
A Hybrid Finite Automaton

for Practical Deep Packet Inspection

Michela Becchi

Washington University
Computer Science and Engineering

St. Louis, MO 63130-4899
+1-314-935-4306

mbecchi@cse.wustl.edu

Patrick Crowley

Washington University
Computer Science and Engineering

St. Louis, MO 63130-4899
+1-314-935-9186

pcrowley@wustl.edu

ABSTRACT
Deterministic finite automata (DFAs) are widely used to

perform regular expression matching in linear time. Several

techniques have been proposed to compress DFAs in order

to reduce memory requirements. Unfortunately, many real-

world IDS regular expressions include complex terms that

result in an exponential increase in number of DFA states.

Since all recent proposals use an initial DFA as a starting-

point, they cannot be used as comprehensive regular

expression representations in an IDS.

In this work we propose a hybrid automaton which

addresses this issue by combining the benefits of

deterministic and non-deterministic finite automata. We test

our proposal on Snort rule-sets and we validate it on real

traffic traces. Finally, we address and analyze the worst

case behavior of our scheme and compare it to traditional

ones.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General –

Security and protection (e.g., firewalls)

General Terms
Algorithms, Performance, Design, Security.

Keywords
Deep packet inspection, DFA, NFA, regular expressions.

1. INTRODUCTION
Increasingly, network packets are classified not only by the

fields of their headers, but also by the content of their

payloads. In particular, signature-based deep packet

inspection has taken root as a dominant security mechanism

in networking devices and computer systems. Most popular

software tools—including Snort [6][7] and Bro [10]—and

devices—including the Cisco family of Security Appliances

[8] and the Citrix Application Firewall [9]—use regular

expressions to describe payload patterns. While more

expressive than simple patterns of exact-match strings, and

therefore able to describe a wider variety of payload

signatures [12], regular expression implementations

demand far greater memory space and bandwidth. As a

result of these trends, there has been a considerable amount

of recent work on implementing regular expressions for use

in high-speed networking applications, particularly with

representations based on discrete finite automata (DFAs).

DFAs have attractive properties that explain the

attention they have received. Foremost, they have a

predictable memory bandwidth requirement. In fact,

processing an input string involves one DFA state traversal

per character, which translates into a deterministic number

of memory accesses. Moreover, it has long been established

that, for any given regular expression, a DFA with a

minimum number of states can be determined [4][5]. Even

so, DFAs corresponding to large sets of regular

expressions, each one representing a different rule, can be

prohibitively large.

Recent work has tackled this problem in two ways.

First, since an explosion in states can occur when many

rules are grouped together into a single DFA, Yu et al. [15]

have proposed segregating rules into multiple groups and

evaluating the corresponding DFAs concurrently. This

solution decreases memory space requirements, sometimes

dramatically, but increases memory bandwidth linearly with

the number of active DFAs. The second approach, proposed

by Kumar et al. [15], aims at reducing the memory space

requirement of any given DFA and is based on two

observations. First, the memory space required to store a

DFA strictly depends on the number of transitions between

states. Second, many states in DFAs have identical sets of

outgoing transitions. Substantial space savings in excess of

90% are achievable in current rule-sets when this

redundancy is exploited. The compression technique

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

CoNEXT 2007, December 10-13, 2007, New York, NY, U.S.A.

(c) 2007 ACM 978-1-59593-770-4 07/ 0012 $5.00.

proposed trades off memory storage requirements with

processing time.

Unfortunately, DFAs are infeasible for regular

expressions found in the most frequently used rule-sets.

Specifically, when repeated wildcards are present in a

regular expression, it may be impossible to build a DFA

with a reasonable number of states. For example, the

regular expression “prefix.{100}suffix”, which matches if

and only if “prefix” is separated from “suffix” by 100

characters, would require well over 1 million states to be

represented in a DFA. Since, as we will see, such constructs

occur frequently within popular security rule-sets, DFA-

based approaches, including the recent work described

above, are infeasible as comprehensive solutions.

As an alternative, one could consider using a solution

based on non-deterministic finite automata (NFAs) [22].

The number of NFA states required to represent a regular

expression is on the order of the number of characters

present in the regular expression itself. As an example, the

regular expression above would require just 101+ (# chars

in prefix) + (# chars in suffix) NFA states. Therefore, an

NFA-based representation would alleviate the memory

storage problem. However, an NFA may lead to a variable,

and potentially large, memory bandwidth requirement. In

fact, multiple NFA states can be active in parallel and each

input character can trigger multiple state transitions, and

therefore require multiple parallel memory operations. In

the worst-case, all NFA states can be active concurrently,

requiring a prohibitive amount of memory bandwidth.

In this paper we propose a hybrid DFA-NFA finite

automaton (Hybrid-FA), a solution bringing together the

strengths of both DFAs and NFAs. When constructing a

hybrid-FA, any nodes that would contribute to state

explosion retain an NFA encoding, while the rest are

transformed into DFA nodes. The result is a data structure

with size nearly that of an NFA, but with the predictable

and small memory bandwidth requirements of a DFA.

We evaluate the hybrid-FA structure by comparing it to

both DFA and NFA representations on rule-sets from the

popular security package Snort. The primary contribution

of the hybrid-FA is that entirely new classes of regular

expressions can be implemented in fast networking

contexts.

The remainder of this paper is organized as follows.

Additional background and motivation are presented in

Section 2. Section 3 describes the conditions of DFA state

explosion in greater detail. The hybrid-FA structure is

introduced in Section 4. Extensions to establish correctness

and worst-case bounds are presented in Section 5. Section 6

provides a brief discussion on implementation issues and

alternatives. Experimental results are found in Section 7.

Further discussion of related work is found in Section 8.

The paper concludes with discussion in Section 9.

2. BACKGROUND AND MOTIVATION
Several techniques for minimizing the memory

requirements of DFAs representing sets of regular

expressions have been recently proposed [15][17][18].

These proposals have some common properties;

specifically:

a) They are based on the assumption that a DFA can be

computed and is given as input.

b) They exploit the observation that DFAs corresponding

to rule-sets derived from commonly used Network

Intrusion Detection Systems (NIDS) have significant

state transition redundancy.

The second aspect - i.e., the presence of significant

transition redundancy - can be easily explained as follows.

Regular expressions used within NIDS typically consist of

sets of patterns containing: simple strings, character ranges,

wildcards, indefinitely repeating sub-patterns, and sub-

patterns repeated a discrete number of times. Notably,

nested repetitions—causing loop-backs in the

corresponding NFAs and DFAs—are not found in practice.

One can think about compiling together the set of regular

expressions corresponding to several rules by first building

an NFA which represents the disjunction of the NFAs of the

single regular expressions, and then converting it to a DFA

through the well-known subset construction procedure [4].

Such NFAs will typically have a tree-like structure (with the

exception, as we will see, of few loops and backward

transitions), where the root corresponds to the starting state

and the leaves to the accepting states. If common prefixes

are collapsed, the root and the nodes at the first levels will

have several outgoing transitions, whereas, moving towards

the leaves, the tree will tend to become “skinny”, i.e., to

consist of long chains of nodes. Moreover, except for the

first levels of the NFA and for the transitions representing

wildcards and large character ranges, most nodes will have

outgoing transitions defined only for a few characters.

