

Abstract-° With the increasing importance of network
protection from cyber threats, it is requested to develop a multi-
gigabit rate pattern-matching method for protecting against
malicious attacks in high-speed network. This paper devises a
high-speed deep packet inspection algorithm with TCAM by
using an m-byte jumping window pattern-matching scheme. The
proposed algorithm significantly reduces the number of TCAM
lookups per payload by m times with the marginally enlarged
TCAM size which can be implemented by cascading multiple
TCAMs. Due to the reduced number of TCAM lookups, we can
easily achieve multi-gigabit rate for scanning the packet payload.
It is shown by simulation that for the Snort rule with 2,247
patterns, our proposed algorithm supports more than 10 Gbps
rate with a 9 Mbit TCAM.

I. INTRODUCTION

Recently, a lot of various cyber threats such as worms,
viruses, spam-mails, and hacking have appeared with the
explosive increase of Internet usage. When viruses hidden in
the e-mail propagate quickly themselves, they will cause
various kinds of troubles to users, hosts, and networks. A new
type of dangerous threats to security today is the worm. For
instance, the SQL Slammer, one of the first flash worms
unleashed on the Internet in January 2003, caused significant
disruption to networks around the world [1,2]. Hence, the
importance of developing network security technologies and
various secure solutions that protect data, system, and
networks from these cyber attacks has become invaluable.
Network Intrusion Detection Systems (NIDSs) monitor every
packet in the network to detect malicious attacks. In a high-
speed network, an NIDS may be overloaded as the packet
arrival rate becomes high. Hence, the hardware-based
approach of implementing the NIDS will be appropriate in
order to support the high-speed network. The functions of the
NIDS are often performed by secure routers in these days.
The secure router usually supports multi-gigabit rate such as
10 Gbps Ethernet and OC-192. Therefore, multi-gigabit rate
secure routers need 10Gbps scan rate for detecting malicious
signatures from the packets.

In this paper, we suggest a 10Gbps deep packet inspection
algorithm that can be used with Ternary Contents
Addressable Memory (TCAM). Usually, the search capability
of TCAM outperforms general purpose memories. TCAM can
provide an answer for searching a packet of length n, in a

° This research was supported in part by ITRC program of the
Ministry of Information and Communication, Korea.

deterministic time of O(n) TCAM lookups, because one
TCAM lookup is needed for every byte position in the packet
[3,4]. Since the TCAM lookup time is known and fixed, we
need to minimize the number of TCAM lookups per packet to
support the multi-gigabit rate secure router. We suppose a
TCAM-based pattern- matching algorithm which decreases
the number of TCAM lookups per packet by means of
performing a TCAM lookup operation per multi-bytes in a
packet payload. We call this algorithm as the jumping window
pattern-matching scheme. One pattern will generate multiple
TCAM entries shifted from 0 to m–1, if the size of the
jumping window is m. In our algorithm, TCAM lookups for
searching a packet of length n, is O(n/m). Therefore, by
reducing the number of TCAM lookups with the proposed
jumping window scheme, multi-gigabit rate can be supported
for secure routers.

The remainder of the paper is organized as follows. We
review related work in Section 2, and summarize the
characteristics of TCAM in Section 3. Section 4 presents
algorithms to map the multiple patterns into TCAM and
efficiently scan packets at high speeds. Section 5 describes
the analysis and the simulation results of our algorithm.
Finally, we conclude the paper in Section 6.

II. RELATED WORK

Signature-based intrusion detection schemes are used to
detect malicious signatures which may appear anywhere in
the packet payload by scanning the packet payload. These
signatures are stored in the searching table as multiple
patterns. References [5] and [6] provide fast algorithms to
search multiple patterns. Reference [5] suggests a multiple-
pattern search algorithm, a set-wise Boyer-Moore-Horspool
(SBMH) algorithm, which combines the one-pass approach of
Aho-Corasick [7] with the skipping feature of Boyer-Moore
[8] as optimized for the average case by Horspool [9].
Reference [6] suggests a fast algorithm for multi-pattern
searching. It builds three tables at the preprocessing stage: a
SHIFT table, a HASH table, and a PREFIX table. The SHIFT
table is similar, but not exactly the same, to the regular shift
table in the Boyer-Moore type algorithm. It is used to
determine how many characters in the text can be shifted
(skipped) when the text is scanned. The HASH and PREFIX
tables are used when the shift value is 0. Besides [5] and [6],
[10] and [11] provide multiple pattern-matching algorithms
for the payload-sensitive packet-filtering system. The multiple
pattern-matching algorithms [5][6][10][11] use software
approaches. However, software-based pattern-matching is not
able to inspect all packets in the high-speed network [12].

