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ABSTRACT 
Deterministic finite automata (DFAs) are widely used to 

perform regular expression matching in linear time. Several 

techniques have been proposed to compress DFAs in order 

to reduce memory requirements. Unfortunately, many real-

world IDS regular expressions include complex terms that 

result in an exponential increase in number of DFA states. 

Since all recent proposals use an initial DFA as a starting-

point, they cannot be used as comprehensive regular 

expression representations in an IDS. 

In this work we propose a hybrid automaton which 

addresses this issue by combining the benefits of 

deterministic and non-deterministic finite automata. We test 

our proposal on Snort rule-sets and we validate it on real 

traffic traces. Finally, we address and analyze the worst 

case behavior of our scheme and compare it to traditional 

ones. 

Categories and Subject Descriptors 
C.2.0 [Computer Communication Networks]: General – 

Security and protection (e.g., firewalls) 

General Terms 
Algorithms, Performance, Design, Security. 

Keywords 
Deep packet inspection, DFA, NFA, regular expressions. 

1. INTRODUCTION 
Increasingly, network packets are classified not only by the 

fields of their headers, but also by the content of their 

payloads. In particular, signature-based deep packet 

inspection has taken root as a dominant security mechanism 

in networking devices and computer systems. Most popular 

software tools—including Snort [6][7] and Bro [10]—and 

devices—including the Cisco family of Security Appliances 

[8] and the Citrix Application Firewall [9]—use regular 

expressions to describe payload patterns. While more 

expressive than simple patterns of exact-match strings, and 

therefore able to describe a wider variety of payload 

signatures [12], regular expression implementations 

demand far greater memory space and bandwidth. As a 

result of these trends, there has been a considerable amount 

of recent work on implementing regular expressions for use 

in high-speed networking applications, particularly with 

representations based on discrete finite automata (DFAs). 

DFAs have attractive properties that explain the 

attention they have received. Foremost, they have a 

predictable memory bandwidth requirement. In fact, 

processing an input string involves one DFA state traversal 

per character, which translates into a deterministic number 

of memory accesses. Moreover, it has long been established 

that, for any given regular expression, a DFA with a 

minimum number of states can be determined [4][5]. Even 

so, DFAs corresponding to large sets of regular 

expressions, each one representing a different rule, can be 

prohibitively large. 

Recent work has tackled this problem in two ways. 

First, since an explosion in states can occur when many 

rules are grouped together into a single DFA, Yu et al. [15] 

have proposed segregating rules into multiple groups and 

evaluating the corresponding DFAs concurrently. This 

solution decreases memory space requirements, sometimes 

dramatically, but increases memory bandwidth linearly with 

the number of active DFAs. The second approach, proposed 

by Kumar et al. [15], aims at reducing the memory space 

requirement of any given DFA and is based on two 

observations. First, the memory space required to store a 

DFA strictly depends on the number of transitions between 

states. Second, many states in DFAs have identical sets of 

outgoing transitions. Substantial space savings in excess of 

90% are achievable in current rule-sets when this 

redundancy is exploited. The compression technique 
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proposed trades off memory storage requirements with 

processing time. 

Unfortunately, DFAs are infeasible for regular 

expressions found in the most frequently used rule-sets. 

Specifically, when repeated wildcards are present in a 

regular expression, it may be impossible to build a DFA 

with a reasonable number of states. For example, the 

regular expression “prefix.{100}suffix”, which matches if 

and only if “prefix” is separated from “suffix” by 100 

characters, would require well over 1 million states to be 

represented in a DFA. Since, as we will see, such constructs 

occur frequently within popular security rule-sets, DFA-

based approaches, including the recent work described 

above, are infeasible as comprehensive solutions. 

As an alternative, one could consider using a solution 

based on non-deterministic finite automata (NFAs) [22]. 

