
An Efficient and Scalable Pattern Matching Scheme

for Network Security Applications

Tsern-Huei Lee and Nai-Lun Huang
Department of Communication Engineering

National Chiao Tung University
Taiwan

Email:{tlee@banyan.cm.nctu.edu.tw, nellen.cm93g@nctu.edu.tw}

Abstract—Because of its accuracy, pattern matching

technique has recently been applied to Internet security

applications such as intrusion detection/prevention, anti-virus,

and anti-malware. Among various famous pattern matching

algorithms, the Aho-Corasick (AC) can match multiple pattern

strings simultaneously with worst-case performance guarantee

and is adopted in both Clam AntiVirus (ClamAV) and Snort

intrusion detection open sources. The AC algorithm is based on

finite automaton which can be implemented straightforwardly

with a two-dimensional state transition table. However, the

memory requirement prohibits such an implementation when the

total length of the pattern strings is large. The ClamAV

implementation limits the depth of the finite automaton and

combines with linked lists to reduce memory requirement. The

banded-row format is adopted to compress the state transition

table and used as an alternative pattern matching machine in

Snort. In this paper we present a novel implementation which

requires small memory space and achieves high throughput

performance. Compared with the banded-row format, our

proposed scheme achieves 39.7% reduction in memory

requirement for 5,000 patterns randomly selected from ClamAV

signatures. Besides, the processing time of our proposed

scheme is, on the average, 83.9% of that of the banded-row

format for scanning various types of files. Compared with the

ClamAV implementation with the same 5,000 patterns and files,

our proposed scheme requires slightly more memory space but

achieves 80.6% reduction in processing time on the average.

I. INTRODUCTION

Pattern matching has been an important technique in

information retrieval and text editing for many years.

Recently, it has been applied to Internet security for signature

matching to detect virus, worms, intrusion, etc., because of its

accuracy.

There are some well-known pattern matching algorithms

such as Knuth-Morris-Pratt (KMP) [1], Boyer-Moore (BM)

[2], and Aho-Corasick (AC) [3]. The KMP and BM
algorithms are efficient for single pattern matching but are not

scalable for multiple patterns. The AC algorithm

pre-processes the patterns and builds a finite automaton which

can match multiple patterns simultaneously. Another

advantage of the AC algorithm is that it guarantees

deterministic performance under all circumstances. It can be

shown that the number of state transitions is at most 2n-1 for

an input text string of length n. In fact, this number can be

reduced to n if the next move function is adopted. As a

consequence, the AC algorithm is widely adopted in various

systems, especially when worst-case performance is an

important design factor.

A straightforward implementation of the AC algorithm is
to construct a two-dimensional state transition table for the

finite automaton. However, the huge amount of memory

space required makes such an implementation infeasible. As

an example, assume that a pattern set results in 1M states and

each state is represented with four bytes. If every symbol is

a byte, meaning that the number of possible inputs is
8

2 , then
the total memory requirement is about 1G bytes which is

obviously not acceptable for an embedded system. Several

schemes had been proposed to reduce the memory

requirement. The bitmap architecture presented in [4] can

significantly compress the data structure. However, it

requires to compute the population count in a 256-bit bitmap

and thus may seriously degrade the throughput performance

unless hardware acceleration is adopted. The banded-row

format [5] proposed by Marc Norton, the Snort IDS Team
lead at Sourcefire Inc., can compress the state transition table

significantly. For convenience, the banded-row format based

implementation of the AC algorithm will be referred to as the

banded-row format AC. In Clam AntiVirus (ClamAV) [6]

implementation, two data structures, i.e., AC automaton and

linked lists, are used to reduce memory requirement. The

AC automaton is constructed only for the first two bytes of all

pattern strings. Pattern strings which have the same first two

bytes form a linked list associated with some leaf state of the

AC automaton. As will be seen later in Section VI, such an

implementation largely reduces memory requirement but
sacrifices throughput performance. Both the banded-row

format and the ClamAV implementation will be reviewed in

Section III.

