
A Memory-Balanced Linear Pipeline Architecture for Trie-based IP Lookup

Weirong Jiang and Viktor K. Prasanna
Ming Hsieh Department of Electrical Engineering

University of Southern California
Los Angeles, CA 90089, USA
{weirongj, prasanna}@usc.edu

Abstract

Rapid growth in network link rates poses a strong de-
mand on high speed IP lookup engines. Trie-based architec-
tures are natural candidates for pipelined implementation
to provide high throughput. However, simply mapping a trie
level onto a pipeline stage results in unbalanced memory
distribution over different stages. To address this problem,
several novel pipelined architectures have been proposed.
But their non-linear pipeline structure results in some new
performance issues such as throughput degradation and de-
lay variation. In this paper, we propose a simple and effec-
tive linear pipeline architecture for trie-based IP lookup.
Our architecture achieves evenly distributed memory while
realizing high throughput of one lookup per clock cycle. It
offers more freedom in mapping trie nodes to pipeline stages
by supporting nops. We implement our design as well as the
state-of-the-art solutions on a commodity FPGA and eval-
uate their performance. Post place and route results show
that our design can achieve a throughput of 80 Gbps, up
to twice the throughput of reference solutions. It has con-
stant delay, maintains input order, and supports incremen-
tal route updates without disrupting the ongoing IP lookup
operations.

1. Introduction

With the continuing growth of Internet traffic, IP address
lookup has been a significant bottleneck for core routers.
Advances in optical networking technology have pushed
link rates in high speed routers beyond 40 Gbps, and Ter-
abit links are expected in near future. To catch up with the
rapid increase of link rates, IP lookup in high speed routers
must be performed in hardware. For example, OC-768 (40
Gbps) links require a throughput of 8 ns per lookup for a
minimum size (40 bytes) packet. Software-based solutions
cannot support such rates.

Current hardware-based solutions for high speed IP

lookup can be divided into two main categories: TCAM-
based and SRAM-based solutions. Although TCAM-based
engines can retrieve IP lookup results in just one clock,
their throughput is limited by the low speed of TCAM1.
SRAM outperforms TCAM with respect to speed, density
and power consumption, but traditional SRAM-based en-
gines need multiple clock cycles to finish a lookup. As
pointed out by a number of researchers, using pipelining
can significantly improve the throughput. For trie-based IP
lookup, a simple approach is to map each trie level onto a
private pipeline stage with its own memory and processing
logic. With multiple stages in the pipeline, one IP packet
can be looked up during a clock period. However, this ap-
proach results in unbalanced trie node distribution over dif-
ferent pipeline stages. This has been identified as a domi-
nant issue for pipelined architectures [1, 2, 15]. In an un-
balanced pipeline, the stage storing a larger number of trie
nodes needs more time to access the larger memory. It also
results in more frequent updates, which are proportional to
the number of trie nodes stored in the local memory. When
there is intensive route insertion, the larger stage can lead to
memory overflow. Hence, such a heavily utilized stage can
become a bottleneck and affect the overall performance of
the pipeline.

To address these problems, some novel pipeline architec-
tures have been proposed for implementation using ASIC
technology. They achieve a relatively balanced memory
distribution by using circular structures. However, their
non-linear pipeline structures result in some new perfor-
mance issues, such as throughput degradation and delay
variation. Moreover, their performance is evaluated by esti-
mation rather than on real hardware. For example, CACTI
[3], a popular tool for estimating the SRAM performance
has been used. However, such estimations do not consider
many implementation issues, such as routing and logic de-
lays. The actual throughput when implemented on FPGAs
may be lower.

1Currently the highest advertised TCAM speed is 133 MHz while state
of the art SRAMs can easily achieve clock rates of over 400 MHz.

15th IEEE Symposium on High-Performance Interconnects

1550-4794/07 $25.00 © 2007 IEEE
DOI 10.1109/HOTI.2007.10

83

15th IEEE Symposium on High-Performance Interconnects

1550-4794/07 $25.00 © 2007 IEEE
DOI 10.1109/HOTI.2007.10

83

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 19, 2010 at 23:57 from IEEE Xplore. Restrictions apply.