When building the corresponding DFA, missing transitions

on the NFA typically translate into backward transitions to

the nodes at the first levels of the hierarchy (or intermediate

nodes when the represented regular expression contains

dot-star conditions or repetitions of wide character ranges).

Thus, a restricted number of nodes in the final DFA tend to

be the target of most transitions.

Figure 1: DFAs representing the following RegEx:

abcd (1) and ab.*cd (2). Transitions to state 0 are

omitted.

0 1 2 3 4
a

b

c d

a

a
a

a

0 1 2 3 4

a

ba c d

^c c

c^d

^c

1)

2)

00 1 22 33 44
a

b

c d

a

a
a

a

00 1 2 3 44

a

ba c d

^c c

c^d

^c

1)

2)

Taking advantage of this redundancy enables very

effective memory compression techniques for a given DFA,

but does not address a major problem. Namely that, due to

state explosion during NFA-to-DFA transformation, DFAs

cannot be built for many individual regular expressions

and sets of expressions in NIDS rule-sets. Theoretically

speaking, during subset construction, an exponential growth

in the number of states can take place. In the case of large

NFAs, this can make DFA construction infeasible. In

practice, if subset construction is performed “lazily” (i.e.,

new DFA states are created only when they happen to be

targets of any other state), there are only few recognizable

cases where this can happen. To this end, we are interested

in two distinct situations:

a) State blow-up happens when compiling a single regular

expression in isolation.

b) Given two regular expressions RE1 and RE2 the

corresponding DFA1 and DFA2 can be built without

incurring state explosion. However, when compiling

RE1 and RE2 into a unique DFA12, either the number of

states in DFA12 is significantly greater than the sum of

DFA1 and DFA2, or DFA12 cannot be built at all, due to

exponential state explosion.

Clearly, in the first case, DFAs are not a feasible

representation of the given regular expression. The second

case can be treated by keeping the two DFAs separated and

operating them in parallel (i.e., trading memory space for

bandwidth). However, given a set of regular expressions, it

would be beneficial to be able to predict this situation

without testing all possible combinations.

The goals of this work are the following:

• Explore two distinct conditions which lead to the state

blow up during subset construction.

• Propose a hybrid automaton which deals with the

above problems in a unified way.

• Refine the proposal in order to provide an acceptable

worse case bound on the memory bandwidth

requirement.

As previously mentioned, the proposal and the results

focus on practical data-sets from Snort NIDS. However,

these dot-star and counting constraint terms are not unique

to the Snort rule-sets. Via personal communication with

colleagues at Cisco Systems Inc., we have learned of

proprietary IDS regular expression rule-sets for in 14% and

1% of the rules include dot-star and counting terms,

respectively.

3. STATE BLOW-UP
Given an NFA with N states, the corresponding DFA can

consist of potentially 2N states [4]. In practice, this upper

bound is never reached and, in most cases, the number of

states in the DFA is comparable to that of the

corresponding NFA. If the NFA represents simple patterns

and common prefixes and suffixes have not been collapsed,

a state-minimized DFA can actually have slightly fewer

states. However, there are common conditions which can

bring the number of DFA states close to the theoretical

upper bound. An analysis of those conditions within DFAs

representing single regular expressions is presented in [15].

Here we want to focus on two patterns which occur

frequently in practical data-sets, namely “dot-star”

conditions and “counting constraints.”

3.1 “Dot-star” conditions
A dot-star condition is a sub-pattern of the type “.*”,

meaning “a wildcard repeated any number of times.” As an

extension, we include in this category sub-patterns of the

form “[^c1c2...ck]*”, where the repetition involves a large

range of characters (namely, all characters but c1, c2,..., ck).

While excluding characters from the repetition introduces

some additional issues that we will discuss later, this feature

exhibits the same characteristics as a pure “.*” condition in

terms of state blow-up.

Dot-star conditions are common in practical data-sets.

Their primary use is to detect occurrences of sub-patterns

separated by an arbitrary number of characters. In the case

of Snort rules, many regular expressions use a “[^\n\r]*”

term to search for an occurrence of the prefix sub-pattern in

the same line of text as the suffix sub-pattern. Multiple dot-

star terms can appear within the same expression.

For example, the Snort spyware rule “User-

Agent\x3A[^\r\n]*ZC-Bridge”, looks for an occurrence of

the sub-pattern “ZC-Bridge” only if “User-Agent\x3A” has

been previously detected and no carriage return or new line

character occurred in between. That means, the two sub-

patterns must occur in the given order and on the same line,

and may be separated by an arbitrary number of characters.

In practical rule-sets, dot-star conditions do not cause

state blow-up when individual regular expressions are

compiled in isolation. In fact, those patterns affect the

transitions in the DFA but not the number of states. Figure

1, which compares DFAs accepting regular expressions

Figure 2: DFA representing (1) ab.*cd and (2) efgh.

In the accepting states, the number following the “/”

represents the accepted regular expression.

a

a

a

a

a

e

a

e

e

e

e

f

e

g

a

h

b c

d

c

c

c

c

c

ce e
e

e

e
e

e

f

g

h

[^ce]

[^ceh]

[^cef]

[^ce]

[^cde]
[^ceg]

0

10/2

12

4

7

3

5

8/1

6

9

12/2

11

a

a

a

a

a

e

a

e

e

e

e

f

e

g

a

h

b c

d

c

c

c

c

c

ce e
e

e

e
e

e

f

g

h

[^ce]

[^ceh]

[^cef]

[^ce]

[^cde]
[^ceg]

0

10/2

12

4

7

3

5

8/1

6

9

12/2

11

abcd and ab.*cd, illustrates this fact. It can be observed that

the number of states is the same in the two cases; the

transitions are “moved toward” the tail of the DFA in the

second one.

However, dot-star conditions add complexity when

distinct regular expressions are compiled together (note that

the same condition would arise in case of single regular

expressions consisting of disjunctions of complex sub-

expressions). To see why, assume that we compile together

expressions RE1 and RE2 (that is, build a DFA for the

expression “.*(RE1|RE2)”) and that RE1 contains a “.*” term

and RE2 does not. Since the dot-star term in RE1 can match

any string, including all those strings matching RE2, a

properly formed combined DFA will have additional states

to determine a match of RE2 within the “.*” pattern

belonging to RE1. This condition effectively duplicates the

sub-DFA representing RE2 within the sub-DFA for RE1.

Figure 1 illustrates this situation in the composite DFA

for regular expressions “ab.*cd” and “efgh”. Notice that the

sub-DFA matching “efgh” is replicated: first in states 2, 4, 7

and 10, and second in states 6, 9, 11 and 12. The second

replica originates from state 3, which derives from

expanding the dot-star condition.

If the regular expressions compiled together contain

common sub-patterns, the replication may involve only sub-

expressions. However, in general, a sub-DFA will be

replicated once for every occurrence of a dot-star term in

other regular expressions. Thus, dot-star terms create linear

increases in the number of DFA states.