A Multi-gigabit Rate Deep Packet Inspection Algorithm using TCAM

Jung-Sik Sung*, Seok-Min Kang†, Youngseok Lee†, Taeck-Geun Kwon†, and Bong-Tae Kim*

* ETRI,
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, Korea

{jssung, bkim}@etri.re.kr

† Chungnam National University
220 Gung-dong, Yuseong-gu, Daejeon, 305-764, Korea

{esemkang, lee, tgkwon}@cnu.ac.kr

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 453 0-7803-9415-1/05/$20.00 © 2005 IEEE

Reference [13] proposed a hardware-based technique using
parallel bloom filters which could detect strings in streaming
data. The proposed scheme builds a bloom filter for each
possible pattern length. Each bloom filter scans the streaming
data and checks the strings of corresponing length. This could
impose parallelism limits in some virus databases because
pattern lengths vary from tens to thousands of bytes and there
are hundreds of possible patterns lengths[4]. Parallel bloom
filters are implemented on FPGA which cannot realize large-
scale rule database.

References [3] and [4] provide TCAM-based pattern match
algorithms that can be used with TCAM. Reference [3]
achieves optimal functionality and efficiency for deep packet
filtering with assistance of the “self-study” table which is a
preprocessing method similar to cache. Reference [3]
supports indefinite length pattern match, because payload
fields may be indefinite within the limitation of TCAM width.
The system has to match data contents with a sliding window.
The width of the sliding window is determined by the width
of the field in a rule database, thus it changes dynamically.
Since the location of pattern within the payload is not known,
the sliding window must forward one byte per clock exactly
so as not to miss any matching opportunity. Reference [4]
presents a TCAM-based pattern-matching algorithm for
handling both short patterns less than the TCAM width and
long patterns. In case of the short pattern, one TCAM lookup
is needed for every byte position in the payload like [3].
Given the limited TCAM width, a pattern longer than the
TCAM width will split into several sub-patterns: the first
TCAM width prefix patterns and the remaining suffix patterns.
Assuming TCAM lookup time is 4ns, [4] can support a
deterministic scan rate of 8bits/4ns = 2Gbps in case of short
patterns. For long patterns, the speed of pattern-matching will
be dominated by TCAM lookup time if the TCAM hit rate is
low and the size of partial hit list table is small. In this case,
the total time to scan an n-byte packet is 4n ns and the
matching speed is 8n /4n = 2Gbps [4]. Since 2Gbps will not
be suitable for multi-gigabit secure routers or IDSs in the
high-speed network, the capability of supporting multi-gigabit
scan rate will be essential. Hence, we propose a high-speed
deep packet inspection algorithm that employs one TCAM
lookup per multi-bytes of payload by using the variable size
jumping window instead of ‘the sliding window scheme’1. Fig.
1 illustrates how to find the pattern “GATT” in the payload;
the example shows the 6-th segment of the packet payload
matches the TCAM entry.

T ACT A GCTAG CTA G CT

AG T T

AG T T

AG T T

AG T T

AG T T

AG T T

AG T T ...

Packet payload

TCAM entry matchth6

1 In this paper, the scheme in [3][4] is referred to a ‘sliding window’.

III. TCAM CHARACTERISTICS

TCAM is a type of memory that can search multiple items
simultaneously at a high-speed rate. Each cell in a TCAM
may have one of three states (0, 1, or ‘don’t care’); a binary
CAM has only two states (0 or 1). One input may be to search
multiple TCAM entries because of the ‘don’t care’ state. If
multiple matches are given, TCAM will return the index of
the first hit or the indices of multiple hits. Two storage
locations, data (or key) and mask cells are necessary to save
three possible states. The mask cell specifies which bits in the
entry are active, thereby specifying the variable-length prefix.
TCAM entries are the logical records stored in the data and
mask cells. The TCAM entry may have associated data stored
in SRAM attached to the network search machine (NSE) or in
a separately accessible external memory (e.g., SRAM or
DRAM). The associated data may be returned as the result of
a TCAM lookup operation.