In this paper, we focus on trie-based IP lookup en-
gines that utilize pipelining. Linear pipeline architecture
is adopted due to its desirable properities, such as constant
delay and high throughput of one output per clock cycle.
Using a fine-grained node-to-stage mapping, trie nodes are
evenly distributed across most of the pipeline stages. For
a realistic performance evaluation, we implement our de-
sign as well as the state-of-the-art solutions on a commodity
FPGA. Post place and route results shows that, the proposed
architecture can achieve a throughput of 80 Gbps for mini-
mum size (40 bytes) packets on a single Xilinx Virtex II Pro
FPGA [19]. Average memory usage per entry is 115.2 bits,
excluding the next-hop information. In addition, our design
supports fast incremental on-line updates without disruption
to the ongoing IP lookup process.

The rest of the paper is organized as follows. In Sec-
tion 2, we review the background and related works. In
Section 3, we propose our optimized design named Opti-
mized Linear Pipeline (OLP) architecture. In Section 4, we
implement on FPGAs the OLP architecture as well as state-
of-the-art pipelined architectures, and then compare their
performance. Finally, in Section 5, we conclude the paper.

2. Background

IP lookup has been extensively studied [4, 13, 18].
From the perspective of data structures, these techniques
can be classified into two main catergories: trie-based
[8, 11, 14, 16] and hash-based solutions [5, 7]. In this paper,
we consider only trie-based IP lookup which is naturally
suitable for pipelining.

2.1 Trie-based IP Lookup

A trie is a tree-like data structure for longest prefix
matching. Each prefix is represented by a node in the trie,
and the value of the prefix corresponds to the path from the
root of the tree to the node. The prefix bits are scanned left
to right. If the scanned bit is 0, the node has a child to the
left. A bit of 1 indicates a child to the right. The routing
table in Figure 1 (a) corresponds to the trie in Figure 1 (b).
For example, the prefix 010 corresponds to the path starting
at the root and ending in node P3: first a left-turn (0), then
a right-turn (1), and finally a turn to the left (0).

IP lookup is performed by traversing the trie according
to the bits in the IP address. When a leaf is reached, the last
seen prefix along the path to the leaf is the longest matching
prefix for the IP address. The time to look up a uni-bit trie
(which is traversed in a bit-by-bit fashion), is equal to the
prefix length. The use of multiple bits in one scan increases
the search speed. Such a trie is called a multi-bit trie. The
number of bits scanned at a time is called stride.

01001* P4
010* P3
000* P2
0* P1

111* P8
110* P7
011* P6
01011* P5

0 1

0 1 1

0 0 1 0 1

1

11

0
P2 P6

P4 P5

P7 P8

root

(a)

(c)

Level 0

Level 1

Level 3

Level 2

Level 4

Level 5

P1
0 1

0 1 1

0 0 1 0 1

1

11

0
P2 P3 P6

P4 P5

P7 P8

root

(b)

P1

P3 P3

1

0 0

0
null

Figure 1. (a) Prefix set; (b) Uni-bit trie; (c)
Leaf-pushed trie.

Normally each trie node contains two fields: the repre-
sented prefix and the pointer to the child nodes. By using
an optimization called leaf-pushing [17], each node needs
only one field: either the prefix index or the pointer to the
child nodes. Some optimization schemes [4, 6] are also pro-
posed to build a memory-efficient multi-bit trie. For sim-
plicity, we consider only the leaf-pushed uni-bit trie in this
paper, though our ideas can be applied to other more ad-
vanced tries.

2.2 Pipelined Architectures

A straightforward way to pipeline a trie is to assign
each trie level to a distinct stage so that a lookup request
can be issued every cycle, thus increasing the throughput.
However, this simple pipeline scheme results in unbalanced
memory distribution, leading to low throughput and ineffi-
cient memory allocation [1, 15].

Basu et al. [2] and Kim et al. [8] both reduce the memory
imbalance by using variable strides to minimize the largest
trie level. However, even with their schemes, the size of the
memory of different stages can have a large variation. As
an improvement upon [8], Lu et al. [10] proposes a tree-
packing heuristic to further balance the memory, but it does
not solve the fundamental problem of how to retrieve one
node’s descendents which are not allocated in the following

8484

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 19, 2010 at 23:57 from IEEE Xplore. Restrictions apply.

