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ABSTRACT 

The emergence of new network applications like network 
intrusion detection system, packet-level accounting, and load-
balancing requires packet classification to report all matched 
rules, instead of only the best matched rule. Although several 
schemes have been proposed recently to address the multi-match 
packet classification problem, most of them require either huge 
memory or expensive Ternary Content Addressable Memory 
(TCAM) to store the intermediate data structure, or suffer from 
steep performance degradation under certain types of classifiers. 
In this paper, we decompose the operation of multi-match packet 
classification from the complicated multi-dimensional search to 
several single-dimensional searches, and present an asynchronous 
pipeline architecture based on a signature tree structure to 
combine the intermediate results returned from single-dimensional 
searches. By spreading edges of the signature tree in multiple hash 
tables at different stages of the pipeline, the pipeline can achieve a 
high throughput via the inter-stage parallel access to hash tables. 
To exploit further intra-stage parallelism, two edge-grouping 
algorithms are designed to evenly divide the edges associated with 
each stage into multiple work-conserving hash tables with 
minimum overhead. Extensive simulation using realistic 
classifiers and traffic traces shows that the proposed pipeline 
architecture outperforms HyperCut and B2PC schemes in 
classification speed by at least one order of magnitude, while with 
a similar storage requirement. Particularly, with different types of 
classifiers of 4K rules, the proposed pipeline architecture is able 
to achieve a throughput between 19.5 Gbps and 91 Gbps. 

Categories and Subject Descriptors 

C.2.0 [Computer-Communication Networks]: General Security 

and protection (e.g., firewalls); C.2.6 [Internetworking]: Routers 
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1. INTRODUCTION 
As the Internet continues to grow rapidly, packet classification has 
become a major bottleneck of high-speed routers. Most traditional 
network applications require packet classification to return the 
best or highest-priority matched rule. However, with the 
emergence of new network applications like Network Intrusion 
Detection System (NIDS), packet-level accounting [1], and load-
balancing, packet classification is required to report all matched 
rules, not only the best matched rule. Packet classification with 
this capability is called multi-match packet classification 
[2][3][4][5], to differ from the conventional best-match packet 
classification. 

Typical NIDS systems, like SNORT [6], use multi-match packet 
classification as a pre-processing module to filter out benign 
network traffic and so that reduce the rate of suspect traffic 
arriving at the content matching module [7][8] , which is more 
complicated than packet classification, and usually can not run at 
the line rate in the worst case situation. As a pre-processing 
module, packet classification has to check every incoming packet 
by comparing fields of the packet header against rules defined in a 
classifier. To avoid slowing down the performance of NIDS 
system, packet classification should run at the line rate in spite of 
the classifiers and traffic patterns. 

Many schemes have been proposed in literature aiming at 
optimizing the performance of packet classification in terms of 
classification speed and storage cost; however most of them focus 
on only the best-match packet classification [9][10][11]. Although 
some of them could also be used for multi-match packet 
classification, they suffer from either huge memory requirement or 
steep performance degradation under certain types of classifiers 
[13][18]. Ternary Content Addressable Memory (TCAM) is well-
known for its parallel search capability and constant processing 
speed, and is widely used in IP routing lookup and best-match 
packet classification. Due to the limitation of its native circuit 
structure, TCAM can only return the first matching entry and 
therefore can not be directly used in multi-match packet 
classification. To enable the multi-match packet classification on 
TCAM, some research work published recently [2][3][4][5]  
propose to add redundant intersection rules in TCAM. However, 
the introduction of redundant intersection rules further increases 
the already high implementation cost of TCAM system. 

The objective of this paper is to design a high throughput and 
memory efficient multi-match packet classification scheme 
without using TCAMs. Given the fact that single-dimensional 
search is much simpler and has already been well studied, we 
decompose the complex multi-match packet classification into 
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two steps. In the first step, single-dimensional searches are 
performed in parallel to return matched fields on each dimension. 
In the second step, a well-designed pipeline architecture combines 
the results from single-dimensional searches to find all matched 
rules. Simulation results show that the proposed pipeline 
architecture performs very well under all tested classifiers, and is 
able to classify one packet within every 2~10 time slots. Our main 
contributions in this paper are summarized as follows. 

1. We model the multi-match packet classification as a 
concatenated multi-string matching problem, which could be 
solved by traversing a signature tree structure. 

2. We propose an asynchronous pipeline architecture to 
accelerate the traversal of the signature tree. By distributing 
edges of the signature tree into hash tables at different stages, 
the proposed pipeline can achieve a very high throughput. 

3. We propose two edge-grouping algorithms to partition the 
hash table at each stage of the pipeline into multiple work-
conserving hash tables, so that the intra-stage parallelism 
could be exploited. By taking advantage of the properties of 
the signature tree, the proposed edge-grouping algorithms 
well solve the location problem, overhead minimization 
problem, and balancing problem involved in the process of 
hash table partition. 

The rest of the paper is organized as follows. Section 2 reviews 
the related work. Section 3 formally defines the multi-match 
packet classification problem, and presents terms to be used in 
this paper. Section 4 introduces the concept of signature tree, 
based on which Section 5 proposes an asynchronous pipeline 
architecture. Section 6 presents two edge-grouping algorithms 
which are used to exploit intra-stage parallel query. In Section 7, 
we discuss the implementation issues and present the 
experimental results. Finally Section 8 concludes the paper. 

2. RELATED WORK 
Many schemes have been proposed in literature to address the 
best-match packet classification problem, such as trie based 
schemes [9][12], decision tree based schemes[11][13], TCAM 
based schemes [14][15], and two-stage schemes[12][18][19][20]. 
However, most of them can not be used directly in multi-match 
packet classification. 

In this paper, we focus on the two-stage schemes, in which the 
multi-dimensional search of packet classification is first 
decomposed into several single-dimensional searches, and then 
the intermediate results of single-dimensional searches are 
combined to get the final matched rule. To facilitate the 
combination operation, each field of rules in two-stage schemes is 
usually encoded as either one range ID or several segment IDs. 
Consider the classifier shown in Figure 1, which has three 2-
dimensional rules, each represented by a rectangle. Ranges are 
defined as the projections of the rectangles along a certain axis. 
For example, the projections of rule R1, R2, and R3 along axis X 
form three ranges denoted by X_RG1, X_RG3, and X_RG2, 
respectively. In contrast, segments are the intervals divided by the 
boundaries of projections.  