In this paper, we first present an idea to improve the

throughput performance of the banded-row format AC and

then propose another scheme which can further improve

throughput performance and reduce memory requirement.

Compared with the banded-row format AC, our proposed

scheme achieves 39.7% reduction in memory requirement for

5,000 patterns randomly selected from ClamAV signatures.

Besides, the processing time of our proposed scheme is, on

the average, 83.9% of that of the banded-row format AC for
scanning various types of files. Compared with the ClamAV

implementation with the same 5,000 patterns and files, our

proposed scheme requires slightly more memory space but

achieves 80.6% reduction in processing time on the average.

978-1-4244-2390-3/08/$25.00 ©2008 IEEE 1

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 29, 2009 at 19:53 from IEEE Xplore. Restrictions apply.

The rest of this paper is organized as follows. In

Sections II and III, we review the AC algorithm and some

related works, respectively. Section IV presents our idea

which improves the throughput performance of the

banded-row format AC. Section V contains our proposed

scheme, followed by the complexity analysis and
experimental results in Section VI. Finally, we draw

conclusion in Section VII.

II. THE AHO-CORASICK ALGORITHM

In this section, we briefly review the AC algorithm of

constructing a finite state pattern matching machine for a

given set of pattern strings Y = { 1 2, ,..., yp p p }. Basically,

the AC pattern matching machine is dictated by three

functions: a goto function g, a failure function f, and an output

function output. Fig. 1 shows the pattern matching machine

for Y = {he, she, his, hers} [3].

One state, numbered 0, is designated as the start state.

The goto function g maps a pair (state, input symbol) into a

state or the message fail. For the example shown in Fig. 1,

we have g(0, h) = 1 and g(1,σ) = fail if σ is not e or i.

State 0 is a special state which never results in the fail

message, i.e., g(0, σ) ≠ fail for all input symbols σ .

With this property, one input symbol is processed by the

pattern matching machine in every operation cycle.

The failure function f maps a state into a state and is

consulted when the outcome of the goto function is the fail
message. String u is said to represent state S if the shortest

path in the goto graph from state 0 to state S spells out u.

Let u and v be the strings that represent states S and Q,

respectively. We have f(S) = Q if and only if (iff) v is the
longest proper suffix of u that is also a prefix of some pattern

string. It is not difficult to verify that f(5) = 2 for the

example shown in Fig. 1. The output function maps a state

(a) The goto function.

S 1 2 3 4 5 6 7 8 9

f(S) 0 0 0 1 2 0 3 0 3

(b) The failure function.

S output(S)

2 {he}

5 {she, he}

7 {his}

9 {hers}

(c) The output function.

Figure 1. The AC pattern matching machine for Y = {he, she, his, hers}.

into a set (could be empty) of pattern strings. The set

output(S) contains pattern string p iff p is a suffix of the string

representing state S. As an example, we have output(5) =

{he, she} for the example shown in Fig. 1.

The operation of a pattern matching machine is as follows.

Let S be the current state and a the current input symbol.
Also, let T denote the input text string. An operation cycle is

defined as follows.

1. If g(S, a) = Q, the machine makes a state transition

such that state Q becomes the current state and the next

symbol of T becomes the current input symbol. If

output(Q) ∅ (empty set), the machine emits the set

output(Q). The operation cycle is complete.

2. If g(S, a) = fail, the machine makes a failure

transition by consulting the failure function f. Assume

that f(S) = R. The pattern matching machine repeats the

cycle with R as the current state and a as the current input

symbol.

Initially, the start state is assigned as the current state and

the first symbol of T is the current input symbol.

It was proved that the pattern matching machine makes at

most 2n-1 state transitions in processing an input text string of

length n. This is an important property because it provides

performance guarantee in the worst case. Notice that failure

transitions can be eliminated if the goto function is replaced

with the next move function so that the pattern matching

machine becomes a deterministic finite automaton. In this

case, the number of state transitions is exactly n when an

input text string of length n is processed.