Stage 1 Stage 2 Stage 3 Stage 4

Data path active during odd cycles

Data path active during even cycles

Stage 2

Stage 1

Stage 3

00*

01*

10*

Stage 411*

Indexed
bits

Starting
Stage

Figure 2. Example of Ring pipeline architec-
ture [1].

stage. Furthermore, a variable stride multi-bit trie is diffi-
cult for hardware implementation especially if incremental
updating is needed [2].

Baboescu et al. [1] propose a circular pipelined trie,
which is different from the previous approaches. The
pipeline stages are configured in a circular, multi-point ac-
cess pipeline so that lookup requests can be initiated at any
stage (such a stage is called the starting stage or starting
point for that lookup request). A trie is split into many
small subtries of equal size. These subtries are then mapped
to different stages to create a balanced pipeline. Some sub-
tries have to wrap around if their roots are mapped to the last
several stages. Any incoming IP packet needs to lookup an
index table to find its corresponding subtrie’s root which is
the starting point of that IP lookup request. Though all IP
packets enter the pipeline from the first stage, their lookup
processes may be activated at different stages. To prevent
conflicts due to the arbitrary starting-stage, a Ring pipeline
is proposed as shown in Figure 2. Each stage accommo-
dates two data paths. The first path is used for the IP lookup
request’s first traversal of the pipeline. It is active during the
odd clock cycles. The second path is active during the even
clock cycles, allowing the request to continue its execution
in the pipeline until it is finished. Hence, the throughput is
0.5 lookups per clock.

Kumar et al. [9] extend the circular pipeline with a
new architecture called Circular, Adaptive and Monotonic
Pipeline (CAMP), as shown in Figure 3. It uses several
initial bits (i.e. initial stride) as the hashing index to par-
tition the trie. Using the similar idea but different mapping
algorithm from [1], CAMP creates a balanced pipeline as
well. Unlike the Ring pipeline, CAMP has multiple en-
try stages and exit stages. The throughput may increase
when the number of pipeline stages exceeds the subtries’
height. To manage the access conflicts between requests
from current and preceding stages, several request queues

Stage 1

Stage 2

Stage 3

Stage 4

Lookup Table
for Initial bits

Stage 2

Stage 1

Stage 3

00*

01*

10*

Stage 411*

Queues

Reordering
Buffer

(optional)

Figure 3. Example of CAMP architecture [9].

are employed. Since different packets an input stream may
have different entry and exit stages, the ordering of the
packet stream is lost when passing through CAMP. Assum-
ing the IP lookup requests traverse all the stages, when the
IP lookup request arrival rate exceeds 0.8 packets per clock,
some requests may be discarded [9]. In other words, the
worst-case throughput is 0.8 lookups per clock.

In CAMP, a request queue results in extra delay for each
request. The delay is defined as the number of clock cycles
for a request measured between entering the request queue
and exiting the pipeline. We conduct a software simulation
to observe the worst-case delay for a 24-stage pipeline. The
request queue size is 32 and the request arrival rate is 0.8.
We assume the trie has 20 levels so that each IP lookup re-
quest exits the pipeline after it traverses 20 stages. To sim-
ulate the worst case, we always insert the new request into
the queue whose corresponding stage is visited by the oldest
request in the pipeline. Since the oldest request is followed
by the most number of requests colliding with the new re-
quest, the delay for the new request to wait for entering the
pipeline is maximized. Table 1 shows the average delay and
the maximum delay for the worst cases. The burst length2

of requests varies from 1 to 40. According to Table 1, the
worst-case maximum request delay is 94 clock cycles. Con-
sidering that the minimum delay for a request is 20, we can
conclude that, the delay for passing CAMP varies from 20
to 94 clock cycles under a traffic of 0.8 request arrivals per
clock cycle. Such a large delay variation may have an ad-
verse effect on some real-time Internet applications.

Multiple starting-points in either the Ring pipeline or
CAMP do not support well the write bubble proposed in
[2] for the incremental route update. For example, if the
write bubble is assigned to start from some stage, it can-
not enter the pipeline until no request in the pipeline needs
to visit that stage. Hence, for both the Ring pipeline and
CAMP, the pipeline operations need to be disrupted during
the route update.

2The burst length is defined as the number of consecutive IP lookup
requests assigned to the same pipeline stage.

8585

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 19, 2010 at 23:57 from IEEE Xplore. Restrictions apply.