3.2 Counting constraints
A counting constraint corresponds to the repetition of a sub-

pattern for a given number of times, and is expressed in the

form sub-pattern{n,m} where n and m are the minimum and

the maximum cardinality of the repetition. If n and m are

equal, the counting constraint is expressed in the form sub-

pattern{n}.

The most frequent situation occurring in practical data-

sets corresponds to the repetition of only one character,

which can be a specific symbol, a wildcard or a character

within a range. Since we are interested only in situations

causing state blow-up, we will restrict ourselves to

repetitions of wildcards and of large character ranges.

In Snort, regular expressions with counting constraints

are commonly used to detect buffer overflow situations.

Again, “[\n\r]{n}”-like sub-expressions are utilized in order

to split the text string on a line basis. As an example, the

Snort rule “AUTH\s[^\n]{100}” would detect an IMAP

authentication overflow attempt, where the buffer is 100

characters long and a new line terminates the authentication

string.

In contrast to dot-star terms, counting constraints on

wildcards and large character ranges cause exponential

state blow-up when creating DFAs even for single regular

expressions. This can be explained as follows: when

expanding the counting constraint, all possible occurrences

of the regular expression prefix must be considered at each

instance of the wildcard or character range. Figure 3

illustrates this fact on the simple regular expression

“ab.{3}cd”. Clearly, the size of the DFA grows rapidly with

the cardinality of the counting constraints.

The situation gets dramatically worse when multiple

regular expressions are compiled together in a combined

DFA. In this situation, one has to also consider all possible

occurrences of the other regular expressions into the one

having the counting constraint. We note that counting

constraints in typical data-sets consist of at least 100

repetitions; it is therefore impossible to build reasonable

DFAs for such rules, much less for groups of them.

4. HYBRID-FA
One obvious way to keep the size of the automaton

contained when transforming a NFA into DFA is to

interrupt the subset construction operation at those NFA

states whose expansion would cause state explosion to

happen. In the two specific cases described above, the

critical states can be easily determined. In fact, they

correspond to the first state of the dot-star constraint (that

a

a

b ^a ^a ^a c

da
a

a

a
a a

a

b

a a

c
[^ab] [^ab]

b b

ba
c

c

^a

a

a

a

[^ac]

a
d

[^ad]

c

ca

d

a

[^ad]

[^ac]

[^abc]

0

1 2 3 4

8

5 6

7

9 10

11 12 13

14 15 16

17 18

1

2
3

4

91 6

4

5

10

a

a

b ^a ^a ^a c

da
a

a

a
a a

a

b

a a

c
[^ab] [^ab]

b b

ba
c

c

^a

a

a

a

[^ac]

a
d

[^ad]

c

ca

d

a

[^ad]

[^ac]

[^abc]

0

1 2 3 4

8

5 6

7

9 10

11 12 13

14 15 16

17 18

1

2
3

4

91 6

4

5

10

Figure 3: DFA representing regular expression

ab.{3}cd.

a
b c d

b c e

* 1 2 3 4

0

5 6 7

a
b c d

b c e

* 1 2 3 4

0

5 6 7

a

a

a
a

a

a

b c d

b

b
b

b

c e

c
b

0

0,1

0,5 0,6 0,7

0,2
5 3 4

a

a

a
a

a

a

b c d

b

b
b

b

c e

c
b

0

0,1

0,5 0,6 0,7

0,2
5 3 4

Figure 4: NFA and hybrid-FA for regular expressions

abcd and bce. Subset construction is interrupted at

NFA-state 2. Within the hybrid-FA, the DFA part is

solid whereas the NFA part is dashed.

is, the one with the auto-loop) and the initial state of the

repetition sub-expression.

The outcome of interrupting subset construction at an

intermediate state will be a hybrid automaton (which we

will call hybrid-FA), consisting of not expanded NFA-like

states, DFA-like states and “border” states. The latter can

be considered as being part of both a DFA and of an NFA.

Figure 4 shows a small example where subset

construction is interrupted at NFA state 2. State numbering

in the hybrid-FA reflects the subset construction operation.

Since, for instance, processing symbol a in NFA state 0

leads to NFA states 0 and 1, processing the same character

in (DFA) state 0 of the hybrid automaton leads to a (DFA)

state tagged 0-1. It can be noted that the border state 0-2-5

has two distinct outgoing transitions on character c: one

falling into the NFA-part and one into the DFA-part.

Moreover, its sub-state 2 is ignored when computing the

transition targets to the DFA-part.

If we restrict ourselves to regular expressions

consisting of sequences of sub-patterns possibly separated

by dot-star conditions and counting constraints, we start

subset construction at the NFA initial state and interrupt it

as just described, then the resulting hybrid-FA will exhibit

some useful properties. Specifically: i) the starting state will

be a DFA-state; ii) the NFA part of the automaton will

remain inactive till a border state is reached; and iii) there

will be no backwards activation of the DFA coming from

the NFA.

In order to better illustrate these concepts, let us

consider two examples: the first one containing a “.*” sub-

expression and the second one a counting constraint. The

goal of the discussion will be two-fold. First, we want to

show the characteristics of a hybrid-FA compared to the

corresponding DFA and NFA. Second, we want to give an

intuition about how the traversal of hybrid-FA works.

4.1 “Dot-star” regular expressions
In Figure 5 the NFA representing regular expressions:

ab.*cd, cefc, cad and efb is shown. The double-circled

states are accepting states; within them, the number

following the slash indicates the accepted regular

expression. State 0 is the initial state. The NFA is reduced

by merging common prefixes.

The corresponding DFA (which we don’t show for

readability) has 21 states. For the reasons explained above,

the dot-star term in the first regular expression leads to a

replication of the portion of DFA devoted to the second,

third and fourth regular expressions. Clearly, such state

replication would increase with the number of regular

expressions contained in the data set. Moreover, the

situation would worsen if the number of regular expressions

containing dot-star conditions also increased.

We note that no state explosion would occur if the

regular expressions containing dot-star conditions were

compiled into separate DFAs; while this would avoid state

explosion, it would trade space for bandwidth. In fact,

memory bandwidth requirements increase linearly with the

number of concurrent DFAs (each DFA makes one state

transition for each character).

While reducing the number of states, a NFA

representation can increase memory bandwidth

requirements. Specifically, the non-determinism inherent in

an NFA implies that many states may be active at once.

Unlike a DFA, an NFA can make multiple state transitions

when consuming a single input character.

The dynamic memory bandwidth needed by an NFA

representation depends on the size of the active state set,

that is, the set of states active in parallel. In fact, the number

of active states implies the number of memory accesses

required to make state transitions for each input character

processed. In theory, processing a character in an NFA

requires O(NNFA) memory operations, where NNFA is the

total number of states. In practical cases, however, the

active set size is much lower than NNFA. Operationally, the

number of active states tends to increase if any current state

Figure 5: NFA for RegEx: (1) ab.*cd, (2) cefc, (3) cad,

(4) efb.