With segment encoding method, each rule is represented by 
multiple segment ID combinations, which may cause serious 
storage explosion problem [12][18]. Several schemes [19][20] 

have been proposed to address the storage explosion problem by 
using TCAM and specially designed encoding scheme. However, 
the use of TCAM increases the power consumption and 
implementation cost, and more importantly, it limits the use of the 
schemes only in best-match packet classification. 

With range encoding method, the representation of each rule 
requires only one range ID combination, and therefore the storage 
explosion problem involved in the segment encoding is avoided. 
The low storage requirement comes at a price of slow query speed, 
which prevents the range encoding method from being used in 
practical systems. To the best of our knowledge, the only 
published two-stage classification scheme using range encoding is 
B2PC [16], which uses multiple Bloom Filters to fasten the 
validation of range ID combinations. In order to avoid the slow 
exhaustive validation, B2PC examines range ID combinations 
according to a predetermined sequence, and returns only the first 
matched range ID combination, which may not always correspond 
to the highest-priority matched rule due to the inherent limitation 
of B2PC scheme. Furthermore, B2PC can not support multi-
match packet classification. 
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Figure 1. Segment encoding vs. range encoding. 

3. PROBLEM STATEMENT 
A classifier C is a set of N rules, sorted in descending order of 
priorities. The priorities of rules are usually defined by their rule 
IDs, where a smaller rule ID means a higher priority. Each rule 
includes d fields, each of which represents a range on a certain 
dimension. From a geometric point of view, each rule represents a 
hyper-rectangle in the d-dimensional space. Since each packet 
header corresponds to a point P in the d-dimensional space, the 
problem of conventional best-match packet classification is 
equivalent to finding the highest-priority hyper-rectangle 
enclosing point P, while the problem of multi-match packet 
classification is equivalent to finding all hyper-rectangles 
enclosing point P. 

In order to perform the multi-match packet classification 
efficiently, given a classifier, we covert it to an encoded 
counterpart by assigning each unique range a unique ID on each 
dimension. Given the classifier in Table 1, its encoded counterpart 
is shown in Table 2, in which fij is the ID of the jth

 unique range 
appeared on the ith dimension of the classifier.  
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Table 1. A classifier with seven rules 

Rule Src IP Dest IP Src Port Dest Port Protocol

r1 128.238.147.3 169.229.16.* 135 * TCP

r2 128.238.147.3 169.229.16.* <1024 80 UDP

r3 128.238.147.3 169.229.16.* * 21 TCP

r4 128.238.147.3 169.229.16.* * 21 *

r5 169.229. 4.* 128.238.147.3 <1024 <1024 TCP

r6 128.238.147.3 169.229.4.* 110 80 TCP

r7 169.229.4.* * * 21 TCP
 

Table 2. The classifier after range encoding 

Rule Src IP Dest IP Src Port Dest Port Protocol

r1 f11 f21 f31 f41 f51

r2 f11 f21 f32 f42 f52

r3 f11 f21 f33 f43 f51

r4 f11 f21 f33 f43 f53

r5 f12 f22 f32 f44 f51

r6 f11 f23 f34 f42 f51

r7 f12 f24 f33 f43 f51  

Table 3. A packet to be classified 

Src IP Dest IP Src Port Dest Port Protocol

128.238.147.3 169.229.16.2 135 21 TCP
 

Table 4. Range IDs returned by single-dimensional searches 

Src IP Dest IP Src Port Dest Port Protocol

f11 f21 f31 f41 f51

f24 f32 f43 f53

f33 f44  

Given a packet header and an encoded classifier with d 
dimensions, the multi-match packet classification scheme 
proposed in this paper consists of two steps. In the first step, d 
relevant fields of the packet header are each sent to a single-
dimensional search engine, where either prefix-based matching or 
range-based matching will be performed to return all matched 
range IDs. Consider a packet header given in Table 3, the range 
IDs returned from five single-dimensional search engines are 
shown in Table 4, and can form 1x2x3x3x2=36 different range ID 
combinations. Since we have no idea in advance of which 
combinations among the 36 appear in the encoded classifier, we 
have to examine all 36 combinations, without exception, in the 
second step to return all valid combinations. Since the single-
dimensional search problem have been well addressed in literature 
[17], in this paper we focus on only the second step. In the left 
part of the paper, packet classification will specifically refer to 
this second step unless special notation is given. 

If we view each range ID as a character, the multi-match packet 
classification problem could be modeled as a concatenated multi-
string matching problem. In this problem, the encoded classifier 
could be regarded as a set of strings with d characters. From the 
encoded classifier, we can get d universal character sets, each of 
which includes characters in one column of the encoded classifier. 
The set of range IDs returned by each single-dimensional search 
engine is called matching character set, which is a subset of the 

corresponding universal character set. The concatenated multi-

string matching problem is to identify all strings in the 

encoded classifier which could be constructed by 

concatenating one character from each of d matching 

character sets. The main challenge of the concatenated multi-
string matching problem is to examine a large number of 
concatenated strings at an extremely high speed to meet the 
requirement of high-speed routers. 

4. SIGNATURE TREE 
To facilitate the operation of concatenated multi-string matching, 
we present a data structure named signature tree to store strings in 
the encoded classifier. Figure 2 shows a signature tree 
corresponding to the encoded classifier in Table 2. Each edge in 
the tree represents a character, and each node represents a prefix 
of strings in the encoded classifier. The ID of each leaf node 
represents the ID of a rule in the encoded classifier. 

 
Figure 2. An example of signature tree. 