Table 1. Worst-case delay versus request
burst length

Burst Length Average Delay Maximum Delay

1 93.83 94

8 90.20 91

16 81.35 83

24 88.08 91

32 79.29 83

40 54.46 59

All the above problems force us to rethink the linear
pipeline architecture which has some nice properties. For
example, the linear pipeline can achieve a throughput of one
lookup per clock cycle and can support write bubbles for in-
cremental updates without disrupting the ongoing pipeline
operations. The delay to go through a linear pipeline is al-
ways constant, equal to the number of pipeline stages.

3 Linear Pipeline with Balanced Memory

3.1 Motivation for OLP

Both the Ring pipeline and CAMP balance the trie node
distribution by partitioning the trie into several subtries and
then mapping them onto different pipeline stages. They
both relax the constraint that all subtries’ roots must be
mapped to the first stage. The resulting pipelines have mul-
tiple starting-points for the lookup process. This causes
access conflicts in the pipeline and reduces throughput.
Hence, in our design, we enforce the constraint:

Constraint 1. All the subtries’ roots are mapped to the
first stage.

Thus, there is only one starting-point into the pipeline.
Both the Ring pipeline and CAMP have some restric-

tions on node-to-stage mapping. They both map a subtrie’s
nodes to pipeline stages in a level-by-level fashion, where
nodes on the same level of a subtrie are mapped to the same
pipeline stage. In contrast, our design offers more freedom
to allow nodes on the same level of a subtrie to be mapped
to different stages. For example, there are three subtries in
Figure 4 (a) and node P1 and node P2 are on the same level
of the second subtrie. As shown in Figure 4 (c), by inserting
nops, our scheme maps P2 to Stage 2 while it maps P1 to
Stage 5, which makes the node distribution more uniform.
The only constraint we must obey is:

Constraint 2. If node A is an ancestor of node B in a
subtrie, then A must be mapped to a stage preceding the

root

0

0
1

0

1 00001

11

Stage 1 Stage 2 Stage 3 Stage 4

NOP

Q1

Q2

Q3

P2

P6 P4 P5

P7 P8

P2

P1

(a) Trie Partition

00

0 0 1 0 1

1

11

0

ec d

f

g h

root

1

0 0

P2 P1 P6 P7 P8

P4 P5P3 P3

null

01
10

11

c

f g hd

e

P3

d f

10
null 1

c

P7
1

P6

P8

e

0 P3

(b) Subtrie-to-Queue Conversion

(c) Node-to-Stage Mapping

Stage 5

P4

P5
0 1

1

1
g

P11

h

Figure 4. OLP architecture.

stage B is mapped to.
Based on the above discussion, we adopt the lin-

ear pipeline architecture, and use a fine-grained mapping
scheme in a node-by-node fashion. Such an optimized lin-
ear pipeline (OLP) architecture can achieve the following
objectives:
• throughput of one lookup per clock cycle;
• balanced memory requirement over pipeline stages;
• constant delay for all IP lookup requests.

3.2 Trie Partition

Similar to the Ring pipeline and CAMP, the first step is
to partition the trie into multiple subtries. We use the same
scheme as in [9], but with a different rule to determine the
initial stride which is used to expand the prefixes. Since
the first stage consists of all the subtries’ roots, it cannot be
balanced by moving nodes or inserting nops. Adjusting the
initial stride becomes the only way to balance the memory

8686

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 19, 2010 at 23:57 from IEEE Xplore. Restrictions apply.

requirement of the first stage with that of other stages.
Given a leaf-pushed uni-bit trie, we use prefix expansion

to split the original trie (shown in Figure 1 (c)) into multiple
subtries, as shown in Figure 4 (a). To describe the algorithm
to determine the value of the initial stride, we have follow-
ing notations.

I: value of the initial stride which is used for prefix ex-
pansion;

P : number of pipeline stages;
T : the original leaf-pushed uni-bit trie;
T ′: the new trie after using I to expand prefixes in T ;
N(t): total number of nodes in trie t;
H(t): height of trie t. The height of a trie node is defined

as the maximum distance from it to a leaf node. The height
of a trie is defined as the height of the root of the trie.

Input: T , P
Output: I
I ← max[1, H(T)− P] ;
while true do

use I to expand prefixes in T , and get T ′;
if 2I−1 < N(T ′)

P < 2I then
return I;

end
I ← I + 1;

end
Algorithm 1: Determining the value of the initial stride.