III. RELATED WORKS

It is clear that, in an AC pattern matching machine, the

goto function requires much more storage than the failure and

the output functions. A straightforward implementation of

the goto function is to use a two-dimensional state transition

table. However, the memory requirement for such an

implementation may become prohibitively large when the

total length of the pattern strings is large. Two related

compression schemes which are used in Snort and ClamAV

are briefly reviewed below.

A. Banded-row format

The state transition table of the goto function in the AC

pattern matching machine is often a sparse matrix because it

is likely to contain only a few nonfail elements in each row.

There are various compression schemes to reduce the memory

requirement of a sparse matrix [5], [7]. The banded-row
format [5] proposed by Marc Norton, the Snort IDS Team

lead at Sourcefire Inc., is an effective compression scheme

which allows fast random access to the data.

For the banded-row format, the row elements are stored

from the first nonzero value (or nonfail value in the goto

transition table of AC pattern matching machine) to the last

nonzero value, known as band values. For example, the

2

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 29, 2009 at 19:53 from IEEE Xplore. Restrictions apply.

banded-row format of the sparse vector (0 0 0 2 4 0 0 0 6 0 7

0 0 0 0 0 0 0 0 0) is (8 3 2 4 0 0 0 6 0 7), where the first

element indicates the number of vector elements stored,

named bandwidth, and the second element represents the

index (numbered from 0) of the first vector element stored

followed by band values. Both the goto table and the next
move table of AC pattern matching machine can be

compressed with the banded-row format. However, the next

move table is not as sparse as the goto table, so we choose the

goto table. The corresponding pattern matching scheme is

referred to as the banded-row format AC, as mentioned

before.

Obviously, the banded-row format can be generalized to

multiple bands. As an example, the two-band banded-row

format of the above sparse vector is (2 3 2 4)(3 8 6 0 7),

where (2 3 2 4) and (3 8 6 0 7) denote the first and the second

bands, respectively. The elements of the two bands have

similar meanings as those in the original banded-row format.
Our experiments show that one band is a better choice than

multiple bands because there is no significant difference in

terms of the reduction of memory requirement and multiple

bands yield worse throughput performance than one band

because it needs to distinguish more cases.

B. ClamAV

ClamAV [6] is an open source anti-virus toolkit for UNIX.

The main purpose of it is e-mail scanning on mail gateways.

It is the most widely used open source anti-virus scanner

available.

ClamAV uses a variation of the AC algorithm. To look

up each input symbol quickly, ClamAV constructs a trie

structure with a 256-element lookup array for each 8-bit

symbol. The memory requirement of ClamAV depends on

how deep the trie is. Since the AC algorithm constructs an

automaton of depth equal to the longest pattern length, the

memory requirement of ClamAV’s structure would be
unacceptably large because some patterns are of length more

than 2,000 bytes. Therefore, ClamAV modifies the AC

algorithm so that the trie is constructed only to some

maximum depth, and all patterns with the same prefix are

stored in a linked list under the appropriate leaf state. The

maximum depth is dictated by the shortest pattern length,

which is currently two bytes. Fig. 2 shows the ClamAV trie

structure.

ClamAV follows the trie transition to process each input

symbol. When a leaf state is visited, all patterns on its

linked list are checked using sequential string comparisons.
As a result, the throughput performance of ClamAV may

severely degrade if a leaf state with a linked list containing a

large number of patterns is visited.