A TCAM-based NSE chip can support the packet-lookup
speed of 100 ~ 250 million searches per second (MSPS)
according to its family. It means that the TCAM lookup time
is about 4 ~ 10 ns. One feature of the NSE chip is to support
variable word-width searches of 36-, 72-, 144-, and 288-bit
wide words called the TCAM width. A 9Mbit TCAM has 72-
bit wide 128K entries or 144-bit wide 64K entries. Each of
NSE devices may be cascaded to extend TCAM spaces. For
example, IDT75K62134 [14] supports up to eight devices
through point-to-point cascading. Point-to-point cascading
allows databases to contain up to 1 million 72-bit entries.

IV. THE PROPOSED ALGORITHM

A. Algorithm

As stated above, the sliding window scheme supports one
TCAM lookup by one shift; this increases the number of
TCAM lookups. In order to achieve parallelism for payload
inspection, we devise an ‘m-byte jumping window’ scheme
that matches m-byte payload segment with every m-th
jumping windows as illustrated in Fig. 2. We guess that the
scanning time of the jumping window is superior to that of
sliding window. We describe the creation of TCAM entries
from a pattern in order to perform the jumping-window
scheme as follows.

Let w be the TCAM width and let - be ‘don’t care’ state of
TCAM. Given the pattern of “GATT” the position of the
pattern in the payload is one of “GATT,” “-GATT,” “--

Fig. 1. TCAM-based packet inspection with “sliding window”

Fig. 2. Example of jumping window scheme (m = 4)

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 454 0-7803-9415-1/05/$20.00 © 2005 IEEE

GATT,” …, “(w -1)-GATT.” When w is 4, the pattern may be
found at the different position of the payload such as
“GATT,” “-GATT,” “--GATT”, or “---GATT.” (shown in Fig.
3) We put the above derived patterns into the TCAM table.
Then, a TCAM lookup operation is carried out for every
segment of w bytes called a jumping window for a packet
payload. Usually, the width of the TCAM, which will be used
for matching the pattern in a parallel way, is fixed. Therefore,
if the TCAM width is smaller than the pattern, we have to
split a long pattern into shorter sub-patterns with the same
length of the TCAM width.

If one pattern splits into several sub-patterns, a pattern-
matching operation will be completed when all sub-patterns
are matched to the TCAM entries in series. Hence, for the
matching operation of multiple sub-patterns, a sub-pattern
matching function requires the result of the previous sub-
pattern matching operation. To increase the speed of
searching, we employ a hash function to find the result of the
previous sub-pattern matching operation. The value of the
hashing function will be stored in the associated data. The
hash value of associated data is used as a key for TCAM
lookup of the next sub-pattern. The key for TCAM lookup is
the combination of the previous hash value and the sub-
pattern. The TCAM window, m, is the length of sub-pattern.
In other words, we compute m by subtracting the length of the
hash value from w. Fig. 4 shows continuity of sub-patterns
with hash. A pattern-matching operation should be done,
because all sub-patterns are matched to TCAM entries in
series when the last hash value of associated data is zero. We
set the hash value of key for TCAM lookup of the first sub-
pattern to zero. For example, <hash0> in Fig. 4 is zero,
because it is the hash value of first sub-pattern. <hash1> of
associated data is obtained by hashing with the sub-pattern, “-
GAT”. It is used as a key for TCAM lookup of the next sub-
pattern, “T---.” Therefore, the key of the sub-pattern “T---”
following “-GAT” is combination of the previous hash value,
<hash1>, and the sub-pattern, “T---.”

Our algorithm consists of two phases of a preprocessing
stage and a scanning stage. At the first stage, the set of
patterns are preprocessed to create TCAM entries. Then, at
the second stage, payloads are scanned to detect malicious
attacks.

B. The Preprocessing Stage

We create TCAM entries from the set of patterns in the
preprocessing stage. The algorithm uses symbol notation of
Table 1 in the preprocessing stage. The algorithm picks out
the pattern Pi from the signature rule to create TCAM entries
in order to match the TCAM in parallel. Algorithm 1 shows
the algorithm of TCAM entry creation from Pi.