Our goal is to make the number of subtries approx-
imately equal to the average number of nodes over the
pipeline stages. Also, the height of any subtrie must be less
than P ; otherwise such a subtrie cannot fit into the pipeline.
Suppose we have P = 5 pipeline stages. We use the trie in
Figure 1 (c) as an example. Its height is 5. We use I = 1 to
expand the prefixes in that trie and obtain two subtries. Ac-
cording to Constraint 1, there are 2 nodes in the first stage
while there are 16 nodes left to be assigned to the next 4
stages. The pipeline is unbalanced, since at least one stage
has twice the number of nodes in the first stage. As shown
in Figure 4 (a), if I = 2, we obtain three subtries and the av-
erage number of nodes over subsequent stages is 12/4 = 3.
Hence the algorithm will return I = 2 since it is more likely
to balance the pipeline.

3.3 Mapping

As discussed above, under Constraint 2, OLP allows the
nodes on the same level of a subtrie to be mapped onto dif-
ferent pipeline stages. It provides more flexibility to map
the trie nodes to achieve a balanced memory. Assume there
are S subtries after partitioning the original trie T , as de-
scribed in Section 3.2. Assume the pipeline has P stages.
We use a simple heuristic to perform the mapping, with the
following notations.

STi: the ith subtrie, i = 1, 2, · · · , S;
SGi: the ith pipeline stage, i = 1, 2, · · · , P ;
Qi: the ith segmented queue, i = 1, 2, · · · , S;
FS(q): frontend segment3 of a segmented queue q,

where q denotes any segmented queue. For example, in Fig-
ure 4 (c), FS(Q2) = {f, P6} ;

NS(q): number of segments in the segmented queue q;
L(q): length of queue q, i.e. the total number of nodes

in queue q;
M(g): number of nodes mapped onto pipeline stage g;
Nr: number of remaining nodes to be mapped onto

pipeline stages;
Pr : number of remaining pipeline stages for nodes to be

mapped onto.
First, we convert each subtrie to a segmented queue. For

each subtrie STi, we allocate a queue Qi, i = 1, 2, · · · , S.
Then we do a Breadth-First Traversal of each subtrie. Ex-
cept the root of the subtrie, each traversed node is pushed
into the corresponding queue. In between any two nodes on
different levels, a border mark is set on the queue. Hence
each queue is partitioned into several segments. The data
structure of each segment is a queue as well. The nodes on
the same level of the subtrie belong to the same segment.
At this time, we have S segmented queues with (possibly
different) lengths L(Qi), i = 1, 2, · · · , S.

Input: a leaf-pushed uni-bit subtrie with root R
Output: a segmented queue Q that has sn segments

and qn nodes
initialize a node pointer p;
p← R;
sn← 1, qn← 1;
push p into the sn th segment;
while the sn th segment has nodes do

sn← sn + 1;
while any node in the (sn− 1) th segment has not
been retrieved do

p← node retrieved from the (sn− 1) th
segment;
if p has children then

push p’s left-child into the sn th segment;
push p’s right-child into the sn th segment;
qn← qn + 2;

end
end
link the sn th segment to the end of (sn− 1) th
segment;

end
Q includes the 2nd, 3rd, · · · , (sn− 1) th segments;
return Q;

Algorithm 2: Converting a subtrie to a segmented queue.

3A segment is actually a queue.

8787

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 19, 2010 at 23:57 from IEEE Xplore. Restrictions apply.

Next we pop the nodes from the queues and fill them into
the memory of the pipeline stages. The pipeline is filled
from the second stage since the first stage is dedicated to
the roots of the subtries. Hence the initial value of Pr is
P − 1. There are Nr =