The concatenated multi-string matching could be performed by 
traversing the signature tree according to the inputs of d matching 
character sets. If any of the d matching character sets is empty, the 
result would be NULL. Otherwise, the matching is performed as 
follows. At the beginning, only the root node is active. The 
outgoing edges of the root node are examined against the 
characters in the first matching character set. Each time when a 
match is found, the corresponding node (at level one) pointed by 
the matched edge will be activated. After the examination, the 
root node is deactivated, and one or multiple nodes (if at least one 
matching edge is found) at level one become active. Then the 
active nodes at level one will be examined one by one against the 
characters in the second matching character set. Similar procedure 
will repeat to examine characters in the remaining matching 
character sets. In this procedure, active nodes move from low 
levels to high levels of the signature tree, and eventually IDs of 
the active leaf nodes represent the matched rules.  

The traversal complexity of the signature tree depends on many 
factors, including the size of each matching character set, the 
number of active nodes at each level when the signature tree is 
being traversed, as well as the implementation method of the 
signature tree.  One way of implementing the signature tree is to 
store each node as a whole data structure, and connect parent and 
child nodes together by points in the parent nodes. However, our 
analysis on the real classifiers shows that the numbers of outgoing 
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edges of nodes have a very large deviation (due to the inherent 
non-uniform distribution of field values in classifiers), which 
makes the design of a compact node structure a very challenging 
task. Even if we came up with a compact node structure using 
pointer compressing scheme [21], incremental updates and query 
operations on the signature tree would become extremely difficult. 
Therefore in this paper, rather than storing each node as a whole 
structure, we break up the node and store edges directly in a hash 
table. More specifically, each edge on the signature tree takes one 
entry of the hash table in the form of <source node ID:character, 
destined node ID>. Here “source node ID : character” means the 
concatenation of “source node ID” and “character” in binary 
mode, and works as the key of the hash function, while “destined 
node ID” is the result we hope to get from the hash table access. 

Apparently, the processing speed of the signature tree based 
packet classification is determined by the number of hash table 
accesses required for classifying each packet. In the following 
sections, we divide the hash table into multiple partitions to 
exploit parallel hash table access to improve the performance.  
Here, we introduce two properties about the universal character 
set and the signature tree, which will be used later. 

Property 1. Characters in each universal character set could be 

encoded as any bit strings as long as there are no two characters 

being given the same encoding. 

Property 2. Nodes on the signature tree could be given any IDs, 

as long as there are no two nodes being given the same IDs at the 

same level. 

5. ASYNCHRONOUS PIPELINE 

ARCHITECTURE 
To improve the traversal speed of the signature tree, we separate 
the signature tree into d-1 partitions, and store edges of each 
partition into an individual hash table. More specifically, the 
outgoing edges of level-i nodes (i=1,…,d-1) are stored in hash 
table i. An example of the signature tree after partition is shown in 
Figure 2, which has four partitions. The corresponding hash tables 
of these four partitions are shown in Figure 3. It’s worth noting 
that outgoing edges of the root node are not stored. This is 
because the root node is the only node at level 0, and each of its 
outgoing edges corresponds to exactly one character in the first 
universal character set. According to property 1, we can encode 
each character of the first universal character set as the ID of the 
corresponding destined level-1 node. For instance, in Figure 2 we 
can let f11=N11 and f12=N12. So given the first matching character 
set, we can immediately get the IDs of level-1 active nodes. 

For a d-dimensional packet classification application, we propose 
an asynchronous pipeline architecture with d-1 stages. Figure 3 
gives an example of the proposed pipeline architecture with d=5. 
It includes d-1 processing modules (PM). Each PM is attached 
with an input Character FIFO (CFIFO), an input Active node 
FIFO (AFIFO), an output AFIFO, and a hash table. Each CFIFO 
supplies the connected PM with a set of matching characters 
returned by the single-dimensional search engine. Each AFIFO 
delivers active node IDs between adjacent PMs. Each hash table 
stores edges at a certain partition of the signature tree.  

Since each packet may have multiple matching characters/active 
nodes at each stage of the pipeline, two bits in each entry of 

CFIFO/AFIFO are used to indicate the ownership of matching 
characters/active nodes, as shown in Figure 4. An “S” bit set to 1 
means that the entry is the first matching character/active node of 
a packet, while an “E” bit set to 1 means that the entry is the last 
matching character/active node of a packet. If both “S” and “E” 
bits are set to 1, it means that the entry is the only matching 
character/active node of a packet. 

 
 Figure 3. Pipelining architecture for packet classification. 

 
Figure 4. The format of entries in CFIFO/AFIFO. 

When a packet is going to be classified, the d relevant fields of the 
packet header are first sent to d single-dimensional search engines. 
Each search engine returns a set of matching characters 
representing the matched ranges on the corresponding dimension 
to the attached CFIFO (the first search engine returns matching 
characters to the attached AFIFO 1). If no matching character is 
found, a NULL character encoded as all “0” is returned. 

In the pipeline, all PMs work in exactly the same way, therefore 
we focus on a certain PM i (i=1,…,d-1) and consider the 
procedure that a packet P is being processed at PM i. 

Suppose that packet P have x active node IDs in AFIFO i, which 
are denoted by n1, n2, …, nx, and y matching characters in CFIFO 
i, which are denoted by c1, c2, …, cy. The processing of packet P at 
PM i could be decomposed to the processing of x active node IDs. 
In the processing of each active node ID, say nj, PM i takes out 
matching character c1, c2, …, cy from the attached CFIFO, and 
concatenate each of them (if the character is not NULL) to nj to 
form y hash keys to access the attached hash table. Results from 
the hash table indicate the IDs of nj’s child nodes, and will be 
pushed into the output AFIFO when the output AFIFO is not full. 
If the output AFIFO is currently full, the push-in operation along 
with the operation of PM i will be suspended until one slot of the 
output AFIFO becomes available. 

During the processing of packet P, if PM i can not find any match 
in the hash table, it will push a “NULL” node ID encoded as all 
“0” into the output AFIFO to indicate the downstream PMs that 
the packet won’t match any rule. 

