
A Two-Hashing Table Multiple String Pattern
Matching Algorithm

Chouvalit Khancome
Department of Computer Science,

Faculty of Science and Technology
Rajanagarindra Rajabhat University

Chachoengsao, Thailand
e-mail: chouvalit@hotmail.com,

chouvalit.kha@csit.rru.ac.th

Veera Boonjing
Department of Computer Science,

King Monkut’s Institute of Technology at Ladkrabang
Ladkrabang, Bangkok,Thailand

e-mail: kbveera@kmitl.ac.th

Pisit Chanvarasuth
School of Management Technology

Sirindhorn International Institute of Technology,
Thammasat University
Pathumthani, Thailand

e-mail: pisit@siit.tu.ac.th

Abstract—Multiple string pattern matching is one of many
approaches to simultaneously search occurrences of a large
number of patterns in a given text. In this paper, a new solution to
this problem is presented by using two-hashing tables to minimize
attempting times. This solution, called Two-Hashing Table Multiple
String Patterns Matching Algorithm (Two-HT-MSPMA), is suitable
for very long length of minimum pattern length. Its time complexity
is more efficient than classic algorithms. Empirical results showed
that its attempting times were less than of traditional algorithms.

Keywords- Hashing Data Structure, Static Dictionary
Matching, Pattern Detection Algorithm, Exact String Matching.

I. INTRODUCTION
Multiple string pattern matching is a classic problem in

computer science to simultaneously search for occurrences of
known patterns in a text. It plays important roles in various
fields (e.g., [18], [21], [22], [25]) including the operating
system commands (Unix grep command using Commentz-
Walter [8] and agrep using Wu-Manber[27]), intrusion
detection systems (e.g., SNORT using Aho-Corasick[1],
Commentz-Walter [8], and Wu-Manber[27]), and so on. Its
good solution relies on excellent data structures provided for
several searching aspects. Formally, this matching
simultaneously searches for all occurrences of patterns P={p1,
p2, p3,..,pr} which appeared in a given text T={t1,t2,t3…tn} over

a finite alphabet � . Therefore, a more efficient data structure,
provided for accommodating the target patterns, is needed.
Moreover, a faster searching algorithm is always required.

A powerful search is required in a minimal attempting time.
Such a search can be obtained via a fast accessing data
structure. A hashing table is the most widely known as the
fastest accessing data structure; because it can be accessed in a
constant time. Unfortunately, when implementing the hashing
table to a single string pattern matching highly took a
consuming time. Moreover, if any multiple string pattern

matching algorithms inherited only one hashing table to create
their data structure for searching, then the time complexity of
those algorithms was more time consuming. Thus, this way
seems to get to the dead end of inherited hashing algorithms
and is the major barrier of hashing algorithm developments.
Fortunately, the two-hashing multiple string pattern matching
algorithm (called Two-HT-MSPMA) breaks through the
barriers of traditional hashing algorithms.

The new approach uses two related hashing table for storing
the target patterns. Including, the shift table is used to
recognize the shift value for a new window search as well as
the algorithm in [4]. In the searching phase, the matching
method hashes one time or twice in the first hashing table if
there is no pattern overlapping or twice in both hashing tables
if there is only one or more pattern overlapping.

Two-HT-MSPMA is very high efficient when the minimum
pattern length is very long. It takes O(|P|) time and space
preprocessing where |P| is the sum of all pattern lengths. The
search takes O(|t||P|) in the worst case, O(|t|) in an average
case, and O(|t|/lmin) in the best case scenario where |t| is the
length of the given text, and lmin is the minimum length of
patterns. Furthermore, the empirical results showed that the
attempting time to match were less than the well known
algorithms such as Aho-Corasick [1], SetHorspool [8], and q-
grams of [1] and [8]; especially when using the large number
of pattern overlapping and very long patterns.

The remaining sections are organized as follows. Section II
shows the previous research on multiple string pattern
matching. Section III gives basic definitions, which are shown
by examples and algorithm details. Section IV explains how to
create the hashing tables and their algorithms. Section V
illustrates the proposed search algorithm. Section VI analyzes
complexities of the preprocessing phase and the searching
phase. Section VII shows empirical results and gives a
discussion. Finally, section VIII gives a conclusion.