∑S
i=1 L(Qi) nodes in all to be

filled into the pipeline. A balanced pipeline should have
�Nr/Pr� nodes in each stage except possibly the first stage.
We sort the S queues in decreasing order of the number of
segments in each queue and the number of nodes in their
frontend segments, so that (1) NS(Qi) ≥ NS(Qj), and
(2) L(FS(Qi)) ≥ L(FS(Qj)) if NS(Qi) = NS(Qj),
1 ≤ i < j ≤ S. Then we pop nodes from queues in order.
Only the frontend segments are allowed to pop nodes. For
any queue, if all the nodes in the frontend segment have
been popped, then the queue is not allowed to pop any more
nodes until we move on to the next stage. We pop nodes
until either there are �Nr/Pr� nodes in this stage, or no
more frontend segments can be popped. For example, in
Figure 4 (c), when filling Stage 2, we pop nodes out of Q2

first. After popping node f and P6, no more node can be
popped out of Q2, since all the nodes in its frontend segment
are popped out. After P2 is popped from Q1, Stage 2 is
full and we move on to Stage 3. When filling Stage 3, all
frontend segments are updated, allowing Q2 to pop nodes
again.

Input: S subtries: ST1, ST2, · · · , STS

Input: P pipeline stages: SG1, SG2, · · · , SGP

Output: filled pipeline
create and initialize S queues;
Nr ← 0, Pr ← P − 1;
for i← 1 to S do

convert STi to Qi ;
Nr ← Nr + L(Qi);

end
for i← 1 to P do

Mi ← Nr/Pr ;
update FS(Qj), j = 1, 2, · · · , S;
sort Q1, Q2, · · · , QS in the decreasing order of
NS(Qj) and L(FS(Qj)), j = 1, 2, · · · , S;
while M(SGi) < Mi do

pop nodes from queues in order and fill into
SGi;
if no queue can pop a node then

break;
end

end
Nr ← Nr −M(SGi), Pr ← Pr − 1;

end
Algorithm 3: Mapping S subtries onto P pipeline stages.

Figure 4 (c) illustrates the outcome of the mapping pro-
cedure.

3.4 Skip-enabling in the Pipeline

To support the above flexible mapping, we need to imple-
ment the nop (no-operation) in the pipeline. Our method is
simple. Each node stored in the local memory of a pipeline
stage has two fields. One is the memory address of its child
node in the pipeline stage where the child node is stored.
The other is the distance to the pipeline stage where the
child node is stored. For example, when we search for pre-
fix 111 in Stage 1, we retrieve (1) the node P8’s memory
address in Stage 4, and (2) the distance from Stage 1 to
Stage 4. When a request is passed through the pipeline,
the distance value is decremented. When the distance value
becomes 0, the child node’s address is used to access the
memory in that stage.

3.5 Analysis and Comparison

In the proposed architecture, a lookup can be performed
in each clock cycle. The delay for each lookup is constant,
measured as the number of clock cycles, equal to the num-
ber of pipeline stages. The memory requirement is propor-
tional to the total number of subtrie nodes. Since OLP has
the same entry point and unique exit point, it keeps the out-
put sequence in the same order as input. As a linear pipeline
architecture, OLP can use the same update scheme as pro-
posed in [2]. By inserting write bubble, the pipeline mem-
ory can be updated without disrupting the on-going opera-
tions.

We use the following notations for performance analysis.

P : number of pipeline stages;

N : total number of trie nodes;

L: request queue size in CAMP.

Based on the discussion in the previous sections, we
compare the performance of the OLP with CAMP and the
Ring pipeline in Table 2. The metrics are defined as follows.

• Throughput. It is defined as the number of lookups
per clock (LPC).

• Memory. It includes the memory used by all the
pipeline stages and additional memory if any, such as the
request queues in CAMP.

• Delay. It is the number of clock cycles to go through
the entire IP lookup engine.

• Keep in order. It means that the order of the output
packets is same as the input order.

• Disruption-free update. It means the pipeline opera-
tions won’t be disrupted by route updates.

Table 2 shows performance comparison between OLP,
CAMP and the Ring pipeline.

8888

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 19, 2010 at 23:57 from IEEE Xplore. Restrictions apply.

Table 2. Performance Comparison
Solution OLP CAMP Ring

Throughput (LPC) 1 0.8 0.5

Total memory O(N) O(N + P) O(N)
Worst-case delay P O(PL) 2P

Keep in order Yes No Yes

Disruption-free update Yes No No

0 5 10 15 20 25
0

1000

2000

3000

4000
rrc00_30k

Stage ID
0 5 10 15 20 25

0

1000

2000

3000

4000
rrc01_30k

Stage ID

0 5 10 15 20 25
0

1000

2000

3000

4000
rrc08_30k

Stage ID
0 5 10 15 20 25

0

1000

2000

3000

4000
rrc11_30k

Stage ID

Figure 5. Trie node distribution over the
pipeline stages in the OLP mapping.