4 bytes

GATT
-GAT

TCAM key & mask array

T---
--GA
TT--
---G
ATT-

(TCAM width)

Pattern : GATT

~ ---G ATT~

~--GA TT~

~GATT~

~-GATT~

Matched
Packet :

Fig. 3. TCAM entry creation through (0 ~ w-1) shift-right operations

 Key & Mask Associated data
Hash Sub_pattern hash

<hash0> GATT 0
<hash0> – GAT <hash1>=hash(<hash0>, “GAT”)
<hash1> T – – – 0
<hash0> – – GA <hash2>=hash(<hash0>, “GA”)
<hash2> TT– – 0
<hash0> – – – G <hash3>=hash(<hash0>, “G”)
<hash3> ATT– 0

… … …

Fig. 4. Continuity of sub patterns with hash

TABLE 1. Notations used in the preprocessing stage
w TCAM width

m Window size
H

0
 Initial hash value, 0

P
i
 i-right shifted pattern (0• i • m–1)

S
j
 Sub-patterns which are derived from P

j
,

the size of S
j
 is equal to m (j • 1)

H
j
 Hashing with concatenation H

j-1
of

S

j

hash(H
j-1

S
j
)

K
j
 key which is derived from S

j (= H
j-1

S
j
)

Algorithm 1. TCAM entry creation algorithm for a pattern

for each pattern
for each i-shifted pattern Pi

if(length (Pi) <= m) {
S1 = Pi(m - length (Pi)) ;
create key H0S1 and associated hash 0; }

else {
left_length = length (Pj), j = 1;
while(left_length > m) {

 fetch m-byte Sj ;
 calculate hash Hj = hash(Hj-1, Sk);

create key Hj-1Sj and associated hash Hj ;
 left_length = left_length – m; j ++; }

calculate hash Hj = hash(Hj-1Sj) ;
create key Hj-1Sj and associated hash 0

C. The Scanning Stage

We now describe the scanning stage in more detail and
give algorithm for it. The algorithm uses the symbol notation
of Table 2. The m-byte segment of an input packet payload is
denoted as T[i..i+m–1] (i • 1). A key of TCAM lookup for the
payload, T[i..i+m–1], is the combination of the previous hash
value and T[i..i+m–1]. The previous hash value is hashed
with T [0..i–1] or the initial hash value if there is no previous
sub-pattern matching. When T[i..i+m–1] matches to one of
TCAM entries, we combine the associated hash value of
T[i..i+m–1] with the next sub-pattern, T[i+m..i+2m–1, in
order to create a key for the TCAM lookup of the payload,
T[i+m..i+2m–1]. If T[i+(j–1)m..i+jm–1] matches to one of
TCAM entries and the associated hash value is zero, finding
the pattern will be completed at the position of a packet
payload, T[i..i+jm–1].

Let us illustrate an example for explaining the jumping-
window pattern-matching scheme. We can create shifted sub-
patterns from a pattern, “GATT” and put them into the
TCAM table as shown in Fig. 5. When m is 4, we fetch a 4-
byte character with 4-byte jumping window from a packet pa-

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 455 0-7803-9415-1/05/$20.00 © 2005 IEEE

TABLE 2. Notations used in scanning stage
T The total payload of a packet
T[i..j] A continuous byte segments belong to a single packet
n Length of T
H[] Hash list
NH[] Next hash list
assoc_hash Hash from associated data when TCAM lookup is

successful

 Algorithm 2. Scanning algorithm

left_length = n; i = 1;
H[0] = 0; NH[0] = 0;
while(left_length > 0) {

fetch m-byte T[i..i+m-1] ;
 j = 0; k=1;
 while(H[j] != NULL) {

lookup_tcam(H[j], T[i..i+m-1]);
 if(match) {
 if(associ_hash == 0)
 pattern-matching successful
 else /* need continuous match */
 NH[k++] = associ_hash ;
 }
 j++ ;
 }
 copy(H, NH); reset(NH);
 i = i+m; left_length = left_length – m;
}

yload. Next, we make a key for TCAM lookup concatenating
the initial hash value, H0, and fetched characters. The
associated hash value H1, which is the result of hashing H0 and
shifted sub-pattern ,“-GAT,” is returned, when the key created
from the third 4-byte jumping window, “CGAT” matches to
one of TCAM entries. Now, we form the key with H1 and the
next 4-byte jumping window, “TCTA,” in order to search the
“-GATTCTA” string from the TCAM. It matches to the
TCAM entry which is the last sub-pattern of “-GATT---.”
Therefore, we obtain the zero value as the result of TCAM
lookup, which means that the input packet payload includes
the pattern, “GATT.”

V. PERFORMACE ANALYSIS AND SIMULATION

A. Analysis of TCAM Lookup Time

Let t be the TCAM lookup time, L be the average length of
payloads, and l be the length of pattern. The scanning time of
the sliding window scheme is equal to the product of the
number of TCAM lookups and the TCAM lookup time, i.e.,
Lt. Our algorithm uses the key of TCAM lookup as the
combination of the hash value and m-byte jumping window
from the payload. Namely, it processes m characters of the
payload per one TCAM lookup operation. Therefore, the
scanning time can be derived as Lt/m.