0

1 4/13

7

6

5

9

11 12

d

c

e

a

b c d

e f c

f b

*

a

2

7 8/2

10/3

13/4

*

0

1 4/13

7

6

5

9

11 12

d

c

e

a

b c d

e f c

f b

*

a

2

7 8/2

10/3

13/4

*

Table 1: NFA traversal example. Stable states are

represented in bold; accepting states are underlined.

b a a c a b c a c e f c d e

0 0

1
0

1
0

5
0

1

9

0

2

0

5

2

3

0

1

9

2

0

5

2

3

0

11

6

2

0

12

7

2

0

5

8

2

3

0

2

4

0

11

2

0

1 2 4/13

8/276

5

9 10/3

11
12 13/4

1 5 11

e

c

1 5 11

e

d

c

e

a

a

b

ee

a

c

11

c

c d

*

e
f c

e

a b

a

c

a
e

a
c

c

e

a
f

b

a
c e a c

ae

1 5 11

1 11

1

c

1 11

1 13
5

c

a

2

b

11

e

0

1 2 4/13

8/276

5

9 10/3

11
12 13/4

1 5 11

e

c

1 5 11

e

d

c

e

a

a

b

ee

a

c

11

c

c d

*

e
f c

e

a b

a

c

a
e

a
c

c

e

a
f

b

a
c e a c

ae

1 5 11

1 11

1

c

1 11

1 13
5

c

a

2

b

11

e

Figure 6: Hybrid-FA for (1) ab.*cd, (2) cefc, (3) cad,

(4) efb. Transitions to state 0 in the DFA part are

omitted for readability. The DFA part is solid, the

NFA part is dashed and the boundary state is red.

has several outgoing transitions on the given input

character. Conversely, it tends to decrease if an active state

has no transitions defined on the current input character. An

important special case is represented by states having

wildcard transitions back to themselves (e.g., states 0 and 2

in Figure 5); these states are stable: once they are visited,

they will never leave the active set.

An example of traversal of the NFA in Figure 5 with

input string “baacabcacefcde” is shown in Table 1. In this

example, the states in the active set are never more than 5

out of 14.

Let us now consider the hybrid-FA for the given

regular expressions (Figure 6). Subset construction is

interrupted at state 2, which would cause state explosion to

happen. As can be seen, the second, third and fourth regular

expressions are completely matched within the DFA part.

On the other hand, the first regular expression is matched

within the DFA part only up to the second character.

Beyond that, the matching operation is performed in an

NFA. Note that the number of states in the hybrid FA does

not exceed that of the NFA. Finally, the matching operation

involves one state traversal per character as long as the

border state 2 is not traversed. In other words, as long as the

prefix of the first regular expression “ab” is not matched,

processing is restricted to the DFA portion.

An example of hybrid-FA traversal with text string

“baacabcacefcde” is shown in Table 2. State 0 is no longer

a “stable” state, but state 2 is. As can be seen, the active set

will contain only one state until the border state 2 is

traversed. One and only one activation of the DFA is

possible; conversely, the NFA can have several parallel

activations. Note that the size of the active set is in general

lower than what we have with the pure-NFA counterpart

(with at most 3 versus 5 states).

4.2 Regular expressions with counting

constraints on wildcards
Figure 7 represents the hybrid-FA for a small dataset

containing a regular expression with a wildcard repeated

exactly 3 times. The reader can easily draw the

corresponding NFA, also consisting of 19 states. The state-

minimized DFA (not shown for readability) has 46 states.

In this case subset construction is interrupted at the state

which immediately precedes the counting constraint.

An example of traversal of the hybrid-FA with text

string “baacababcefcde” is shown in Table 3. Notice that

the hybrid-FA does not have any stable states. Again, the

DFA is always active and there is a single activation of it

during the whole matching operation. On the contrary, the

NFA part can have several parallel activations, one for each

border state traversal. Note that, if this was not the case, the

match reported on state 4 would have not been detected.

Finally, the active set size is less than that of the NFA

counterpart (whose maximum value is 6).

5. IMPROVING THE WORST CASE
As mentioned, the hybrid-FA consisting of a head-DFA and

many tail-NFAs represents a compromise between a mere

DFA and a mere NFA solution, and allows dealing with

situations where a DFA is unfeasible. In particular, this

solution trades memory occupancy (number of states) with

processing time/memory bandwidth requirements (size of

the active set).

While the described automaton can provide satisfactory

average case performance and improves the worst case as

compared to a pure NFA, the worst case bound can still

result unacceptable. In fact, as it has been pointed out:

• The head-DFA is always active in one and only one

state;

• Each tail-NFA is activated each time the border state is

reached. Moreover, every activation may involve

several states.

Therefore, the theoretical worst case is represented by

the number of NFA states present in the hybrid automaton

plus one (the DFA active state).

In this section we explore two techniques to further

reduce the worst case bound: one suitable to dot-star

conditions and the other applicable to counting constraints.

5.1 Tail-DFAs
The first obvious way to limit the worst case active set size

is to transform the tail-NFAs into tail-DFAs, as exemplified

in Figure 8. In fact, this will ensure that, for every

activation, each tail-automaton will be active only in one

state.

Table 2: Hybrid-FA traversal example. Stable states

represented in bold; accepting states are underlined.

b a a c a b c a c e f c d e

0 1 1 5 9 2

5

2

3

9

2

5

2

3

6

2

7

2

8

2

3

0

2

4

11

2

0

1 2 4/13

8/276

5

9 10/3

11

12
13/4

1 5 11

e

c

1 5 11

e

d

c

e

a

a

b

ee

a

c

11

c

c d

e
f c

e

a b

a
c

a
e

a
c

c

e

a
f

b

a
c e a c

ae

1 5 11

1 11

1

c

1 11

1 13
5

c

a

2

b

11

e

* * *14 15 16

0

1 2 4/13

8/276

5

9 10/3

11

12
13/4

1 5 11

e

c

1 5 11

e

d

c

e

a

a

b

ee

a

c

11

c

c d

e
f c

e

a b

a
c

a
e

a
c

c

e

a
f

b

a
c e a c

ae

1 5 11

1 11

1

c

1 11

1 13
5

c

a

2

b

11

e

* * *14 15 16

Figure 7: Hybrid-FA NFA for RegEx: (1) ab.{3}cd,

(2) cefc, (3) cad, (4) efb

Table 3: Hybrid-FA traversal examples. Stable states

represented in bold.

b a a c a b a b c e f c d e

0 1 1 5 9 2

1

14

2

15

5

14

16

6

15

7

16

8

3

0

4

11

While this technique can be applied to any hybrid-FA,

it is effective only in case of dot-star conditions. In the

general case, the number of parallel activations of a tail-

DFA depends on the number of times the border state is

traversed. If, for any given DFA, it is possible to compute

the minimum number of characters to be processed between

two consecutive border-state traversals, this measure is

DFA dependent and not likely to provide satisfactory

bounds.