2013 10th International Conference on Information Technology: New Generations

978-0-7695-4967-5/13 $26.00 © 2013 IEEE

DOI 10.1109/ITNG.2013.108

696

II. PREVIOUS RESEARCH
In general, multiple string pattern matching has become

increasingly popular in research subject, e.g. [8]. There are two
phases in string pattern matching: preprocessing and searching.
The preprocessing generates the patterns to a designated data
structure providing to a powerful search algorithm. Trie, Bit-
parallel, and Hashing table are well-known data structures for
this purpose. Trie is a prefix-tree data structure used in the first
famous algorithm [1]. This algorithm is the first linear time
solution which is inherited from [5]. Then, the Commentz-
Walter [2] and the SetHorspool [8] are the sub-linear time
solutions which extended from [23].

There are a number of algorithms that apply Trie; for
example, SBOM [3], SDBM (shown in [8]), [10], MultiBDM
[13], [16], and [17]. All of them improved the searching time
(mentioned in [8]). However, implementing Trie to
applications consumes tremendous memory in practice.

Alternatively, the Bit-parallelism, like Trie for its
popularity, uses data of bits for the pattern representation.
Navarov [8] showed how to apply the Bit-parallel in the single
string Shift-Or and the single Shift-And to the Multiple Shift-
And [7], the Multiple-BNDM [7], and algorithm in [9].
Unfortunately, Bit-parallel algorithms are restricted by the
computer word and need to deal with the complexity of the bit-
conversion methods. Moreover, it is difficult to update the
pattern when implement the data structure.

Employing a hashing table for dictionary was an important
choice; Karp and Rabin [11] were the first to find a solution
with this structure. This algorithm took more time in a worst
case scenario: O(mn) time where m is the single pattern length.
The disadvantage of this principle is the lengthy processing
time when directly extended to the multiple string patterns
matching. Nevertheless, an efficient algorithm was presented
by Wu and Manber [27], which created the shift table and
implemented the hashing table to store the block of patterns. A
more efficient solution [29] improved Wu and Manber’s
method in [27] and saved searching time in an average case
However, the worst case scenario was not improved.

In addition, there are some other techniques which combine
algorithms with several structures in order to improve the time
complexity such as the q-gram structure and the partitioning
technique. However, the worst case time is again not improved.
More details on the development of the new standard can be
found in [8], [14], [15], [24], and [31].

Recently, solutions [5], [20], and [28] improved the Trie
structure to accommodate the patterns especially in [5] which
has minimal space of solution. For other solutions, there exists
a wealth of literature devoted to employ those classic data
structures (e.g., Trie, Bit-parallel, and Hashing). These can be
found in [12], [26], and [30].

III. BASIC DEFINITIONS
As mentioned in the introduction section, our new

algorithm employs two hashing tables for accommodating the
patterns; as well as, the searching phase hashes into these
hashing tables for matching inspection. Then, this section
introduces the definitions and illustrates their data structures.

Definition 1 shows a main shifting table which is applied
from [4], definition 2 describes the first level of hashing table
of the minimum prefix patterns, and definition 3 explains the
second-level of the hashing table to store the patterns which
are overlapped and related with the first hashing table in
definition 2.

Firstly, let lmin be the minimum length of patterns, and
then, the following explanations indicate the meaning of
referring notations to be used.

Definition 1. The hashing table, which consists of two

columns: � and the shifting values, is called the shifting
table and denoted by ST; where � is the single alphabet
which appear in P. The shifting value is an integer number
which is used for setting the new window search.

Example 1. The ST of P={aaba, aabab, aababc, aababcd,

aababcde, abcb, , zmnd, qope, jmqfm } into ST where * is the
other characters that are not appeared in � (the shifting values
calculated by algorithm 1 in the next section). That algorithm
is inherited from [21].

TABLE I. SHIFTING VALUE TABLE(ST)

� of pi[lmin] Shifting Values

a 2
b 1
c 1
d 1
e 1
f 1
m 2
n 4
o 3
p 1
q 3
j 3
z 3
* 4

Definition 2. The hashing table, which stores the prefix of

all patterns that the number of characters equal the minimum
length of patterns and the lists(L) of patterns overlapping
lengths, is called the hashing table level 1 (denoted by HL1);
where Min_keys is the column which is used to store the
prefix of all patterns and L is the list of patterns overlapping
lengths.