The number of hash table accesses required by PM i to process 
packet P is equal to the product of the numbers of associated 
active nodes and matching characters of packet P, i.e. x·y in this 
case, if we omit the overhead caused by the hash collision. 
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6. INTRA-STAGE PARALLEL QUERY 
The asynchronous pipeline architecture introduced above deploys 
one hash table at each stage. The processing of each active node 
ID at each PM may involve multiple hash table accesses. To 
accelerate the processing of each active node ID, we plan to 
further partition the hash table at each stage to exploit intra-stage 
parallelism. After the intra-stage partition, each PM might be 
associated with multiple hash tables, which could be accessed in 
parallel. To keep the pipeline easy to control and avoid the packet 
out-of-sequence, each PM will process active node IDs in the 
strict serial way. That is, if there is an active node ID currently 
being processed (some hash tables are therefore occupied), the 
processing of next active node ID could not be started, even if 
there are hash tables available to use. 

Before introducing schemes for the intra-stage hash table partition, 
we present several concepts, among which the concept of 
independent range set is similar but not exactly the same as the 
concept of independent rule set proposed by Sun et al. in [23]. 

Definition 1. Independent ranges 

Let 1f and 2f 1 2( )f f≠ be two ranges on a dimension. 1f is called 

independent to 2f  if 1 2f f φ=∩ . 

Definition 2. Independent range set 

Let T  be a set of ranges. T  is called an independent range set if 

any two ranges in T  are independent. 

Definition 3. Independent characters 

Let c1 and c2 be two characters associated with range f1 and f2. c1 

is called independent to c2 if f1 is independent to f2. 

Definition 4. Independent character set 

Let U be a set of characters. U is called an independent character 
set if any two characters in U are independent. 

Definition 5. Independent edges 

Suppose e1=<s1:c1, d1> and e2=<s2:c2, d2> are two edges in a 
certain partition of the signature tree. e1 is called dependent to e2 if 
s1=s2 and c1 is dependent to c2; otherwise, e1 is called independent 
to e2. 

Definition 6. Independent edge set 

Let E  be a set of edges in a certain partition of the signature tree. 

E is called an independent edge set if any two edges in E  are 
independent. 

Definition 7. Work-conserving hash tables 

Suppose we have M hash tables associated with PM i of the 
pipeline, where an active node ID, say nid1, is being processed. 
We say these hash tables are work-conserving for processing nid1, 
if no hash table is left idle when there are matching characters 
associated with nid1 waiting for query; in other words, we can 
always find a free hash table in which an un-queried edge1 of nid1 

is stored if not all hash table are occupied. Hash tables associated 
with PM i are called work-conserving hash tables, if they are 
work-conserving for processing any active node IDs. 

                                                                 
1 An un-queried edge of an active node ID could be either a real 

edge or an unreal edge on the signature tree. The query for an 
unreal edge will cause a return of search failure. 

6.1 Edge Grouping 
The main objective of the intra-stage hash table partition is to 
guarantee the work-conserving property of the partitioned hash 
tables, so that the processing throughput of PM could be 
maximized and more predictable. Given M work-conserving hash 
tables and y matching characters, the processing of each active 

node ID can be finished within /y M   parallel hash accesses. 

Suppose we want to partition the original hash table associated to 
PM i into M work-conserving hash tables. The most 
straightforward way is to divide edges of the original hash table 
into M independent edge sets, and store each of them in an 
individual hash table. This way, we can guarantee the work-
conserving property of the partitioned hash tables, because edges 
to be queried for an active node ID must be dependent to each 
other, and stored in different hash tables. 

However, since M is a user-specified parameter, M hash tables 
may not be sufficient to avoid the dependency among all edges. 
Therefore, instead of dividing edges of the original hash table into 
M independent sets, we would divide them into M+1 sets denoted 

by ( 1,.., 1)kG k M= + , among which the first M sets are all 

independent edge sets, and the last set is a residual edge set, 
which stores edges not fitting into the first M sets. The above 
action is called edge-grouping. We call edges in the independent 
edge sets regular edges, and call edges in the residual edge set 
residual edges. 

Given the M+1 edge sets after the edge-grouping, we could store 
edges of each independent edge set into an individual hash table, 
while duplicate edges of the residual edge set into all M hash 
tables. When an active node is being processed, we first query its 
regular edges, and then its residual edges. It’s easily seen that no 
hash table would be left idle if there is an un-queried edge. 
Therefore the work-conserving property of the partitioned hash 
tables is guaranteed. 

Actually, the problem of edge-grouping itself is not difficult. The 
main challenge comes from the following three aspects. 

(1) Given an edge (real or unreal edge), how to locate the 
partitioned hash table in which the edge is stored? 

(2) How to minimize the overhead caused by the redundancy of 
residual edges? 

(3) How to balance the sizes of partitioned hash tables? 

We name these three problems as location problem, overhead 
minimization problem, and balance problem, respectively, and 
present two edge-grouping schemes to deal with them. 

6.2 Character-Based Edge-Grouping 
The first edge-grouping scheme is named character-based edge-

grouping (CB_EG). Its basic idea is to divide edges according to 
their associated characters, and embed the grouping information 
in the encodings of characters. More specifically, we reserve the 

first 2log ( 1)M +    bit of each character to be the locating prefix, 

whose value is between 0 and M. If the locating prefix of a 
character is 0, edges labeled with the character are residual edges, 
and can be found in any partitioned hash tables. Otherwise, edges 
labeled with the character are regular edges, and can only be 
found in the partitioned hash table indexed by the locating prefix. 
The location problem of edge-grouping is solved. 
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To address the overhead minimization problem and the balance 
problem, we model the CB_EG scheme as a weighted character 

grouping (WCG) problem. 

Let U be the universal character set associated with PM i. Let Uk 

(k=1,…,M+1) be M+1 non-overlapping character sets divided 
from U. 

Let c be an arbitrary character in U, and W(c) be its weight 
function, meaning the number of edges labeled with c in the 
original hash table. 

Let W(Uk) (k=1,…,M+1)  be the weight of character set Uk. 

Let L() be the dependence indicator. ∀ c1,c2 ∈ U, if c1 is 
dependent to c2, L(c1, c2):=1; otherwise, L(c1, c2):=0. 