The number of NFA states required to represent a regular 

expression is on the order of the number of characters 

present in the regular expression itself. As an example, the 

regular expression above would require just 101+ (# chars 

in prefix) + (# chars in suffix) NFA states. Therefore, an 

NFA-based representation would alleviate the memory 

storage problem.  However, an NFA may lead to a variable, 

and potentially large, memory bandwidth requirement. In 

fact, multiple NFA states can be active in parallel and each 

input character can trigger multiple state transitions, and 

therefore require multiple parallel memory operations. In 

the worst-case, all NFA states can be active concurrently, 

requiring a prohibitive amount of memory bandwidth. 

In this paper we propose a hybrid DFA-NFA finite 

automaton (Hybrid-FA), a solution bringing together the 

strengths of both DFAs and NFAs. When constructing a 

hybrid-FA, any nodes that would contribute to state 

explosion retain an NFA encoding, while the rest are 

transformed into DFA nodes.  The result is a data structure 

with size nearly that of an NFA, but with the predictable 

and small memory bandwidth requirements of a DFA. 

We evaluate the hybrid-FA structure by comparing it to 

both DFA and NFA representations on rule-sets from the 

popular security package Snort. The primary contribution 

of the hybrid-FA is that entirely new classes of regular 

expressions can be implemented in fast networking 

contexts.  

The remainder of this paper is organized as follows. 

Additional background and motivation are presented in 

Section 2. Section 3 describes the conditions of DFA state 

explosion in greater detail. The hybrid-FA structure is 

introduced in Section 4. Extensions to establish correctness 

and worst-case bounds are presented in Section 5. Section 6 

provides a brief discussion on implementation issues and 

alternatives. Experimental results are found in Section 7. 

Further discussion of related work is found in Section 8. 

The paper concludes with discussion in Section 9. 

2. BACKGROUND AND MOTIVATION 
Several techniques for minimizing the memory 

requirements of DFAs representing sets of regular 

expressions have been recently proposed [15][17][18]. 

These proposals have some common properties; 

specifically: 

a) They are based on the assumption that a DFA can be 

computed and is given as input. 

b) They exploit the observation that DFAs corresponding 

to rule-sets derived from commonly used Network 

Intrusion Detection Systems (NIDS) have significant 

state transition redundancy. 

The second aspect - i.e., the presence of significant 

transition redundancy - can be easily explained as follows. 

Regular expressions used within NIDS typically consist of 

sets of patterns containing: simple strings, character ranges, 

wildcards, indefinitely repeating sub-patterns, and sub-

patterns repeated a discrete number of times. Notably, 

nested repetitions—causing loop-backs in the 

corresponding NFAs and DFAs—are not found in practice. 

One can think about compiling together the set of regular 

expressions corresponding to several rules by first building 

an NFA which represents the disjunction of the NFAs of the 

single regular expressions, and then converting it to a DFA 

through the well-known subset construction procedure [4]. 

Such NFAs will typically have a tree-like structure (with the 

exception, as we will see, of few loops and backward 

transitions), where the root corresponds to the starting state 

and the leaves to the accepting states. If common prefixes 

are collapsed, the root and the nodes at the first levels will 

have several outgoing transitions, whereas, moving towards 

the leaves, the tree will tend to become “skinny”, i.e., to 

consist of long chains of nodes. Moreover, except for the 

first levels of the NFA and for the transitions representing 

wildcards and large character ranges, most nodes will have 

outgoing transitions defined only for a few characters. 

When building the corresponding DFA, missing transitions 

on the NFA typically translate into backward transitions to 

the nodes at the first levels of the hierarchy (or intermediate 

nodes when the represented regular expression contains 

dot-star conditions or repetitions of wide character ranges). 

Thus, a restricted number of nodes in the final DFA tend to 

be the target of most transitions. 