Example 2. The HL1 of example 1 shown as P={aaba,

aabab, aababc, aababcd, aababcde, abcb, zmnd, qope, jmqfm
}.

697

TABLE II. HASHING TABLE LEVEL 1

Min_keys
(pi[1...lmin])

L

aaba 4,5,6,7,8
abcb -
zmnd -
qope -
jmqf 5

Definition 3. The hashing table, which stores the patterns

that are overlapping in HL1, is called the overlapping patterns
table (denoted by HL2); where Ovp_Keys is the column, stored
the patterns which are overlapped from HL1 and their lengths
are longer than patterns in HL1.

Example 3. The HL2 of example 1 shown as P={aaba,

aabab, aababc, aababcd, aababcde, abcb, zmnd, qope, jmqfm
}.

TABLE III. HASHING TABLE LEVEL 2

Ovp_Keys
aabab
aababc

aababcde
aababcde

jmqfm

IV. PREPROCESSING PHASE
 This phase creates two related hashing tables and one shift
table. The following algorithms show how to create ST, HL1,
HL2 respectively; where lmin is the minimum length of
patterns and ShiftingValue is the shifting value of the
individual character in � which is initiated at lmin.
 ST is the hashing table consisted of the keys of characters
which are appeared in all patterns at the positions of lmin.
Each character is checked for overlapping when the search
window is slid, and the shifting value can be shifted to the
farthest distance with no pattern overlapping. The algorithm
(inherited from [4]) is shown below.

 Algorithm 1 : Create ST
Input: P={p1, p2, p3,...,pr},lmin
Output: Shifting Table (ST)
1. Initiate the empty ST
2. For i=1 to r Do
3. ShiftingValue=lmin
4. For j= lmin -1 down to 1 Do
5. If pi[j] exists in ST Then
6. ShiftingValue = the shifting value at pi[j] in ST
7. If pi[j] = pi[lmin] Then
8. ShiftingValue = ShiftingValue-1
9. If ShiftingValue at pi[j] >ShiftingValue Then

 ShiftingValue at ST[pi[j]]= ShiftingValue
10. End If
11. End If

12. Else
13. ST�pi[j] at column of �
14. Add lmin to column of shifting Value
15. End For
16. End If
17. End For
18. Return ST

HL1 is created for storing the patterns of P with the

number of characters equal lmin characters into Min_Keys.
Meanwhile, the values to be inserted into the column L are the
list of pattern lengths that are overlapped to HL2. The
algorithm is shown below.

 Algorithm 2 : Create HL1
Input: P={p1, p2, p3,...,pr}, lmin
Output: HL1
1. Initiate the empty PPT
2. For i=1 to r Do
3. If pi[1...lmin] does not exist in HL1 Then
4. HL1 column keys �pi[1...lmin]
5. If length of pi = lmin Then
6. Add lmin to L of HL1 in pi column
7. End of If
8. End If
9. End For
10. Return HL1

HL2 is created for the overlapping patterns and the pattern
that the lengths are longer than the minimum pattern lengths
which are stored in HL1. The inputs are P and lmin in HL1.
Meanwhile, the overlapping patterns and the patterns that the
lengths are longer than lmin are stored in the HL2. The details
are shown in Algorithm 3.

 Algorithm 3 : Create HL2
Input: P={p1, p2, p3,...,pr},lmin
Output: HL2
1. Initiate the empty HL2
2. For i=1 to r Do
3. If length of pi > lmin Then
4. Add length of pi to L of HL1 in pi column
5. HL2 column keys �pi
6. End For
7. Return HL2

After the preprocessing phase, all tables have already been

created for searching algorithm. In addition, they will be
referred for all search windows. For the our example, if
P={aaba, aabab, aababc, aababcd, aababcde, abcb, zmnd,
qope, jmqfm }, then ST, HL1, and HL2 are initiated as Table I,
Table II, and Table III respectively.

.