The WCG problem is formally described in Table 5, which is to 
find a valid configuration of Uk (k=1,…,M+1) achieving the given 
objective. We have proved that WCG problem is an NP-hard 
problem (due to space limitations, the proof is not given in the 
paper). Thus, we use the greedy algorithm in Table 6 to solve the 
WCG problem. 

According to M+1 character sets returned by the greedy WCG 
algorithm, we assign each character a locating prefix, and divide 
edges of the original hash table into M+1 edge sets. The principle 
is that for each character in Uk (k=1,…,M), we let k be its locating 
prefix, and allocate its associated edges to edge set Gk; for each 
character in UM+1, we let 0 be its locating prefix, and allocate its 
associated edges to edge set GM+1. After that, we could get M 
partitioned hash tables by allocating edges of Gk (k=1,…,M) to 
hash table k, and duplicating edges of GM+1 to every hash table. 

Let’s consider an example, which partitions the last hash table of 
Figure 3 into two work-conserving hash tables with CB_EG 
scheme. First of all, we get the universal character set associated 
with PM 4. It has three characters: f51, f52, and f53, whose weights 
are 5, 1, and 1, respectively. With the greedy WCG algorithm, the 
three characters are divided into two independent character sets 
(U1 and U2) and one residual character set (U3), among which U1 
contains f51, U2 contains f52, and U3 contains f53. Therefore edges 
labeled with character f51 and f52 are allocated to the first 
partitioned hash table and the second partitioned hash table 
respectively, while edges labeled with character f53 are duplicated 
to both partitioned hash tables. The final partition result is shown 
in Figure 5(a). 

We use PE to denote the partition efficiency of a hash table 
partition, and define it in (1). 

 
# of edges in the original hash table

# of edges in the largest partitioned hash table
PE

M
=

×
 (1) 

In the example above, the partition efficiency is only 58.3%, 
which is because of two reasons. The first reason is the 
redundancy caused by the residual edge <N43:f53, 4>. The second 
reason is the extreme unbalance between two partitioned hash 
tables. This unbalance is caused by the inherent property of 
CB_EG scheme, which has to allocate edges labeled with the 
same character into the same hash table. In the last hash table of 
Figure 3, five out of seven edges are labeled with the same 
character f51. According to CB_EG scheme, these five edges have 
to be allocated to the same hash table, which results in the 
unbalance between partitioned hash tables. 

As a matter of fact, in real classifiers, the second reason degrades 
the partition efficiency more severely than the first reason. This is 
because many fields of real classifiers have very unbalanced 
distributions on field values. For instance, the transport-layer 
protocol field of real classifiers is restricted to a small set of field 
values, such as TCP, UDP, ICMP, and etc. Most of entries, say 
80%, of real classifiers are associated with TCP protocol. With 
CB_EG scheme, edges labeled with TCP have to be allocated to 
the same hash table, which may cause extreme unbalance of hash 
tables, and thus result in a low partition efficiency. 

Table 5. The weighted character grouping problem 

Subject to. 

 
kU U⊆  ( 1,..., 1)k M= + ; (2) 
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U U=∪ ;  (3) 

 1 2 ( 1, 2 1,..., 1& 1 2)k kU U k k M k kφ= = + ≠∩  (4) 

 
1 2 1 2

1 2

1 2 1 2

1 ( , )
( , ) :

0 ( , )

c is depedent to c c c U
L c c

c is independent to c c c U

∈
= 

∈
 (5) 

 1 2 1 2( , ) 0 , ( 1,..., )
k

L c c c c U k M= ∀ ∈ =  (6) 

 ( ) : ( )
k

k

c U

W U W c
∈

= ∑   (7) 

Objective. 

 Minimize: 1
1,...,

( ( ) ( ))k M
k M
Max W U W U +
=
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Table 6. Greedy algorithm for the WCG problem 

Input: U: the universal character set; M: the number of 
independent character sets; W(c): the weight of character c. 

Output: Independent character sets U1,… ,UM ;  and residual 
character set UM+1. 

: ( 1,..., 1)kU k Mφ= = + ; 

( ) : 0 ( 1,..., )kW U k M= = ;    //the weight of set 
kU  

Sort U in decreasing order of the character weight. 
(1)  if U is empty, return ( Uk (k=1,…,M+1) ); 
(2)  From U select the character c with the largest weight; 

(3)   Select the set 'U with the smallest weight among sets 

U1,… ,UM whose characters are all independent to c. If 
there is more than one such set, select the first one. If no 
such set is found, put c into set UM+1, remove c from set U, 
and go to step (1); 

(4)  Put c into set 'U ; remove c from set U; '( ) ( )W U W c+ = ; 

Go to step (1). 

  

  

 (a) CB_EG scheme (b) NCB_EG scheme 

Figure 5. Two partitioned hash tables from the last hash table 

in Figure 3 
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6.3 Node-Character-Based Edge-Grouping 
The second edge-grouping scheme is named Node-Character-
Based Edge-Grouping (NCB_EG), which divides edges not only 
based on their labeled characters, but also based on the IDs of 
their source nodes. 

According to property 2, the ID of each node on the signature tree 
could be assigned to any values as long as there are no two nodes 
at the same level assigned the same ID. With this property, 
NCB_EG scheme stores the grouping information of each edge in 
both the encoding of the edge’s associated character, and the ID 
of the edge’s source node. More specifically, NCB_EG scheme 

reserves the first 2log ( 1)M +    bit of each character to be the 

locating prefix, and the first 2log M   bits of each node ID to be 

the shifting prefix. Given an arbitrary edge <s1:c1, d1>, suppose 
the locating prefix of c1 is loc, and the shifting prefix of s1 is sft. If 
loc equals 0, the edge is a residual edge, and could be found in 
any partitioned hash tables. Otherwise, the edge is a regular edge, 
and could only be found in the partitioned hash table indexed by 
(sft+loc-1) mod M +1. 

In order to locate the partitioned hash table in which a given edge 
is stored using the above principle, we have to divide edges into 
different edge sets following the same principle. In contrast to 
CB_EG, NCB_EG scheme solves the overhead minimization 
problem and the balance problem in two different steps, which are 
named Locating Prefix Assignment (LPA), and Shift Prefix 
Assignment (SPA). 