4 Experimental Results and FPGA Imple-
mentation

4.1 Experimental Results

To verify the OLP mapping scheme, we conducted ex-
periments on prefix sets from four routing tables rrc00,
rrc01, rrc08 and rrc11 [12]. Each prefix set contained 30K
prefixes. We parsed each set and obtained its corresponding
leaf-pushed uni-bit trie which has over 80K nodes. We used
the OLP scheme to map trie nodes to a 24-stage pipeline and
observe the trie node distribution over the pipeline stages.
Figure 5 shows the experimental results for the four prefix
sets. Each pipeline stage stores less than 4K nodes.

4.2 Implementation and Comparison

We have implemented OLP on a Xilinx Virtex II Pro
FPGA device XC2VP70 [19]. It has 5.9 Mb of BlockRAM
and its maximum operating frequency is 350 MHz. The ab-
stracted schematic of OLP is shown in Figure 6. There are

32-bit
REG

Pkt header
(32 bits) N

xt
_n

od
e_

ad
dr

(1

2
bi

ts
)

addr

N
xt

_e
n

(1
 b

it)

clock N
xt

_o
p_

di
st

(5

 b
its

)

RAM
(8K x 18 bits)

N
xt

_n
od

e_
ad

dr

(1
2

bi
ts

)

addr

N
xt

_e
n

(1
 b

it)

clock N
xt

_o
p_

di
st

(5

 b
its

)

RAM
(8K x 18 bits)

32

13

Dist
Check

L_Shift_13 L_Shift_1

‘0’

en
~en

13

1

5

en

6

18

32-bit
REG

18-bit
REG

12

1-bit
REG

Figure 6. OLP schematic for FPGA implemen-
tation.

Table 3. Experimental Results for OLP, CAMP
and Ring

Solution OLP CAMP Ring

Throughput (Gbps) 80 64 40

Memory (Mb) 3.456 3.888 3.492

Delay (ns) 96 80 ∼ 376 192

Slices used 362 528 408

24 pipeline stages. Each stage has a RAM of 8K × 18 bits,
i.e. 8 BlockRAMs, sufficient to store 4K trie nodes. Based
on the results in Section 4.1, such a FPGA device can con-
tain a routing table of 30K prefixes.

We have also implemented CAMP and the Ring pipeline
architectures on the same FPGA device. Due to space lim-
itation, we do not present the details here. The abstracted
schematics are shown in Figures 7 and 8.

OLP, CAMP and the Ring pipeline are implemented in
Verilog. The code was synthesized using Xilinx ISE 8.2i
XST. Post place and route results are shown in Table 3. All
the three architectures achieve a clock rate of 250 MHz on
the above specified FPGA device.

OLP achieves throughput of 250 million lookups per sec-
ond, that is, 80 Gbps for the minimum packet size of 40
bytes. OLP has twice the throughput of the Ring pipeline.
Compared with CAMP, in the worst case, when LPC is 0.8,
OLP achieves 25% higher throughput. In addition, OLP has
the smallest logic area and the shortest delay.

5 Conclusion

Pipelined architecture for trie-based IP lookup is a
promising solution for high speed routers. This paper pro-

8989

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 19, 2010 at 23:57 from IEEE Xplore. Restrictions apply.

DEMUX

32-bit
REG

32-bit
REG

Pkt header
(32 bits)

FIFO FIFO FIFO

N
xt

_n
od

e_
ad

dr

(1
2

bi
ts

)addr

Le
af

_o
r_

no
t

(1
 b

it)
clock

RAM
(8K x 18 bits)

N
xt

_n
od

e_
ad

dr

(1
2

bi
ts

)addr

Le
af

_o
r_

no
t

(1
 b

it)

clock

RAM
(8K x 18 bits)

13

1

12

13

1

32

32 32 32

Figure 7. CAMP schematic for FPGA imple-
mentation.

posed a novel linear pipeline architecture for trie-based IP
lookup. It offers more freedom in mapping trie nodes to
pipeline stages by supporting nops. Any two nodes on the
same level of a sub-trie can be mapped to different pipeline
stages. Thus it can achieve an evenly distributed memory
while maintaining high throughput of one lookup per clock
cycle. Also, it has constant delay and maintains input order.
We implemented our design as well as two state-of-the-art
designs on commodity FPGAs. Compared to the two refer-
ence solutions, our design improves the throughput by 25%
and 100%.