698

V. SEARCHING PHASE
The following details show the searching steps and the

details on algorithms. The searching method is driven by
initiating the window search at the beginning of the given text
with the minimum length. Then, the substring of that window
is hashed into HL1. The matching position is then checked
when the first item of L equal lmin. If there are many items in
L, then that substring including the next character is hashed
into HL2 until the last item in L is taken. Next, the character
that appears at the lmin in each window is used to hash into
ST for initiating the next window search.

The following algorithms show the idea above:

 Algorithm 4: Two-HT-MSPMA
Input: T, ST, HL1,HL2, P, lmin
Output : all matched positions are reported
1. Rear, Cur=lmin
2. While Cur <=n Do
3. If Hash[T[Cur-lmin]...T[lmin]] into HL1 = true Then
4. Report the matched position at Cur if L[1] = lmin or
L[1]= -
5. For (i=1 if L[1]>lmin or i=2 if L[1]=lmin) to size of
L and Cur<=n Do
6. Rear= L[i]
7. If Hash[T[Cur-lmin]...T[Rear]] into HL2 =
true Then
8. Report the matched position at Rear
9. End For
10. End If
11. End If
12. NewCur= ShiftingVvalue at Hash[ST[T[Cur]]
13. Cur = Cur+NewCur
14. Rear=Cur
15. End While

 An example of searching is shown as example 4.

Example 4. Searching P={aaba, aabab, aababc, aababcd,
aababcde, abcb, zmnd, qope, jmqfm} in the given text T=
aababcdezmndjmqfmaababcd.

Searching window :1
a a b a b c d e z m n d j m q f m a a b a b c d

Hash(“aaba”)->HL1 =true, L=4,5,6,7,8, match: OK

a a b a b c d e z m n d j m q f m a a b a b c d

Process L[2]=5, Hash(“aabab”)->HL2 =true, match:
OK

a a b a b c d e z m n d j m q f m a a b a b c d

Process L[3]=6, Hash(“aababc”)->HL2 =true, match:

OK

a a b a b c d e z m n d j m q f m a a b a b c d

Process L[4]=7, Hash(“aababcd”)->HL2 =true, match:
OK

a a b a b c d e z m n d j m q f m a a b a b c d

Process L[5]=8, Hash(“aababcde”)->HL2 =true,

match: OK

Searching Window: 2, ShiftingValue ‘a’=2
a a b a b c d e z m n d j m q f m a a b a b c d

Hash(“babc”)->HL1 = -, L= - match: -

Searching Window: 3, ShiftingValue ‘c’=1
a a b a b c d e z m n d j m q f m a a b a b c d

Hash(“abcd”)->HL1 = -, L= -, match: -

Searching Window: 4, ShiftingValue ‘d’=3
a a b a b c d e z m n d j m q f m a a b a b c d

Hash(“bcde”)->HL1 = -, L= -, match: -

Searching Window: 5, ShiftingValue ‘e’=1
a a b a b c d e z m n d j m q f m a a b a b c d

Hash(“cdez”)->HL1 = -, L= -, match: -

Searching Window: 6, ShiftingValue ‘z’=3
a a b a b c d e z m n d j m q f m a a b a b c d

Hash(“zmnd”)->HL1 =true, L= - match: OK

Searching Window: 7, ShiftingValue ‘d’=1
a a b a b c d e z m n d j m q f m a a b a b c d

Hash(“mndj”)->HL1 = -, L= -, match: -

Searching Window: 8, ShiftingValue ‘j’=3
a a b a b c d e z m n d j m q f m a a b a b c d

Hash(“jmqf”)->HL1 =true, L=5, match: -

Process L=5
a a b a b c d e z m n d j m q f m a a b a b c d

Hash(“jmqfm”)->HL2 =true, L= -, match: OK

Searching Window: 9, ShiftingValue ‘f’=1
a a b a b c d e z m n d j m q f m a a b a b c d

Hash(“mqfm”)->HL1 = -, L= -, match: -

Searching Window: 10, ShiftingValue ‘m’=2
a a b a b c d e z m n d j m q f m a a b a b c d