In the context of NIDS we are interested in determining

the set of rules to be fired on a packet. Thus, it is enough to

detect only one (the first) possible match of each regular

expression. This will allow us to show that, in the case of

the most dot-star conditions, a single tail-DFA activation is

sufficient to have correct traversal and detect all possible

matches. This allows us to limit the worst case bound on

memory bandwidth/processing time to the number of sub-

DFAs the hybrid-FA is decomposed into.

In the remainder of this section we provide evidence of

this consideration. The reader interested only in the main

results can skip to section 5.2.

To demonstrate the above property, we distinguish

pure wildcard repetitions from [^x]*-like conditions. Note

that the following discussion can be directly extended to the

more general case [^c1c2...ck]*.

Wildcard-repetitions (.*) Let us assume to have a

regular expression of the form sub-pattern1.*sub_pattern2.

This means, “try to match sub_pattern2 if and only if sub-

pattern1 did previously occur in the text string”.

Operationally, the head-DFA will recognize .*sub-pattern1
and the tail-DFA will match .*sub_pattern2. The activation

of the tail-DFA will occur upon border-state traversal. This,

in turn, will happen once sub-pattern1 is matched. Since,

upon matching of sub-pattern1, we are interested only in the

first occurrence of sub-pattern2, we may ignore any

subsequent activation of the tail-DFA. Also note that, since

tail-DFA represents a regular expression starting with “.*”,

it won’t contain any “dead-states” (that is, any stable state

which, once reached, will prevent any progress).

[^x]*-like conditions Let us assume to have a regular

expression of the form sub-pattern1[^x]*sub_pattern2. This

means, “try to match sub_pattern2 if and only if sub-

pattern1 did previously occur in the text string and the two

sub-patterns are not separated by character x”. Again, the

head-DFA will recognize .*sub-pattern1 whereas the tail-

DFA will match [^x]*sub_pattern2.

In this case, the tail-DFA will have a dead-state which

can be reached on character x for some tail-DFA states. We

can safely assume that reaching the dead-state is equivalent

to deactivating the tail-DFA.

There are two possibilities: x may or may not appear in

sub_pattern2. Let us consider those two cases separately.

• x ∉∉∉∉ sub_pattern2: All the states in tail-DFA will have a

transition to the dead-state on character x. This

situation is exemplified in Figure 9, where the NFA

and the DFA corresponding to [^x]*abc are

represented.

Let us assume to reach the border state when the tail-

DFA is active. There are two sub-cases:

o x is the last character processed (e.g.: ax[^x]*abc).

In this case the former activation of tail-DFA will die,

and the new activation will be the only one in place.

o x is not the last character processed (e.g.: ad

[^x]*abc). Since we are interested in the first match of

sub_pattern2, we can safely ignore the second

activation. Notice that, doing that, we don’t risk

missing matches. In fact, let us assume that an

occurrence of x followed, which would inactivate tail-

DFA. Since such occurrence would follow also the

potential second activation, it would invalidate it as

well. Therefore, ignoring the second activation is, in

this case, safe.

• x ∈∈∈∈ sub_pattern2: In this case some tail-DFA states

will have a transition to the dead state on character x,

but some won’t. Therefore, depending on the current

state, an occurrence of character x can cause either a

deactivation of the tail-DFA or a progress in the match

of sub_pattern2. This fact is exemplified in Figure 10,

where the NFA and the DFA corresponding to

[^x*]axb are represented. Note that all states starting

from 3 have mismatching transitions leading to state Ø.

In this situation, it is in general not true that a single

activation of the tail-DFA is always sufficient to

preserve correct operation. If the border state is

traversed when the tail-DFA is active, discarding one

of the two activations is unsafe. In fact, the next

transition could invalidate the first one while keeping

the second alive. One simple example is given by

regular expression ax[^x]*axb and string axaxaxb.

From the above discussion it should be clear how, in the

case of [^x]*-like conditions, we can ensure that keeping

only one activation of the tail-DFA preserves correctness

only if the sub-expression following the repetition does not

contain the characters excluded from the repetition itself.

However, there are a few exceptions to this general rules

which represent common cases in Snort rule-set.

.* masking: Let us consider rules where the part of

regular expression following the first [^x]* condition is a

complex sub-pattern containing a “.*” repetition. In other

words, let us consider regular expressions of the type:

sub_pattern1 [^x]*sub_pattern2.*sub_pattern3. The “.*”

condition will “mask” all occurrences of x in sub_pattern3.

Therefore, if x does not occur in sub_pattern2, then keeping

head-DFA

tail-NFA
3

tail-NFA
1

tail-NFA
2

head-DFA tail-DFA
2

tail-DFA
1

tail-DFA
3

(a) (b)

head-DFA

tail-NFA
3

tail-NFA
1

tail-NFA
2

head-DFA tail-DFA
2

tail-DFA
1

tail-DFA
3

(a) (b)

Figure 8: Hybrid-FA exemplification.

at most a single activation of the tail-DFA will preserve

correct operation.

Overlapping tail-DFA activations: A second case

which occurs frequently in Snort rule-sets can be described

as follows: sub_pattern1 is a simple string and tracing it

from any state of the tail-DFA always bring to its entry

state. In this case, one can ensure that a new activation of

the tail-DFA will take place either if such DFA is inactive,

or if it finds itself in the entry state. Therefore, two

consecutive activations will always overlap.

The argument above, which refers to regular

expressions in isolation, can be easily extended to groups of

regular expressions sharing a common prefix (at least up to

the dot-star repetition included).

5.2 Counter mechanism
Even if applicable, tail-DFAs would not be effective in

addressing counting constraints. In fact, for correct

operation, a new activation of the tail-DFA is required each

time the border state is traversed. To have an intuition

about this fact one can consider the simple regular

expression ab.{3}cd, whose head- and tail- DFAs are

represented in Figure 12, and the text string ababxyzcd.

Ignoring the second tail-DFA activation would in this

example lead to missing the match on the last character.

Since, in the worst case, the tail-automaton can be

activated every clock cycle, the bound does not improve

with a DFA solution. We will therefore think of a

mechanism to limit the number of state traversals starting

from a tail-NFA. For an exhaustive discussion on a general

methodology to handle this case we address the reader to

our technical report [20].

Let us first consider counting constraints of the form

“.{n}”, where the wildcard is repeated exactly n times.

Figure 12 shows the NFA for the generic .{n}suffix regular

expression. As can be seen, the NFA consists of n-1 similar

states (from b+1 to b+n-1), each having all outgoing

transitions directed towards the next state of the chain.

Those states simply operate as a counter. The last state of

the sequence b+n is the first one whose outgoing transitions

represent progress information within the suffix.

The same information could be simply stored through

an auto-decrementing counter and a pointer to state b+n.

The counter can be activated and set to n when the border

state is reached. At each character processed, the counter

gets auto-decremented. Only when the counter is nullified

the state associated to the corresponding pointer is

accessed.

The worst-case is characterized by n active counter

instances plus the size of the suffix-NFA. However, it can

be noticed that the counters can be kept in on-chip memory,

and do not involve real state traversals. Moreover, as we

point out in [20], a proper representation allows the update

and query of at most two counter instances to suffice for

correct operation.