The overhead minimization problem is solved in the step of LPA, 
in which the universal character set associated with PM i is 
divided into M independent character sets and one residual 
character set. Each character is assigned a locating prefix ranging 
from 0 to M according to the character set it is allocated to. The 
LPA step could also be described by the WCG problem given in 
Table 5 with only the objective changed from (8) to (9). 

 Minimize: 1( )MW U +
 (9) 

We can not find a polynomial time optimal algorithm to solve the 
WCG problem with the objective in (9), therefore we use the 
greedy WCG algorithm given in Table 6 to solve it. 

The purpose of the SPA step is to balance the sizes of 
independent edge sets. This is achieved by assigning shift prefix 
to each node to adjust the edge sets in which the outgoing edges 
of the node are allocated. A heuristic algorithm for the shift prefix 
assignment is given in Table 7. 

Consider using NCB_EG scheme to partition the last hash table of 
Figure 3 into two work-conserving hash tables. The LPA step of 
NCB_EG is same to the CB_EG. With the greedy WCG algorithm, 
we can get two independent character sets (U1 and U2) and one 
residual character set (U3), among which U1 contains f51, U2 
contains f52, and U3 contains f53. Therefore the locating prefixes of 
f51, f52, and f53 are 1, 2, and 0, respectively. Then SPA algorithm is 
used to assign each level-4 node of the signature tree a shift prefix.  
Since Node N43 has two outgoing edges, while other nodes have 
only one, it will be first assigned a shift prefix. Since all 
independent edge sets (G1 and G2) are empty at the beginning, we 
assign a shift prefix of 0 to N43. Based on the shift prefix on the 
N43, and the locating prefix on characters, regular edge <N43:f51, 
3> is allocated to G1, and residual edge <N43:f53, 4> is allocated to 

G3. N41 is the second node to be assigned a shift prefix. In order to 
balance the sizes of G1 and G2, the shift prefix of N41 is set to 1, 
so that the edge <N41:f51, 1> is allocated to G2 according to the 
locating prefix of f51. Similarly, N42, N44, N45, and N46 will be 
each assigned a shift prefix, and their outgoing edges are allocated 
to the corresponding edge sets. After the edge-grouping, the final 
partitioned hash tables are shown in Figure 5(b), where the 
residual edge <N43:f53, 4> is duplicated in both hash tables. 

In this example, the hash table partition efficiency is 7/8=87.5%, 
which is higher than that with CB_EG scheme. The main reason 
for this improved partition efficiency is that NCB_EG scheme is 
capable of spreading edges labeled with character f51 into different 
hash tables, so that a better balance between partitioned hash 
tables is achieved. 

Table 7. Shift Prefix Assignment Algorithm 

Input:  
M: the number of independent character sets; Independent 
character set U1,…,UM, and residual character set UM+1; 
S: the set of nodes at level i of the signature tree; 
E: the set of outgoing edges of nodes in S; 

Output:  
Shift prefixes of  nodes in S; 
Independent edge sets G1,…,GM, and residual edge set GM+1; 

: ( 1,..., 1)kG k Mφ= = + ; 

Sort nodes of S in decreasing order of the number of outgoing 
edges; 

(1) for each node n in S do 
(2)   Divide the outgoing edges of n into M+1 sets. The 

principle is that for characters in Uk (k=1,…,M+1), put 
their associated outgoing edges to Zk; 

(3)  Select the largest edge set Zt among Zk (k=1,…,M); if 
there are multiple largest edge set, select the first one; 

(4)  Select the smallest edge set Gv among Gk (k=1,…,M); if 
there are multiple smallest edge set, select the first one; 

(5)  Let p:= (v-t) mod M, and set the shift prefix of n as p; 
//align Zt to Gv to achieve balance among Gk (k=1,…,M); 

(6)  for each set Zk (k=1,…,M) do 
(7)  Move edges from set Zk to set G(k+p-1) mod M +1; 

(8)  rof; 
(9)  Move edges from set ZM+1 to set GM +1; 

(10) rof; 

7. IMPLEMENTATION ISSUES AND 

PERFORMANCE EVALUATION  

7.1 Scalability and Incremental Update 
The proposed pipeline architecture supports an arbitrary number 
of dimensions. To add/delete a dimension, we only need to 
add/remove a PM along with its associated single-dimensional 
search engine, CFIFO, AFIFO, and hash tables. 

The pipeline architecture also supports incremental updates of 
rules. To add/remove a rule, we traverse the signature tree along 
the path representing the rule, and add/remove the corresponding 
edges in hash tables. Since the complexity of insertion/remove 
operation in hash table is O(1), the pipeline architecture has a very 
low complexity for incremental update. 
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7.2 Hash Tables and Storage Complexity 
Suppose the maximum number of rules supported by the proposed 
pipeline architecture is N, the maximum number of hash tables 
used at each stage is M, and the number of total dimensions is d. 
The storage requirement of the pipeline architecture mainly comes 
from two parts. (1) d single-dimensional search engines; (2) hash 
tables and AFIFOs/CFIFOs in the pipeline. 

The storage requirement of each single-dimensional search engine 
depends greatly on the type of field associated to the dimension. 
For instance, if the type of field is transport-layer protocol, a 256-
entry table could be used as the search engine, which requires no 
more than 1 Kbytes of memory. If the type of field is 
source/destination IP address, an IP lookup engine is required to 
be the single-dimensional search engine, which might require 
70~100 Kbytes of memory [17]. 

For hash tables in the pipeline, we use a low load factor (LF) of 
0.5 to lower the chance of hash collisions, and use the simple 
linear probing scheme to resolve the hash collision [22]. The 
storage requirement for hash tables at each stage (H) is 
determined by the number of edges associated to that stage (T), 
the number of bits used to represent each edge (B), the load factor 
of hash tables, and the partition efficiency (PE) when multiple 
hash tables are used. H could be represented by (10). 