Hash(“fmaa”)->HL1 = -, L= -, match: -

Searching Window: 11, ShiftingValue ‘a’=2
a a b a b c d e z m n d j m q f m a a b a b c d

Hash(“aaba”)->HL1 =true, L=4, 5,6,7,8, match: OK

Process L[2]=5
a a b a b c d e z m n d j m q f m a a b a b c d

Hash(“aabab”)->HL2 =true, match: OK

699

Process L[3]=6
a a b a b c d e z m n d j m q f m a a b a b c d

Hash(“aababc”)->HL2 =true, match: OK

Process L[4]=7
a a b a b c d e z m n d j m q f m a a b a b c d

Hash(“aababcd”)->HL2 =true, match: OK

Searching Window 12: Cur>n, then the search is
finished.

With this search, we can save times to scan the given text
when the minimum length is too long. Unfortunately, if there
are no characters which can be skipped, then the comparing
time will be equal to the length of the given text.

VI. COMPLEXITY ANALYSIS

A. Preprocessing Time and Space Complexity
Algorithm 1 is run to equal the number of pattern (r) which

takes r time or |P|. Meanwhile, the space complexity equals� .
Like the algorithm 1, the algorithm 2 (creating HL1) is run in
|P| time. The space complexity is |lmin*r|. Creating the
hashing table of HL2 (Algorithm 3) uses O(|P|) time and takes
the maximum space O(|P|) when every pattern is overlapped
or uses O(1) if there is no pattern overlapping (only HL1).

Therefore, overall time complexity is O(|P|+|P|+|P|) for
the preprocessing phase, shown as O(3|P|) or O(|P|) time. The
space complexity equals the space of O(�+|lmin*r| +|P|)
which is shown as O(|P|).

B. Searching Time Complexity
The algorithm 4 needs to capture the string in each

searching window at once. Therefore, the maximum of time
takes |t| time if the shifting values in ST are equal, which takes
O(|t|) (shown in the average case). Meanwhile, if there is no
overlapping or the shifting value equals lmin, then it takes
O(|t|/lmin) (shown in the best case scenario).

In the average case scenario, the comparisons need to
capture all character in the searching window in each
comparison. Then, the shifting values are differenced, which
take O(|t|) time in maximum when the shifting value is
activated more than one position.

In the worst case scenario, the basic comparison is
equivalent to the average case when the shifting value is
activated only one position, which finally lead to O(|t||P|) time.
However, the substring method of each comparison is taken
only once. This case may be occurred when there are several
overlapping patterns.

VII. EMPIRICAL RESULTS AND DISCUSSION
In our empirical results, the given text of 1,000,000

characters and the minimum length of all patterns to be
matched 100 characters were assumed. The matching times
were set to 10,000 times with no overlapping and the shifting
value equals the minimum length. On the other hand, when

the mismatches occurred at the first character, the last
character of each search window will also be assumed.

 The classic Aho-Corasick [1], the simple algorithm of
Commentz-Walter[23] called as SetHorspool [shown in 10],
the current excellent q-gram technique of [19] (developed
from classic Aho-Corasick [1] and SetHorspool) were chosen
for the empirical comparisons. As well as, the 5-q grams,
which were larger than the original experiments shown in [19],
were set for the comparison as well.

Table IV shows the empirical results of the attempting time
for matching where Two-HT-MSPMA is the two-hashing table
multiple string pattern matching algorithm.

TABLE IV. EMPERICAL RESULTS OF ATTEMPTING TIME FOR MATCHING
(TIMES) WHEN THERE IS NO PATTERNS OVERLAPPING

Algorithms Complete
matching

Mismatch
at pi [1]

Mismatch at
pi [lmin]

Aho-Corasick[1] 1,000,000 1,000,000 1,000,000
SetHorspool[9] 1,000,000 1,000,000 10,000
5-q grams of [1] 200,000 200,000 10,000
5-q grams of [9] 200,000 1,000,000 200,000
Two-HT-MSPMA 10,000 10,000 10,000

TABLE V. % OF ATTEMPTING TIMES FOR MATCHING IN TABLE IV

Algorithms Complete
matching

Mismatch
at pi [1]

Mismatch at
pi [lmin]

Aho-Corasick[1] 100.00 100.00 100.00
SetHorspool[9] 100.00 100.00 1.00
5-q grams of [1] 20.00 20.00 1.00
5-q grams of [9] 20.00 100.00 20.00
Two-HT-MSPMA 1.00 1.00 1.00

The empirical results showed that the attempting times of
new algorithms were less than the traditional algorithms
especially in the cases of long length and no overlapping
examples.