The [^c1c2...ck]{n} condition can be treated in a similar

way; in this case the counter should be associated the set of

characters c1c2...ck which would cause its de-allocation.

A special case which is very common in practice is the

one where the counting constraint is located at the end of

the regular expression. In this situation, a single counter

instance always suffices independent of the number of

times the border state is traversed. In fact, in case of

wildcard repetitions, the occurrence of the first n wildcards

will determine a match. In case of [^c1c2...ck]{n}-like

counting constraints, an occurrence of an invalidating ci
character within n characters from the oldest tail-NFA

activation would be also within n characters from any

newer parallel one. Therefore, it is in this case safe to

Figure 12: NFA corresponding to regular expression

.{n}suffix

* * *b b+1 * b+n

n states

b+n-1. . . suffix* * *b b+1 * b+n

n states

b+n-1. . . suffix

Figure 9: NFA (1) and DFA (2) for regular expression

[^x]*abc. The state numeration in the DFA reflects

subset construction. State Ø is the dead state. Missing

transitions in DFA lead to state 1.

1) 3 421
a b c

^x

2) 1,3 1,41,21
a b c

Ø

x
x x x

a a
a

1) 3 421
a b c

^x

2) 1,3 1,41,21
a b c

Ø

x
x x x

a a
a

Figure 10: NFA (1) and DFA (2) for regular

expression [^x]*axb. The state numeration in the DFA

reflects subset construction. State Ø is the dead state.

All the transitions are represented.

^x

1) 3 421
a x b

2)

[^ax]

3 41,21
a x b

[^ax]

Ø

x

^b
*

a

^x

1) 3 421
a x b

2)

[^ax]

3 41,21
a x b

[^ax]

Ø

x

^b
*

a

Figure 11: head-DFA (1) and tail-DFA(2) for regular

expression ab.{3}cd. The missing transitions in the

head-DFA are to state 1. The state numbering is

according to subset construction.

1
a1)

d

b1,2 1,3

* c
3 4

Ø

*
^c

2)

a

5 6 7 8* *

^d

1
a1)

d

b1,2 1,3

* c
3 4

Ø

*
^c

2)

a

5 6 7 8* *

^d

ignore subsequent activations of the tail-NFA thus keeping

at most one active counter.

Counting constraints of the form .{n,} and

[^c1c2...ck]{n,}, where at least n occurrences of the

wildcard/character range are of interest, can be treated as a

direct generalization of the above. In the NFA of Figure 12,

this would correspond to adding an auto-loop to state b+n

on the same character range in the repetition. Thus: i) the

counter mechanism can also be applied to states from b+1

to b+n-1. ii) Additionally, the suffix (of which state b+n is

the entry state) can be converted to DFA. Again, in the case

of wildcard repetitions or if the invalidating characters

c1c2...ck, do not appear in the suffix, a single activation of

the suffix-DFA does always guarantee proper operation.

Finally, cases .{n,m} and [^c1c2...ck]{n,m} can be

treated as follow. Upon traversal of the border state b, the

auto-decrementing counter is set to m, and a fixed value m-

n is associated to it. Once again, the counter will be

dropped once nullified (or upon occurrence of any

invalidating character ci). However, state b+m is accessed

for every value of the counter less than or equal to m-n. The

considerations above about the worst case apply to this

situation as well.

In conclusion, if the data-set contains NT counting

constraints located at the end of the corresponding regular

expression and NNT counting constraints in intermediate

positions, then the worst case bound on memory bandwidth

is reduced to NT + 2NNT +1 (“one” representing the head-

DFA activation) memory accesses per character processed.

6. MEMORY LAYOUT
One important point to address to implement the proposed

scheme is how to layout the data structure representing the

above automaton so to limit memory requirement and allow

an efficient state traversal.

As far as the DFA part (head-DFA and possible tail-

DFAs) is concerned, any compression technique proposed

in literature [15][17][18][19] can be reused.

Let us now address the encoding of the NFA portion of

the automaton. Content addressing, a technique proposed in

[16] in the context of DFAs, can be adapted to NFAs. The

goal is to limit the number of memory accesses when

processing a state without any transitions defined on the

current input character. Specifically, one can observe that

the most part of NFA states have either transitions defined

on a very small set of characters, or on all but one or two

characters. Thus, by encoding in the state identifier the

information about the set of symbols a transition is (or is

not) defined on, it is possible to limit the number of

memory accesses below the active set size. For details the

interested reader can refer to [15].

Finally, border and counter states should be treated in a

special way: the former imply the need for pointers from the

DFA to the corresponding NFA entries, whereas for the

latter the information listed in Section 5.2 must be stored.

7. EXPERIMENTAL RESULTS
In this section we validate the proposal on rule-sets from

the Snort IDS.

7.1 Rule-sets
The rule-sets considered have been taken from the Snort

IDS [7]. Specifically, since some Snort rules only use exact-

match strings, in this paper we only consider those having a

Perl Compatible Regular Expression (PCRE) in their firing

condition.

As mentioned before, the rules under consideration do

not exhibit the whole expressive power of regular

expressions. Rather, they can normally be decomposed into

sequences of simple sub-patterns separated by dot-star

conditions (either in the pure .* or in the [^c1c2...ck]* form)

and counting constraints on wildcards and character ranges.

 Character ranges (and their repetition) are very

common within sub-patterns. Specifically, they appear

either in the form [c1-ck], or as special escape sequences: \s

(all space characters), \S (all but space characters), \d

(digits), \D (all but digits), \w (alphanumeric characters)

and \W (all but alphanumeric characters).

Nested repetitions and disjunctions of complex sub-

patterns (e.g.: patterns containing dot-star conditions or

wildcard repetitions) have not been observed in the rule-

sets. We expect that these more general types of patterns

will be the subject of important future work, but we do not

consider them here since they are not found our rule-sets.

Of 982 distinct regular expressions: 25% contain long

counting constraints, generally located at the end of the

regular expressions, 11.4% contain .* conditions and

54.89% [^c1c2...ck]* conditions.

Table 4: Summary of Snort rule-sets

Header Characteristics

Rule-

set

Nr.

of

rules
Protocol Source IP Src.

Port

Destination IP Destination Port .* and

[^x]*

.{n,m}

Group1 329 Tcp $HOME_NET any $EXTERNAL_NET $HTTP_PORTS/any 283 -

Group2 40 Tcp $HOME_NET any $EXTERNAL_NET 25/any 24 -

Group3 18 Tcp $EXTERNAL_NET any $HOME_NET 7777:7778/any 5 10

Group4 45 Tcp $EXTERNAL_NET any $HOME_NET 143/any 24 19

Group5 20 Tcp $EXTERNAL_NET any $HOME_NET 119/any 6 11

Group6 24 Tcp $EXTERNAL_NET any $HOME_NET 110/any 7 12

A large part of Snort rules start with character “^”,

which normally forces the match operation only at the

beginning of the text string (i.e., of the packet payload).