IV. IMPROVING THE BANDED-ROW FORMAT AC

As described in Section III, the transition table of the
banded-row format AC is a compressed version of the goto

table. Thus, some band values may be fail. To speed up

matching procedure, we replace all band values with the

Figure 2. The ClamAV trie structure.

results of the next move function, so that no failure transition
is necessary if the input symbol falls in a band. As an

example, assume that alphabet = {a, b, c, d, e, f, g, h} and Y
= {abcda, abba, cda, cabc}. Assume further that the

symbols in are sequentially encoded as 0, 1, 2, 3, 4, 5, 6 and

7. For clearness, the original goto graph is shown in Fig. 3.

The goto transition vector for state 8 is (11 fail fail 9 fail fail
fail fail) and, therefore, its corresponding banded-row format

is given by (4 0 11 fail fail 9). Since the two symbols b and

c which result in fail fall in the band, their transitions are

replaced with the results of the next move function. The

goto transitions for the two symbols a and d, which also fall in

the band, are the same as their next move transitions. As a
consequence, the transition vector stored for state 8 is (4 0 11

0 8 9). With this replacement, the number of failure

transitions during text scanning can be reduced and, thus, the

throughput performance improves.

V. OUR PROPOSED SCHEME

In our proposed compression scheme, we classify states

according to the number of child states and whether or not

pattern strings are matched. Note that there might be a

self-loop at the start state. However, the goto graph becomes
a tree after removing the self-loop, if exists. In the following

definitions, we ignore the self-loop and consider the goto

graph as a tree.

State R is said to be a child state of state S if there exists a

Figure 3. The goto function for = {a, b, c, d, e, f, g, h} and Y = {abcda,

abba, cda, cabc}.

3

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 29, 2009 at 19:53 from IEEE Xplore. Restrictions apply.

symbol σ such that g(S,σ) = R. State S is said to be a

branch state, a single-child state, or a leaf state, if it has at

least two child states, exactly one child state, or no child state,

respectively. Moreover, state S is said to be a final state if

output(S) is not empty. It is clear that a leaf state is always a

final state but not the converse. Finally, state S is said to be

an explicit state if it is a branch state or a final state.

We store all pattern strings and some data structures for

the states on the goto graph. The data structures for branch,

single-child, and leaf states are different. Assume that state

S is a branch state. In this case, we store f(S) and g(S,σ) for

all possible input symbols σ . As a result, we also have a

two-dimensional state transition table. However, the number

of rows is only equal to the number of branch states. It is not

hard to see that the number of branch states is at most y-1 if

there are y pattern strings. To save space, the banded-row

format is adopted to compress the two-dimensional table. To

speed up matching procedure, we adopt the idea proposed in

Section IV. For convenience, the resulting state transition

table is named the Branch State Transition (BST) table.

Assume that state S is a single-child state. We say state

R is a descendent state of state S if state R is a child state of

state S or a descendent state of some child state of state S. In
other words, state R is a descendent state of state S if there

exist strings u and v such that u represents state S and uv
(concatenation of u and v) represents state R for some

nonempty string v. Furthermore, state R is said to be a

descendent explicit state of state S if R is an explicit state and

a descendent state of state S. Note that, based on our

definition, state R is different from state S if state R is a

descendent explicit state of state S. State R is said to be the

nearest descendent explicit state (NDES) of state S if state R is

a descendent explicit state of state S and there is no other

descendent explicit state of state S which is represented by
string uw where string w is a proper prefix of string v.

Suppose that state R is the NDES of state S. It is true that

there exists at least one pattern string kp such that

kp = uvr for some string r. The data structure for the

single-child state S includes S.pattern, S.position, S.distance,

and f(S), where S.pattern, S.position, and S.distance store,

respectively, the identification of pattern string kp , |u|

(length of string u), and |v|. Note that, if states are numbered

sequentially from a single-child state to its NDES, then the

state number of state S.NDES is that of state S plus S.distance.

In our realization, we use such a numbering scheme as in the

original AC algorithm.

Finally, assume that state S is a leaf state. In this case,

we simply store f(S). Of course, every state needs a flag to

indicate whether or not it is a final state and, if it is, another
data structure is necessary to emit the matched pattern strings.

Consider the example in Section IV again. There are

only three branch states, namely states 0, 2, and 8. The

vector representing goto transitions for state 0 is (1 0 8 0 0 0 0

0) and it is stored as (8 0 1 0 8 0 0 0 0 0) in our scheme.