For algorithm implementation, the preprocessing phase is
relatively easy to create especially when using a high level of
a hashing data structure such as java.util.HashSet. This
structure provides the string methods for accessing by hashing
properties such as .add, .remove, .contain, and so on.

VIII. CONCLUSION

 The multiple-string pattern matching employing two-
hashing tables was presented. This approach takes O(|P|) time
and space preprocessing where |P| is the sum of lengths in P.
The search takes O(|t||P|) in the worst case, O(|t|) in an
average case, and O(|t|/lmin) in the best case scenario; where
|t| is the length of text T and lmin is the minimum length of
patterns. As shown in our empirical results, the attempting
times were less than of the traditional algorithms especially in
the case of a very long minimum pattern length.

700

REFERENCES

[1] A. V. Aho, and M. J. Corasick, “Efficient string matching: An
aid to bibliographic search”, Comm. ACM, 1975, pp.333-340.

[2] B. Commentz-Walter, “A string matching algorithm fast on the
average”, In Proceedings of the Sixth International Collogium
on Automata Languagees and Programming, 1979, pp.118-132.

[3] C. Allauzen, and M. Raffinot, “Factor oracle of a set of words”,
Technical report 99-11, Institute Gaspard Monge, Universit� de
Marne-la-Vall�e, 1999.

[4] C. Khancome and V. Boonjing, “New Hashing-Based Multiple
String Pattern Matching Algorithms”, 2012 Ninth International
Conference on Information Technology- New Generations
(ITNG 2012), LasVegas, USA, 2-4 April 2012, pp.195-200.

[5] D. Belazzougui, “Worst Case Efficient Single and Multiple
String Matching in the RAM Model”, 21st International
Workshop on Combinatorial Algorithms (IWOCA 2010), LNCS
6460, 2011, pp. 90–102.

[6] D.E. Knuth, J.H. Morris, V.R Pratt, “Fast pattern matching in
strings”, SIAM Journal on Computing 6(1), 1997, pp.323-350.

[7] G. Navarro, “Improved approximate pattern matching on
hypertext”, Theoretical Computer Science, 2000, 237:pp.455-
463.

[8] G. Navarro, and M. Raffinot, “Flexible Pattern Matching in
Strings”, The press Syndicate of The University of Cambridge.
2002.

[9] H. HYYRO, K. F. SSON, and G. Navarro, “Increased Bit-
Parallelism for Approximate and Multiple String Matching”,
ACM Journal of Experimental Algorithms, Vol.10, Article No.
2.6, 2005, pp.1-27.

[10] J. J. Fan, and K. Y. Su, “An efficient algorithm for match
multiple patterns”, IEEE Trans. On Knowledge and Data
Engineering, 1993, Vol.5, No.2, pp.339-351.

[11] K. M. Karp, and M.O. Rabin, “Efficient randomized pattern-
matching algorithms” IBM Journal of Research and
Development, 31(2), 1987, pp.249-260.

[12] L. Dai, and Y. Xia, “A Lightweight Multiple String Matching
Algorithm”, International Conference on Computer Science and
Information Technology 2008 (ICCSIT'08), Singapore, Aug. 29-
Sept. 2, 2008, pp. 611–615.

[13] L. Gongshen, L. Jianhua, and L. Shenghong, “New multi-pattern
matching algorithm”, Journal of Systems Engineering and
Electronics, Vol. 17, No. 2, 2006, pp.437-442.

[14] L. Ping, T. Jian-Long, and L. Yan-Bing, “A partition-based
efficient algorithm for large scale multiple-string matching”, In
Proceeding of 12th Symposium on String Processing and
Information Retrieval (SPIRE’05). Lecture Notes in Computer
Science, vol. 3772, Springer-Verlag, Berlin, 2005.