This could theoretically decrease the complexity of the

corresponding DFA, and avoid state explosion when regular

expressions with counting constraints are compiled in

isolation. Unfortunately, nearly all Snort PCREs use the

“m” modifier. Combined with symbol “^” at the beginning

of the regular expression, this forces the match operation

not only at the beginning of the text string, but also at the

beginning of each line. In other words, the m modifiers acts

on regular expression ^pattern transforming it into ^pattern

| ([\n\r]pattern). This, in turn, keeps the complexity of the

resulting DFA high.

The Snort IDS performs packet payload inspection

only after header filtering (i.e. packet classification).

Therefore, we clustered rules with common header and

performed experiments on some of the largest groups. A

summary of the derived rule-sets is presented in Table 4.

7.2 Memory storage requirement
In this section, we study the memory storage requirement of

the different rule-sets by generating the corresponding

automata. As can be observed in the second and in the last

two columns of Table 4, the rule-sets differ in the number

of regular expressions, dot-star conditions and counting

constraints they include.

Rule-sets group1 and group2 do not contain counting

constraints, whereas group3-group6 do. The counting

constraints encountered consist of 20 to 1024 repetitions of

large character ranges; however, they are always located at

the end of the corresponding regular expressions (and can

therefore benefit in the best way of the counter mechanism).

Moreover, the [^x]*-like conditions present in the rule-set

make it possible to build tail-DFAs which can be safely

traversed with at most one activation.

In Table 5 a summary of the characteristics of the size

of the NFA, DFA and hybrid-FA corresponding to the

given rule-sets are reported. Consider the following

observations.

First, a DFA solution is never feasible in the case of

rule-sets containing counting constraints. In fact, because of

the high number of repetitions, exponential state explosion

is observed also if DFAs are generated in isolation for each

of the regular expressions. Therefore, in those cases, N-A

(not applicable) is indicated in the table (experimentally,

subset construction was aborted after generation of 10

million states).

For rule-sets group1 and group2, a DFA solution is

possible but the regular expressions must be distributed

across multiple DFAs in order to avoid state-blow-up. Rule

partitioning is performed according to heuristics, as

follows. First, rules containing a dot-star condition and

sharing the prefix to it are compiled together. Second, rules

containing multiple dot-star conditions are compiled in

isolation or in combination with just a few other rules. In

effect, as explained in Section 3, each dot-star condition

tends to generate a replication of the DFA being merged

with the current regular expression.

When creating the hybrid-FA, tail-DFAs and the

counter mechanism have been used in order to limit the

worst case bound. Because of the varying complexity of the

rule-sets, dot-star conditions have been treated in different

ways: some of them have been expanded through subset

construction, and some have been made border-states.

Specifically, the goal was the one of keeping the head-DFA

below 50,000 states. This threshold was selected as a good

head-DFA target size because proposed DFA compression

techniques [15][17][19] can encode those states in around

2MB, a size that can be realized in on-chip memory in an

ASIC or microprocessor. We can create a head-DFA of any

specific number of states by expanding the head DFA in a

greedy fashion until the target size has been reached;

thereafter, all dot-star conditions become border-states and

lead to tail-FAs. As a result, all dot-star conditions in

group1 have been moved to tail-DFAs, the ones in groups

3-6 have been expanded in the head-DFA, and a mixed

solution has been adopted for group2.

In the case of rule-set group2, two different DFA

groupings have been tested: the first consisting of the same

number of DFAs as the hybrid-FA, and the second

consisting of one less DFA. As one could expect, in the first

scenario the overall number of states in the two automata is

similar, whereas in the second one the pure DFA solution

pays for the better worst case performance bound with a

higher memory occupancy (specifically, it requires 50%

more states).

In the case of rule-set group1, the pure-DFA and the

hybrid-FA solution have comparable size. But, as will be

pointed out in the next section, the hybrid automaton is

preferable in terms of average case memory bandwidth.

For rule-sets group3-6, the DFA cannot be constructed

at all due to exponential state blow-up, while the hybrid-FA

solution has an easily realizable size. Also, it is worth

noticing the reduction in the number of states when moving

from a NFA to a hybrid-FA, which is due to removing the

long chains of counting states.

Table 5: Automata sizes for corresponding rule-sets.

NFA DFA Hybrid-FA

Rule-

set

states

DFA

s

Total

states

tail-

FA

head-

DFA

states

Total

tail-

states

Group1 15679 31 71234 30 40461 30321

Group2 1036 3

2

22651

31521

2 20724 1905

Group3 8871 N-A N-A 10 514 -

Group4 3119 N-A N-A 19 2560 -

Group5 5205 N-A N-A 11 2485 -

Group6 1952 N-A N-A 12 4878 -

In terms of absolute memory occupancy, the use of

default transitions [15][19] and of content addressing [17]

to encode the hybrid-FA lead to storage requirements

varying from 21KB (group3), up to 3MB (group1). In fact,

the former technique allows eliminating around 98-99% of

the DFA transitions, while the latter imply the use of 64 bit

wide state identifiers. Notice that this range makes it

possible to accommodate the automaton data structures in

on-chip memory [26].

7.3 Memory bandwidth requirement
The memory bandwidth requirement can be expressed in

terms of the number of memory operations to be performed

for each input character processed. In this section, we want

to compare the different automata in both worst case and

average case behaviors.

7.3.1 Worst case behavior
The worst-case memory bandwidth requirement can be seen

in Table 5. In the case of NFAs, the worst-case bandwidth

corresponds to the number of states, which is reported in

the second column of the table. For example, 1036 states

corresponds to 1036 concurrent memory operations to

implement state transitions for each input character

processed. This bound, even if rarely achieved, is clearly

unacceptable.

DFA solutions have a worst case bound corresponding

to the number of DFAs needed to represent the regular

expressions (i.e.: the number of groups the rule-set is

decomposed into). This value (column 3) is attractive when

those solutions are feasible, that is when the regular

expressions do not contain large counting constraints.

In the case of Hybrid-FAs, the worst case bound is

equal to 1 plus the number of tail-DFAs (each tail-DFA

being a simple counter for rule-sets group3-6). For data-

sets group1-2, this coincides with the worst case bound of

the DFA counter-part. In case of counting constraints, this

value is far less than that of the NFA solution, and depends

only on the number of regular expressions (as opposed as

to the number of states).

7.3.2 Average case behavior
To evaluate the average case memory bandwidth, we

compare the behavior of the different solutions on real

traffic. To this end, we perform simulations using twelve

packet traces downloaded from [25] of size varying from

about 17MB to about 264MB.

Table 6 reports statistics about the size of the active

vector across the different data-sets. The average values

have been derived by first computing, for each trace, the

weighted average of the active vector size across the

simulation interval. Then, the values obtained for different

traces on the same rule-set have been again averaged. For a

given rule-set, we have not observed a substantial variance

across the traces. The maximum value displayed is, in all

cases, the maximum active vector size achieved for a

particular rule-set across all traces and all simulations.

As can be seen, the average behavior of the NFA

solution is far better than what the worst case would

indicate. This is due to the fact that only a few rules are

matched, and dead branches in the NFA are often taken.