 
1 1

H T B
PE LF

= × × ×  (bits)  (10) 

Since each edge e1 is represented by <s1:c1, d1>, where s1 is the ID 
of the source node of e1, c1 is the character labeled on e1, and d1 is 
the ID of the destination node of e1, the number of bits required to 
represent each edge is equal to the sum of the numbers of bits 
used for representing s1, c1, and d1. It is easily seen that the 
number of nodes at each level of the signature tree is no more than 
N, therefore s1 and d1 can each be represented by 

2 2log logM N+        bits, where the first 2log M    bit are the 

shift prefix, and the last 2log N   bit are used to uniquely identify 

the node at each level of the signature tree. The number of 
characters in the universal character set on each dimension is 
equal to the number of unique ranges on that dimension. It is easy 
to see that the unique range on each dimension is no more than N. 

Therefore c1 could be encoded as 2 2log ( 1) logM N+ +        bits, 

where the first 2log ( 1)M +    bits are the locating prefix, and the 

last 2log N   bits are used to uniquely identify the character 

(range) on the dimension. Sum up, the number of bits used for 
representing each edge could be obtained in (11). 

 2 2 23 log 2 log log ( 1)B N M M≤ + + +             (11) 

The number of edges to be stored at each stage of the pipeline is 

bounded by N, therefore T N≤ . If we assume the hash table 

partition efficiency is 1 (Shortly, we will show that the partition 
efficiency of NCB_EG scheme is close to 1), and substitute it 
along with LF, T and (11) into (10), we can get the total storage 
requirement of the hash tables at each stage as in (12). 

 2 2 26 log 6 log (bits) log (bytes)H N N N M N N≈ + ≈        (12) 

Since there are d-1 stages in the pipeline, the total memory 
requirement is about N(d-1)log2N  bytes. 

Regarding AFIFOs and CFIFOs, later we will show that each 
AFIFO/CFIFO only needs a small piece of memory, say 8 entries, 
to achieve a good enough performance. If d=5, the total storage 
requirement for 5 AFIFOs and 4 CFIFOs is less than 200 bytes, 
which could be ignored compared to the storage requirement of 
hash tables. 

As a whole, the total storage requirement of the pipeline 
architecture excluding the single dimensional search engines is 
about N(d-1)log2N bytes. If we substitute N=4K, d=5 in it, the 
storage requirement is about 192 Kbytes, which is among the 
compact packet classification schemes proposed in literature even 
if we count in the memory required by the single dimensional 
search engines. 

7.3 Performance Evaluation 
To evaluate the performance of the proposed pipeline architecture, 
we use ClassBench tool suites developed by Taylor to generate 
classifiers and traffic traces [24]. Three types of classifiers are 
used in the evaluation, which are Access Control Lists (ACL), 
Firewalls (FW), and IP Chains (IPC). We generate two classifiers 
for each type using the provided filter seed files, and name them 
as ACL1, ACL2, FW1, FW2, IPC1, and IPC2, each of which has 
five dimensions and about 4K rules2. 

We first evaluate the partition efficiency. Table 8 shows the 
partition efficiencies of CB_EG and NCB_EG under classifier 
ACL1, FW1, and IPC1 with the number of partitioned hash tables 
(M) at each stage changed from 2 to 4. Apparently, NCB_EG 
always outperforms CB_EG, and can achieve a partition 
efficiency higher than 90% in most situations. The only exception 
is the Destination IP field, where the partition efficiency achieved 
by NCB_EG ranges from 67% to 96%. The reason for this 
relatively low partition efficiency is because Destination IP field 
corresponds to level 1 of the signature tree, which has fewer 
nodes than other levels, although each node at level 1 has a large 
fan-out. The small number of large fan-out nodes lowers the 
efficiency of SPA algorithm, and thus increase the unbalance 
between partitioned hash tables. Fortunately, the number of edges 
associated to the first stage of the pipeline is far less than that 
associated to other stages. Therefore the relatively low partition 
efficiency would not increase too much of the storage requirement.  
In the left part of this section, all simulations are conducted with 
NCB_EG scheme. 

In the proposed pipeline, when an AFIFO becomes full, the 
backpressure would prevent the upstream PM from processing 
new active node IDs, therefore the size of AFIFO might affect the 
throughput of the pipeline to a certain extent. Figure 6 shows the 
relationship between AFIFO size and the average time slots for 
exporting one classification result, where one time slot is defined 
as the time for one memory access. Curves in the figure show that 
the throughput of the pipeline is not sensitive to the AFIFO size. 
When AFIFO size is large than 8, the pipeline can achieve stable 
throughputs regardless of the classifier types and the value of M. 
Further increasing the AFIFO size can not lead to significant 
throughput improvement. Therefore, in the left part of simulations, 
the sizes of AFIFOs are all set to 8 entries. 

                                                                 
2 The generated rules are slightly less than 4K because of the 

existence of redundant rules.[24]  
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Table 8. The partition efficiency of CB_EG and NCB_EG at different stages of the pipeline with different classifiers 

# of

edges
CB_EG NCB_EG

# of

edges
CB_EG NCB_EG

# of

edges
CB_EG NCB_EG

# of

edges
CN_EG NCB_EG

ACL1 2 1568 93.44% 96.43% 1568 50.00% 100.00% 3273 65.83% 95.65% 3429 54.26% 99.97%

3 1568 88.59% 93.84% 1568 33.33% 99.94% 3273 78.66% 95.03% 3429 37.41% 100.00%

4 1568 86.92% 93.11% 1568 25.00% 100.00% 3273 80.38% 94.05% 3429 28.37% 99.91%

FW1 2 2400 74.77% 90.50% 2625 68.65% 97.87% 3509 73.13% 93.42% 3601 76.58% 98.87%

3 2400 93.24% 94.90% 2625 47.14% 99.89% 3509 91.45% 99.80% 3601 52.21% 97.75%

4 2400 73.89% 85.47% 2625 35.36% 99.89% 3509 79.03% 99.80% 3601 41.51% 96.59%

IPC1 2 2691 52.17% 67.61% 2889 62.40% 98.07% 3488 77.79% 90.04% 3588 73.16% 100.00%

3 2691 56.27% 69.27% 2889 42.50% 99.59% 3488 61.32% 97.70% 3588 83.06% 99.92%

4 2691 65.32% 77.24% 2889 31.87% 99.21% 3488 46.81% 99.32% 3588 64.12% 99.89%

Dest Port Protocol

Classifer
# of Hash

Tables (M)