Similarly, the goto transitions for state 2 is (fail 6 3 fail fail
fail fail fail) and is stored as (2 1 6 3). Finally, the goto

transitions for state 8 is (11 fail fail 9 fail fail fail fail) and we

store it as (4 0 11 0 8 9).

Assume that the pattern strings abcda, abba, cda, and

cabc are identified by numbers, 0, 1, 2, and 3, respectively.

State 1 is an example of single-child state. Its NDES is state

2 with distance 1. Let S be state 1. There are two pattern
strings, i.e., abcda and abba, which can be used as S.pattern.

In our example, we picked pattern string abcda with

identification 0. The data structures for the other

single-child states can be obtained similarly. Fig. 4 shows

the data structures of our proposed scheme for this example.

Our proposed pattern matching machine is described

below. For convenience, we use []kp m to represent the

thm symbol of pattern string kp and assume input text

string T = 1 2... nt t t . Note that, since the states from a

single-child state to its NDES are numbered sequentially, the

updated current state after each success transition from a

single-child state to its NDES can be easily obtained by

increasing the current state number by one.

Pattern Matching Machine

S ← 0; i ← 1; // initialization

While (i ≤ n)

{

If (S is a branch state)
{

If (BST[S][1] it BST[S][1]+ BST[S][0]-1)

{

S ← BST[S][2+ it - BST[S][1]];

 If (output(S) ≠ ∅)

emit output(S);

i ← i+1;

}

Else

S ← f(S);

}

Else if (S is a single-child state)

{

kp ← S.pattern; m← S.position+1; St ← S;

While (m St.position+ St.distance)

{

If (it = []kp m) {S ← S+1; i ← i+1;

m ← m+1;}

 Else {S ← f(S); break;}

}

If (m= St.position+ St.distance+1)

 If (output(S) ≠ ∅)

emit output(S);

}

Else // S is a leaf state

S ← f(S);

}

4

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 29, 2009 at 19:53 from IEEE Xplore. Restrictions apply.

Branch

state

Band-

width

Start

index
Band values

0 8 0 1 0 8 0 0 0 0 0

2 2 1 6 3

8 4 0 11 0 8 9

(a) The Branch State Transition (BST) table.

S S.pattern S.position S.distance

1: 0 1 1

3: 0 3 2

4: 0 4 1

6: 1 3 1

9: 2 2 1

11: 3 2 2

12: 3 3 1

(b) Data structure for single-child states.

S 1 2 3 4 5 6 7 8 9 10 11 12 13

f(S) 0 0 8 9 10 0 1 0 0 1 1 2 3

(c) The failure function.

S output(S)

5 {0, 2}

7 {1}

10 {2}

13 {3}

others ∅

(d) The output function.

Figure 4. Data structures of our proposed scheme for = {a, b, c, d, e, f, g,

h} and Y = {abcda, abba, cda, cabc}.

VI. ANALYSIS AND EXPERIMENTAL RESULTS

In this section, we compare the memory requirement and
processing time of the AC algorithm, the ClamAV scheme, the

banded-row format AC, our modified version, and our

proposed scheme.

Firstly, let us consider the AC algorithm. We name the

AC pattern matching machine dictated by a goto function, a

failure function, and an output function AC 1. As mentioned

in Section II, we can eliminate the failure function by

replacing the goto function with the next move function, and

we name this version AC 2. Both the goto function and the

next move function can be realized with two-dimensional

tables of O(L| |) elements straightforwardly, where L
represents the total length of all pattern strings, which is the
upper bound of the state number. To realize the failure and

the output functions, we need some data structures which both

take space O(L). Therefore, the space complexity of AC 1

and AC 2 is O(L| |). With the next move function, AC 2

makes exactly n state transitions in processing an input text

string of length n. On the other hand, AC 1 needs at least n
and at most 2n-1 transitions. Therefore, the time complexity

of both AC 1 and AC 2 is O(n), but actually AC 2 is normally

faster than AC 1.