[15] L. Salmela, J. Tarhio, and J. Kytöjoki, “Multipattern string
matching with q-grams”, ACM Journal of Experimental
Algorithmics (JEA), Vol. 11, Article No. 1.1, 2006, pp.1-19.

[16] M. Crochemore, A. Czumaj, L. G�sieniec, S. Jarominek, T.
Lecroq, W. Plandowski, and W. Rytter, “Fast practical multi-

pattern matching”, Report 93-3, Institute Gaspard Monge,
Universit� de Marne-la-Vall�e, 1993.

[17] M. Crochemore, A. Czumaj, L. G�sieniec, T. Lecroq, W.
Plandowski, and W. Rytter, “Fast practical multi-pattern
matching”, Information Processing Letters, 71(3/4), 1999,
pp.107-113.

[18] M. Makula, and L. Benuskova “Interactive visualisation of
oligomer frequency in DNA”, Computing and Informatics, Vol.
28, No. 5, 2009, pp. 695–710.

[19] M. Raffinot, “On the multi backward dawg matching algorithm
(MultiBDM)”, In R. Baeza-Yates, editor, Proceedings of the 4th
South American Workshop on String Processing, Valparaìso,
Chile. Carleton University Press, 1997, pp.149-165.

[20] N. Askitis, and J. Zobel, “Redesigning the String Hash Table,
Burst Trie, and BST to Exploit Cache”, ACM Journal of
Experimental Algorithmics, Vol. 15, No. 1, Article 1.7, 2011,
pp. 1–61.

[21] P. C. Bosnjak, and S. M. Cisar, “EWMA Based Threshold
Algorithm for Intrusion Detection”, Computing and Informatics,
Vol. 29 No. 6+, 2010, pp. 1089–1101.

[22] P. Lu, Y. Che, and Z. WangK, “UMDA/S: An Effective Iterative
Compilation Algorithm for Parameter Search”, Computing and
Informatics, Vol. 29, No. 6+, 2010, pp. 1159–1179.

[23] R.S. Boyer, and J.S. Moore, “A fast string searching algorithm”,
Communications of the ACM, 20(10), 1977, pp.762-772.

[24] S. Klein, T. R. Shalom, and Y. Kaufman, “Searching for a set of
correlated patterns”, Journal of Discrete Algorithm, Elsevier,
2006, pp.1-13.

[25] S. Kuruppu, B. Beresford-Smith, T. Conway, and J. Zobel
“Iterative Dictionary Construction for Compression of Large
DNA Data Sets”, IEEE/ACM Transactions on Computational
Biology and Bioinformatics, Vol. 9, No. 1, 2012, pp. 137–149.

[26] S. Kuruppu, B. Beresford-Smith, T. Conway, and J. Zobel
“Iterative Dictionary Construction for Compression of Large
DNA Data Sets”, IEEE/ACM Transactions on Computational
Biology and Bioinformatics, Vol. 9, No. 1, 2012, pp. 137–149.

[27] S. Wu, and U. Manber, “A fast algorithm for multi-pattern
searching”, Report tr-94-17, Department of Computer Science,
University of Arizona, Tucson, AZ, 1994.

[28] T. Haapasalo, P. Silvasti, S. Sippu, and E. Soisalon-Soininen,
“Online Dictionary Matching with Variable-Length Gaps”, 10th
International Symposium on Experimental Algorithms (SEA
2011), LNCS 6630, 2011, pp. 76–87.

[29] Y. Hong, D. X. Ke, and C. Yong, “An improved Wu-Manber
multiple patterns matching algorithm”, Performance,
Computing, and Communications Conference, 2006. IPCCC
2006. 25th IEEE International 10-12, 2006, pp.675-680.

[30] Y. Hu, P. F. Wang, and H. Kai, “A Fast Algorithm for Multi-
String Matching Based on Automata Optimization”, C2010 2nd
International Conference on Future Computer and
Communication, Vol. 2, 2010, pp. 379–383.

[31] Z. A.A. Alqadi, M. Aqel, and I. M.M. El Emary, “Multiple skip
Multiple pattern matching algorithm (MSMPMA)”, IAENG
International Journal of Computer Science, 34:2, IJCS_34_2_03,
2007.

701