Dest IP Src Port
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Figure 6. Time slots for generating one result vs. AFIFO Size 

In Table 9, we compare the proposed pipeline architecture with 
HyperCut [13] and B2PC scheme [16] in terms of the average 
time slots for each classification operation. Since the original 
B2PC scheme was designed to return only the most specific rule, 
we made changes on it to return all matched rules. The bucket size 
of HyperCut is set to 16, and its space factor is set to 4 (optimized 
for speed). We suppose that each memory access of HyperCut 
could read 64 bits. When measuring the time slots of processing 
each packet for the proposed pipeline, we don’t count in the time 
spent for single-dimensional searches. This is because single-
dimensional search engines [17] are able to return a search result 
in every 2.2 memory accesses (time slots), which is smaller than 
the time spent by the pipeline. When single-dimensional search 
engines operate in parallel with the pipeline architecture, they 
won’t affect the pipeline’s throughput. 

Table 9 shows that for IPC2 the proposed pipeline can complete 
one classification operation in every 3.79 time slots even there is 
only one hash table at each stage. The performance improvement 
is not obvious when M increases from 2 to 4, because the packet 
classification speed has already reached the speed limitation of 
single-dimensional search engines. In contrast, for ACL1 and 
ACL2, the proposed pipeline architecture needs more than 20 
time slots to finish a packet classification when M=1. The 
performance gets significantly improved when M increases to 4. 
When we put 4 hash tables at each stage, the proposed pipeline 
can export one classification result in every 10.52 time slots even 
with the worst classifier. The proposed pipeline architecture has 

very strong robustness. It significantly outperforms HyperCut and 
B2PC schemes for all tested classifiers. Although part of the 
performance improvement is gained from the parallelism of the 
pipeline (in fact, B2PC scheme also employs many parallel bloom 
filters to accelerate its classification speed), the use of parallelism 
doesn’t increase the overall storage cost thanks to the high 
partition efficiency provided by NCB_EG scheme. 

For ACL2, FW1, and IPC1, HyperCut scheme requires more than 
200 time slots on average to perform each packet classification. 
The reason for this slow processing speed is because that these 
classifiers have lots of overlapping ranges/fields at 
source/destination IP address fields and source/destination port 
fields. The large number of overlapping ranges can cause a large 
number of rules replicated in leaves [13], which leads to a steep 
increase in the number of memory accesses. Although authors in 
[13] claimed that the performance of HyperCut could be improved 
by using pipeline, it is unclear yet what performance the 
pipelined-version HyperCut would achieve, since the last stage of 
the pipelined-version HyperCut still need to search a large number 
of replicated rules in leaf nodes. 

Table 9. Average time slots required for classifying a packet 

M=1 M=2 M=3 M=4

ACL1 27.14 13.73 11.05 10.52 52.02 105.78

ACL2 24.90 15.68 9.70 9.22 523.34 91.34

FW1 11.67 7.50 7.03 5.30 215.17 24.31

FW2 6.66 4.61 4.35 4.26 22.12 33.45

IPC1 18.81 10.46 9.48 9.46 803.64 95.19

IPC2 3.79 2.30 2.26 2.25 33.28 77.65

Proposed Pipeline
HyperCuts B2PCClassifier

 

Table 10. Storage requirement required by different schemes 

ACL1 504K 611K 540K

ACL2 504K 214K 540K

FW1 504K 3536K 540K

FW2 504K 2766K 540K

IPC1 504K 445K 540K

IPC2 504K 1482K 540K

Classifier HyperCuts B2PCProposed Pipeline

 

In Table 10, we compare the storage costs of three algorithms. 
According to the analysis in section 7.2, we know that the worst-
case storage requirement of the proposed pipeline is about 192 
Kbytes. According to the single-dimensional search proposed in 
[17], which requires 78Kbytes of memory, the total storage 
requirement of the pipeline including four single dimensional 
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search engines is about 504 Kbytes (the storage requirement of 
the single-dimensional search engine for transport-layer protocol 
field is omitted here). The small storage requirement makes the 
proposed pipeline be able to fit into a commodity FPGA, on 
which the hash tables could be implemented by on-chip SRAM. 
Suppose the on-chip SRAM access frequency is 400 MHz, the 
smallest size of IP packet is 64 bytes. The proposed pipeline can 
achieve a throughput between 19.5Gbps and 91Gbps with 
different types of classifiers. 

Table 11 shows the hash table collision rate under different 
classifiers and settings of M. In fact, if we further reduce the load 
factor of hash tables, a lower hash collision rate could be achieved, 
which may bring an even higher pipeline throughput. 

Table 11.  Hash table collision rate 

Classifier M=1 M=2 M=3 M=4

ACL1 0.31 0.20 0.12 0.12

ACL2 0.27 0.33 0.10 0.12

FW1 0.28 0.24 0.39 0.17

FW2 0.46 0.22 0.16 0.30

IPC1 0.31 0.22 0.18 0.20

IPC2 0.28 0.18 0.13 0.13  

8. CONCLUSION 
In this paper, we model the multi-match packet classification as a 
concatenated multi-string matching problem, which could be 
solved by traversing a flat signature tree. To speed up the traversal 
of the signature tree, the edges of the signature tree are divided 
into different hash tables in both vertical and horizontal directions. 
These hash tables are then connected together by a pipeline 
architecture, and work in parallel when packet classification 
operations are performed. Because of the large degree of 
parallelism and elaborately designed edge partition scheme, the 
proposed pipeline architecture is able to achieve an ultra high 
packet classification speed with a very low storage requirement. 
Simulation results show that the proposed pipeline architecture 
outperforms HyperCut and B2PC schemes in classification speed 
by at least one order of magnitude with a similar storage 
requirement of HyperCut and B2PC schemes.  
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