Secondly, consider the ClamAV scheme. ClamAV uses a

trie structure of depth two as shown in Fig. 2 to perform

pattern matching. On the first level of the trie, there is a

| |-element lookup array. Each element on the array may

point to a second-level lookup array, which also contains | |

elements. All pattern strings should be grouped according to

their 2-byte prefix and stored under the appropriate leaf state.

Therefore, the space complexity of ClamAV is O(| |
2+L).

Thirdly, consider the banded-row format AC and our

modification described in Section IV. In both schemes, the

goto tables are compressed with the banded-row format.

The only difference is that all band values are replaced with

the results of the next move function in our modification.

Therefore, the space complexity of both schemes is O(LB),

where B denotes the average bandwidth.

Finally, consider our proposed scheme presented in

Section V. Since the number of branch states is at most y-1,

the BST table takes space O(yB). As mentioned above, L is

the upper bound of the number of all states, so the number of

single-child states is not greater than L. Therefore, the data
structure for single-child states takes space O(L) as all pattern

strings and the data structures for the failure function and the

output function take. Consequently, the space complexity of

our proposed scheme is O(yB+ L).

In addition to theoretical analysis, we conduct practical

experiments to compare all of these schemes. All schemes

are implemented in C++ and the experiments are conducted

on a PC with an Intel Pentium 4 CPU operated at 2.80GHz

with 512MB of RAM. The pattern strings are 5,000

randomly selected ClamAV signatures. Fig. 5 shows the

results of the experiments for memory requirement. Table I
shows the processing time for each scheme applied to various

types of files that contain no pattern strings. To test the

processing time for scanning a file with pattern occurrences,

we duplicated the file wmvcore.dll several times and inserted

a pattern string in each copy at various positions. The

resulting files were processed by the program of each pattern

matching scheme. All the programs halt when a match is

found. The experimental results are shown in Fig. 6.

As shown in Fig. 5, the ClamAV scheme, the banded-row

format AC, our modified version, and our proposed scheme

require much less storage than the AC algorithm does. The

memory requirements of the banded-row format AC, our
modified version, our proposed scheme, and the ClamAV

scheme are about 1.92%, 1.92%, 1.16%, and 0.08% of that of

AC 2, respectively. Note that the ClamAV scheme has the

least memory requirement. This is because the data structure

of ClamAV is a trie with only two levels. However, with

such a trie, every time a leaf state is visited, the ClamAV

scheme has to check all pattern strings on the associated

linked list using sequential string comparisons. The

checking procedure is quite time-consuming when the linked

list contains a large number of pattern strings. If the

checking fails, the current state transits from the leaf state to
its failure state. In other words, the checking procedure does

not consume any input symbol, although it takes time.

Therefore, the ClamAV scheme requires much processing

time, as can be seen in Table I and Fig. 6. Compared with

the ClamAV scheme, our proposed scheme requires slightly

5

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 29, 2009 at 19:53 from IEEE Xplore. Restrictions apply.

TABLE I. PROCESSING TIME COMPARISON FOR SCANNING VARIOUS TYPES OF FILES WITH NO PATTERN OCCURRENCES

Processing time (ms)

Schemes

AC 1 AC 2 ClamAV
Banded-row

format AC

Our modified

banded-row

format AC

Our proposed

scheme

Scanned

files

AC.cpp (4KB) 0.75 0.63 35 1.11 0.77 0.78

list.txt (10KB) 1.35 1.26 41 1.72 1.39 1.39

dosx.exe (54KB) 4.68 4.23 53 5.14 4.96 4.71

index.htm (78KB) 5.78 5.32 58 7.03 6.41 5.79

bootcfg.exe (186KB) 13.13 12.02 62 16.23 15.94 14.38

wmvcore.dll (2.2MB) 172.66 153.91 285 218.43 209.85 195.62

more memory space (1.88M bytes vs. 0.13M bytes) but
achieves 80.6% reduction in processing time on the average

for scanning various types of files as listed in Table I.