It is assumed that the payload length of an IP packet, L
varies from zero to 1,460 bytes. In addition, the TCAM
lookup time, t, is assumed to be a constant. Then, m-byte
jumping window will decide the scanning time. If the value of
m is large enough, the scanning time will be decreased to
provide multi-gigabit payload inspection. However, the
number of TCAM entries will be increased. The number of
TCAM entries, namely e, created from one pattern is given as
follow:

AGCT AGTT CGAT TCTA CCGA TACC TGAT GCGC

AGCT AGTT CGAT TCTA CCGA TACC TGAT GCGC

GATT

pattern

H0---G
H0--GA
H0-GAT
H0GATT
H3ATT-
H2TT--
H1T---Shifted

Sub-pattern

4-byte
jumping
window m

w

TCAM

H0---G
H0--GA
H0-GAT
H0GATT
H3ATT-
H2TT--
H1T---

H0---G
H0--GA
H0-GAT
H0GATT
H3ATT-
H2TT--
H1T---

H0AGCT
Key for
TCAM
lookup

H0CGAT H1TCTA

TCAM Hit
Return H1
H1= hash(H0 | -GAT)

TCAM Hit
Return 0
Successful match

Payload

H1 is used as
 Key for next
TCAM Lookup

Fig. 5. Jumping-window with hash values

e = m (l / m + 1) + (l % m – 1)

Fig. 6 compares the throughput of the proposed algorithm
with the sliding window scheme when the length of a packet
is 1518 bytes. The maximum-length packet is assumed
because it requires the worst case of TCAM lookups for
scanning the payload. 0.81 million packets per second (Mpps)
throughput is required to support 10Gbps. The sliding
window scheme performs 0.17Mpps throughput, but it cannot
achieve the performance of 10Gbps. Its throughput does not
change as m increase. In contrast, our algorithm, the jumping
window scheme can support the throughput of 10Gbps. The
throughput in our algorithm will be increased as m becomes
high because the scanning time can be decreased. Fig. 7
compares the number of TCAM lookups of the proposed
algorithm with sliding window scheme when m is 7. The
number of TCAM lookups of sliding window increases
rapidly as the packet length increases, while that of our
algorithm increases slowly.

0

1

2

3

4

5

6

5 7 9 11 13 15 17 19 21 23 25 27 29 31
Window size (m)

Throughput
(Mpps)

10 Gbps throughput

Jumping
window

Sliding window

Fig. 6. Packet inspection throughput of jumping and sliding windows

0

500

1000

1500

2000

64 128 256 512 758 1024 1280 1518

Packet length (bytes)

of

 T
CA

M
 lo

ok
up

s
.

7-byte jumping
window

sliding window
(i.e., 1-byte jumping window)

Fig. 7. TCAM accesses of jumping and sliding windows

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 456 0-7803-9415-1/05/$20.00 © 2005 IEEE

0

50

100

150

200

250

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
m-byte jumping wndow

of

 T
C

AM
 lo

ok
up

 k

0

50

100

150

200

250

300

350

TC
A

M
 s

iz
e

(1
0K

B
) kAverage TCAM lookups

TCAM sizes consumed

B. Simulation Results

We considered signature sets from Snort 2.1.0 [15] and
created TCAM entries from them. The signature sets have
2,394 rules and 2,247 patterns. We used real packet traces
with libpcap [16]. The number of total packets is 10,000 and
the average packet payload length is 690 bytes. Fig. 8 shows
the number of TCAM lookups and TCAM sizes
accommodate all the patterns under different m-byte jumping
window settings. We observed about 690/m TCAM lookups
per one packet in Fig. 8, because the average length of packet
payload is 690 bytes. As m increases, the number of TCAM
lookups has been reduced, because one TCAM lookup has
been performed for each m–byte jumping window. However,
as m increases, the number of TCAM entries becomes high
because of creation of staggered sub-patterns from a pattern.
Since TCAM supports several TCAM width for example 36-,
72-, 144-, and 288-bit wide words, TCAM sizes increase
rapidly when the size of jumping window is 8 and 17. Our
algorithm can achieve maximum performance with 16-byte
jumping window where TCAM size is 9Mbit.

We measured the number of TCAM lookups of sliding
window and 7-byte jumping window for each real packet as
shown in Fig. 9. The number of TCAM lookups of sliding
window for each packet is shown in Fig. 7.