References

[1] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh. A
tree based router search engine architecture with single port
memories. Proceedings of ISCA ’05, pages 123–133, Jun
2005.

[2] A. Basu and G. Narlikar. Fast incremental updates for
pipelined forwarding engines. Proceedings of INFOCOM
’03, 1:64–74, Mar/Apr 2003.

[3] CACTI. http://www.hpl.hp.com/personal/norman jouppi/cacti4.html.
[4] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small

forwarding tables for fast routing lookups. Proceedings of
SIGCOMM ’97, pages 3–14, Sep 1997.

[5] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor.
Longest prefix matching using bloom filters. IEEE/ACM
Transactions on Networking, 14(2):397–409, Apr 2006.

[6] W. Eatherton, G. Varghese, and Z. Dittia. Tree bitmap: hard-
ware/software IP lookups with incremental updates. SIG-
COMM Computer Communication Review, 34(2):97–122,
Apr 2004.

38-bit
REG

38-bit
REG

N
xt

_n
od

e_
ad

dr

(1
2

bi
ts

)addr

Le
af

_o
r_

no
t

(1
 b

it)

clock

RAM
(8K x 18 bits)

N
xt

_n
od

e_
ad

dr

(1
2

bi
ts

)addr

Le
af

_o
r_

no
t

(1
 b

it)

clock

RAM
(8K x 18 bits)

13

32-bit
REG

32-bit
REG

Pkt header
(32 bits)

13

2

1

1

1

12

1

St
ar

t_
po

st
io

n
(6

 b
its

)addr

RAM
(4K x 9 bits)

12
6

32

‘0’

Start-
position
Check

Start-
position
Check

‘0’

2

REG odd /
~even

13-bit
REG

13-bit
REG

Figure 8. Ring schematic for FPGA imple-
mentation.

[7] H. Fadishei, M. S. Zamani, and M. Sabaei. A novel recon-
figurable hardware architecture for IP address lookup. Pro-
ceedings of ANCS ’05, pages 81–90, Oct 2005.

[8] K. S. Kim and S. Sahni. Efficient construction of pipelined
multibit-trie router-tables. IEEE Transactions on Comput-
ers, 56(1):32–43, Jan 2007.

[9] S. Kumar, M. Becchi, P. Crowley, and J. Turner. Camp: fast
and efficient IP lookup architecture. Proceedings of ANCS
’06, pages 51–60, Dec 2006.

[10] W. Lu and S. Sahni. Packet forwarding using pipelined
multibit tries. Proceedings of ISCC ’06, pages 802–807, Jun
2006.

[11] S. Nilsson and G. Karlsson. IP-address lookup using LC-
tries. IEEE Journal on Selected Areas in Communications,
17(6):1083–1092, Jun 1999.

[12] RIS Raw Data. http://data.ris.ripe.net.
[13] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous. Sur-

vey and taxonomy of IP address lookup algorithms. IEEE
Network, 15(2):8–23, Mar/Apr 2001.

[14] S. Sahni and K. S. Kim. Efficient construction of multibit
tries for IP lookup. IEEE/ACM Transactions on Networking,
11(4):650–662, Aug 2003.

[15] S. Sikka and G. Varghese. Memory-efficient state lookups
with fast updates. SIGCOMM Computer Communication
Review, 30(4):335–347, Oct 2000.

[16] H. Song, J. Turner, and J. Lockwood. Shape shifting trie
for faster IP router lookup. Proceedings of ICNP ’05, pages
358–367, Nov 2005.

[17] V. Srinivasan and G. Varghese. Fast address lookups using
controlled prefix expansion. ACM Transactions on Com-
puter Systems, 17(1):1–40, Feb 1999.

[18] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scal-
able high speed IP routing lookups. Proceedings of SIG-
COMM ’97, pages 25–38, Sep 1997.

[19] Xilinx Virtex-II Pro FPGAs. http://www.xilinx.com.

9090

Authorized licensed use limited to: National Cheng Kung University. Downloaded on January 19, 2010 at 23:57 from IEEE Xplore. Restrictions apply.

