classification
consuming small amount of memory. In IEEE/ACM
Transactions on Networking, Volume:13, Issue: 5, Oct. 2005.

[24] D. Taylor and J. Turner. ClassBench: A Packet Classification
Benchmark. In Proc. IEEE INFOCOM’05, March 2005.

198