The hybrid-FA outperforms the NFA both in terms of

average behavior and maximum active vector size. In fact,

the automaton traversal remains for the most part within the

head-DFA. Note that a value of 1 could be achieved only if

it was possible to compile all the regular expressions in a

single DFA.

Finally, since the average case behavior of a DFA

solution is the same as its worst case, the hybrid-FA

outperforms also the DFA solution with regular expression

grouping adopted for the group1 and group2 data-sets.

8. RELATED WORK
Regular expression matching at line rate has been

recognized as an important problem, and has been

considered in related work. The prior work in this area

focuses on two distinct directions: FPGA based

implementations [22][23][24] and general-purpose or

software oriented approaches [6][15][15][17][18][19]. Our

work falls into the second category, although one could

offload the tail-automaton operation to an FPGA.

As mentioned, memory compression techniques

allowing an efficient representation of generic DFAs have

been presented in [15][17][18][19]. However, such

proposals assume that the DFA is given a priori. On the

opposite, in this work we address the case where a DFA is

either practically unfeasible or not a suitable representation

of the regular expressions of interest.

Our work has a practical character in that it does not

address generic regular expressions, but particular

subclasses which are common in broadly used NIDS [6] [7]

[8]. To this end, our work has commonalities with the one

presented in [15], which proposes rewriting rules to

simplify DFA in the case of common patterns. However,

our focus is different in that we concentrate on the

automaton rather than on modifying the input patterns.

It is worthwhile to compare and contrast the hybrid-

FAs presented in this work and lazy-DFAs [12]. The two

proposals share the common idea of partially performing

subset construction on a NFA. However, lazy-DFAs assume

that subset construction is done dynamically depending on

the input string (that is, on the incoming packets’ payload.)

Table 6: Active vector sizes for Snort rule-sets

NFA Hybrid-FA

Avg Max Avg Max Worst case

Group1 1.15 34 1.009 5 32

Group2 1.06 13 1.001 2 3

Group3 1.04 4 1.002 2 11

Group4 2.45 12 1.001 2 20

Group5 1.04 5 1.001 2 12

Group6 2.99 6 1.088 2 13

Specifically, the NFA paths covered by the input string are

dynamically converted to DFA. While this may be helpful

in the average case, it does not address the worst case,

which is of first interest in the context of NIDS. Moreover,

this solution is suitable only for a software implementation.

Therefore, we assume that the partial subset construction be

done statically a priori so to prevent state explosion from

happening. Moreover, we introduce refinements to further

bound the worst case.

9. CONCLUDING REMARKS
Regular expression matching is an important task in modern

NIDS. Recent proposals have in their experimental

evaluations drawn selectively from regular expression rule-

sets to avoid troublesome rules. For example, fully 25% of

the regular expressions in the current Snort rule-set include

counting constraints for which no DFA can be constructed

using a reasonable amount of memory, such as that

normally found in a workstation or PC. In all prior work we

have seen, these rules have been excluded from discussion

or evaluation, presumably for this reason.

The primary contribution of this work is the hybrid-FA,

which is, to our knowledge, the first automaton that is

capable of evaluating all the regular-expression types found

in common NIDS systems such as Snort and can be

implemented efficiently in practical high-speed systems.

The key characteristics of a hybrid-FA are: a modest

memory storage requirement comparable to those of an

NFA solution, an average case memory bandwidth

requirement similar to that of a single DFA solution

(although the DFA would be unfeasibly large), a worst case

memory bandwidth linear in the number of regular

expressions containing counting constraints and dot-star

conditions (and, notably, independent of the number of

states in the automaton).

10. ACKNOWLEDGEMENTS
This work has been supported by National Science

Foundation grants CCF-0430012 and CCF-0427794, and

by gifts from Intel and Cisco Systems.

REFERENCES
[1] A. V. Aho and M. J. Corasick, “Efficient String Matching:

An Aid to Bibliographic Search,” Communications of the

ACM, pp. 333–340, 1975.

[2] B. Commentz-Walter, “A string matching algorithm fast
on the average,” in ICALP, July 1979.

[3] S. Wu, U. Manber, “A fast algorithm for multi-pattern
searching,” Tech. Report TR-94-17, Univ of Arizona,

1994.

[4] J. E. Hopcroft and J. D. Ullman, “Introduction to
Automata Theory, Languages, and Computation,”

Addison Wesley, 1979.

[5] J. Hopcroft, “An nlogn algorithm for minimizing states in
a finite automaton,” in Theory of Machines and

Computation, J. Kohavi, Ed. New York: Academic, 1971,

pp. 189--196.

[6] M. Roesch, “Snort: Lightweight Intrusion Detection for
Networks,” in System Administration Conf., 1999

[7] Snort: http://www.Snort.org/

[8] Cisco Systems. Cisco ASA 5505 Adaptive Security
Appliance. http://www.cisco.com. 2007.

[9] Citrix Systems. Citrix Application Firewall.

http://www.citrix.com. 2007.

[10] Bro: http://bro-ids.org/

[11] Vern Paxson et al., “Flex: A fast scanner generator,”
http://www.gnu.org/software/flex/

[12] R. Sommer and V. Paxson, “Enhancing byte-level network
intrusion detection signatures with context.”, in CCS

2003.

[13] N. Tuck, T. Sherwood, B. Calder, and G. Varghese,
“Deterministic memory-efficient string matching

algorithms for intrusion detection,” in Infocom 2004.

[14] L. Tan, and T. Sherwood, “A High Throughput String
Matching Architecture for Intrusion Detection and

Prevention,” ISCA 2005.

[15] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz,
“Fast and Memory-Efficient Regular Expression Matching

for Deep Packet Inspection”, in ANCS 2006

[16] S. Kumar et alt., “Algorithms to Accelerate Multiple
Regular Expressions Matching for Deep Packet

Inspection,” in ACM SIGCOMM, Sept 2006.

[17] S. Kumar, et alt, “Advanced Algorithms for Fast and
Scalable Deep Packet Inspection”, in ANCS 2006

[18] M. Becchi and S. Cadambi, “Memory-Efficient Regular
Expression Search Using State Merging”, in INFOCOM

2007

[19] M. Becchi and P. Crowley, “An Improved Algorithm to
Accelerate Regular Expression Evaluation”, in ANCS

2007

[20] M. Becchi and P. Crowley, “Addressing complex regular
expressions through counting automata”, Washington

University Tech. Report, July 2007.

[21] R. W. Floyd, and J. D. Ullman, “The Compilation of
Regular Expressions into Integrated Circuits”, Journal of

ACM, vol. 29, no. 3, pp 603-622, July 1982.

[22] R. Sidhu and V. K. Prasanna, "Fast Regular Expression
Matching using FPGAs", in FCCM 2001

[23] C. R. Clark and D. E. Schimmel, “Efficient reconfigurable
logic circuit for matching complex network intrusion

detection patterns,” in FLP 2003.

[24] J. Moscola et alt., “Implementation of a content-scanning
module for an internet firewall,” in FCCM, USA, April

2003.

[25] Internet traffic traces: http://cctf.shmoo.com/

[26] Cu-11 standard cell/gate array ASIC, IBM. www.ibm.com