As shown in the experimental results, the banded-row

format AC, our modified version, and our proposed scheme

have satisfactory performance on both memory requirement

and processing time. Among them, our proposed scheme is

the best for both performance metrics. In comparison with

the other two, our proposed scheme achieves 39.7% reduction

in memory requirement. Note that, for the banded-row

format AC and our modified version, every success transition

requires memory access and computation to extract the
updated current state from the banded-row format. However,

for our proposed scheme, the success transition can be easily

done by increasing the current state number by one when a

single-child state is visited. Therefore, our proposed scheme

Figure 5. Memory requirement for 5,000 pattern strings randomly selected

from ClamAV signatures.

requires less processing time than the banded-row format AC
and our modified version. According to our experimental

results, the processing time of our proposed scheme is, on the

average, 83.9% of that of the banded-row format AC for

scanning the files listed in Table I.

VII. CONCLUSION

In this paper, we first present an idea to improve the

throughput performance of the banded-row format AC and

then propose a scalable implementation of the Aho-Corasick

pattern matching algorithm. The performance of our
proposed implementation is compared with those of other

related works both theoretically and experimentally.

Compared with the banded-row format AC, our proposed

implementation achieves 39.7% reduction in memory

requirement for 5,000 pattern strings randomly selected from

ClamAV signatures and 16.1% reduction in processing time

on the average for scanning various types of files.

Compared with the ClamAV implementation, our proposed

implementation requires slightly more memory space but

 Figure 6. Processing time comparison for scanning a file with a pattern

occurrence.

6

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 29, 2009 at 19:53 from IEEE Xplore. Restrictions apply.

achieves 80.6% reduction in processing time. Based on the

analysis and experimental results, we believe that our

proposed scheme is more preferable than the banded-row

format AC and the ClamAV implementation. An interesting

further research topic is to design an efficient pattern

matching algorithm to handle regular expressions.

REFERENCES

[1] D.E. Knuth, J.H. Morris, and V.R. Pratt, “Fast pattern matching in

strings,” TR CS-74-440, Stanford University, Stanford, California,

1974.

[2] R.S. Boyer and J.S. Moore, “A fast string searching algorithm,”

Communications of the ACM, vol. 20, pp. 762-772, October 1977.

[3] A.V. Aho and M.J. Corasick, “Efficient string matching: an aid to

bibliographic search,” Communications of the ACM, vol. 18, pp.

333-340, June 1975.

[4] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic

memory-efficient string matching algorithms for intrusion

detection,” IEEE Infocom, 2004.

[5] Marc Norton (the Snort IDS Team), “Optimizing pattern matching

for intrusion detection,” Sourcefire Inc., September 2004.

[6] Clam AntiVirus (ClamAV) website http://www.clamav.net.

[7] R.E. Tarjan and A.C.-C. Yao, “Storing a sparse table,”

Communications of the ACM, vol. 22, pp. 606-611, November

1979.

[8] Y. Miretskiy, A. Das, C.P. Wright, and E. Zadok, “Avfs: an

on-access anti-virus file system,” Proceedings of the 13the

USENIX Security Symposium, pp. 73–88 ,2004.

[9] Y. Sugawara, M. Inaba and K. Hiraki, “Over 10Gbps string

matching mechanism for multi-stream packet scanning systems,”

Field Programmable Logic and Applications, vol. 3203, pp.

484-493, September 2004.

[10] L. Tan and T. Sherwood, “A high throughput string matching

architecture for intrusion detection and prevention,” 32nd Annual

International Symposium on Computer Architecture, pp. 112-122,

2005.

[11] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,

“Deep packet inspection using parallel bloom filters,” Symposium

on High-Performance Interconnect (HotI), Stanford, CA, pp.

44-51, August 2003.

[12] Snort website http://www.snort.org/

7

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 29, 2009 at 19:53 from IEEE Xplore. Restrictions apply.