VI. CONCLUSION

In this study, we have presented a multi-gigabit pattern-
matching algorithm for the high-speed network. The TCAM-
based deep packet inspection algorithm developed in this pap
er uses a jumping window scheme, which is supported by
staggered sub-patterns and hash function to reduce the
number of TCAM lookups. As shown in the simulation
results, the number of TCAM lookups was decreased by m
times using m–byte jumping window. Our proposed scheme
can scan thousands of patterns simultaneously at the high
performance. We evaluated its performance using real packet
traces and it was shown that our method is suitable for a
multi-gigabit secure router that provides network intrusion
detection functions.
In this paper, we described the algorithm for multiple pattern-
matching. Since the signature such as Snort rule contains
multiple patterns, we must match multiple patterns to detect
one signature for a packet. In order to detect multiple patterns

Fig. 8. The number of TCAM lookups and the size of TCAM in m-
byte jumping window

0

200

400

600

800

1000

1200

1400

1600

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Input packet index

of

 T
C

AM
 lo

ok
up

s

sliding window 7-byte jumping window

Fig. 9. The simulation result of TCAM lookups for packet trace

belonging to one signature, our algorithm can be extended by
creating a rule table and a matching table We have
implemented the proposed algorithm on the intel IXDP28xx
platform [17]. Our proposed alogirthm scanned for packet
payload at 1Gbps with one micro-engine that has single
thread. We expect 10Gbps rate through code optimization and
multiple micro-engines that have multiple threads. We’ve
proven the feaiblity of the proposed algorithm with our
experimental implementation that runs on the IXDP28xx
platform.

REFERENCE

[1] D. Moore, et al., “The spread of the sapphire/slammer worm,”
Tech. Report, Caida, 2003; http://www.caida.org/outreach/
papers/2003/sapphire/sapphire.html

[2] P. Jungck and S. S.Y. Shim, “Issues in high-speed internet
security,” IEEE Computer Magazine, vol. 37, no. 7, pp. 22-28,
July 2004.

[3] J. Bo and L. Bin, “High-speed discrete content Sensitive
pattern match algorithm for deep packet filtering,” Int’l Conf
on Computer Networks and Mobile Computing, 2003.

[4] F. Yu, R. H. Katz and T. V. Lakshman, “Gigabit rate packet
pattern-matching using TCAM,” IEEE Int’l Conf on Network
Protocols, pp.174-183, Oct. 2004.

[5] M. Fisk and G. Varghese, “Fast content-based packet handling
for intrusion detection,” Tech. Report CS2001-0670, UCSD,
May 2001.

[6] S. Wu and U. Manber, “A fast algorithm for multi-pattern
searching,” Tech. Report, TR94-17, U of Arizona, May 1994.

[7] A. Aho and M. Corasick, “Efficient string matching: An aid to
bibliographic search,” Communications of the ACM, vol. 18, no.
6, pp.333-343, June 1975.

[8] R. S. Boyer and J. S. Moore, “A fast string searching
algorithm,” Communications of the ACM, vol. 20, no 10, pp.
762-772, Oct. 1977.

[9] R. N. Horspool, “Practical fast searching in strings,” Software
Practice and Experience, vol. 10, no 6, pp. 501-506, 1980.

[10] Y. Huang, P. Zhang, S. Li, Y. Chen, and D. Zhang, “Research
on distributed real time network information auditing system,”
Int’l Conf on Information, Comm. & Signal Processing, 2001.

[11] eSafe Gateway, http://www.eAladdin.com/eSafe
[12] Y. H. Cho, S. Navab, and W. H. Mangione-Smith, “Specialized

hardware for deep network packet filtering”, Proceedings of
FPL 2002, pp. 452-461, Sep. 2002.

[13] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull and J. W.
Lockwood, “Deep Packet Inspection using Parallel Bloom
Filters”, IEEE Micro, vol. 24, no. 1, pp. 52-61, Jan. 2004.

[14] IDT, Integrated IP Co-Processor (IIPC) with QDR Interface,
IDT75K52134/ IDT75K62134 User Manual, Sep. 2002.

[15] Snort.org, http://www.snort.org/
[16] libpcap, http://ee.lbl.gov/
[17] Intel, Intel 2800 Network Processor, Hardware Reference

Manual, Jan. 2004.

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 457 0-7803-9415-1/05/$20.00 © 2005 IEEE