Figure 1: DFAs representing the following RegEx: 

abcd (1) and ab.*cd (2). Transitions to state 0 are 

omitted. 
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Taking advantage of this redundancy enables very 

effective memory compression techniques for a given DFA, 

but does not address a major problem.  Namely that, due to 

state explosion during NFA-to-DFA transformation, DFAs 

cannot be built for many individual regular expressions 

and sets of expressions in NIDS rule-sets. Theoretically 

speaking, during subset construction, an exponential growth 

in the number of states can take place. In the case of large 

NFAs, this can make DFA construction infeasible. In 

practice, if subset construction is performed “lazily” (i.e., 

new DFA states are created only when they happen to be 

targets of any other state), there are only few recognizable 

cases where this can happen. To this end, we are interested 

in two distinct situations:  

a) State blow-up happens when compiling a single regular 

expression in isolation. 

b) Given two regular expressions RE1 and RE2 the 

corresponding DFA1 and DFA2 can be built without 

incurring state explosion. However, when compiling 

RE1 and RE2 into a unique DFA12, either the number of 

states in DFA12 is significantly greater than the sum of 

DFA1 and DFA2, or DFA12 cannot be built at all, due to 

exponential state explosion. 

Clearly, in the first case, DFAs are not a feasible 

representation of the given regular expression. The second 

case can be treated by keeping the two DFAs separated and 

operating them in parallel (i.e., trading memory space for 

bandwidth). However, given a set of regular expressions, it 

would be beneficial to be able to predict this situation 

without testing all possible combinations. 

The goals of this work are the following: 

• Explore two distinct conditions which lead to the state 

blow up during subset construction. 

• Propose a hybrid automaton which deals with the 

above problems in a unified way.  

• Refine the proposal in order to provide an acceptable 

worse case bound on the memory bandwidth 

requirement. 

As previously mentioned, the proposal and the results 

focus on practical data-sets from Snort NIDS. However, 

these dot-star and counting constraint terms are not unique 

to the Snort rule-sets. Via personal communication with 

colleagues at Cisco Systems Inc., we have learned of 

proprietary IDS regular expression rule-sets for in 14% and 

1% of the rules include dot-star and counting terms, 

respectively. 

3. STATE BLOW-UP 
Given an NFA with N states, the corresponding DFA can 

consist of potentially 2N states [4]. In practice, this upper 

bound is never reached and, in most cases, the number of 

states in the DFA is comparable to that of the 

corresponding NFA. If the NFA represents simple patterns 

and common prefixes and suffixes have not been collapsed, 

a state-minimized DFA can actually have slightly fewer 

states. However, there are common conditions which can 

bring the number of DFA states close to the theoretical 

upper bound. An analysis of those conditions within DFAs 

representing single regular expressions is presented in [15]. 

Here we want to focus on two patterns which occur 

frequently in practical data-sets, namely “dot-star” 

conditions and “counting constraints.”  

3.1 “Dot-star” conditions 
A dot-star condition is a sub-pattern of the type “.*”, 

meaning “a wildcard repeated any number of times.” As an 

extension, we include in this category sub-patterns of the 

form “[^c1c2...ck]*”, where the repetition involves a large 

range of characters (namely, all characters but c1, c2,..., ck). 

While excluding characters from the repetition introduces 

some additional issues that we will discuss later, this feature 

exhibits the same characteristics as a pure “.*” condition in 

terms of state blow-up.  

Dot-star conditions are common in practical data-sets. 

Their primary use is to detect occurrences of sub-patterns 

separated by an arbitrary number of characters. In the case 

of Snort rules, many regular expressions use a “[^\n\r]*” 

term to search for an occurrence of the prefix sub-pattern in 

the same line of text as the suffix sub-pattern. Multiple dot-

star terms can appear within the same expression. 

For example, the Snort spyware rule “User-

Agent\x3A[^\r\n]*ZC-Bridge”, looks for an occurrence of 

the sub-pattern “ZC-Bridge” only if  “User-Agent\x3A” has 

been  previously detected and no carriage return or new line 

character occurred in between. That means, the two sub-

patterns must occur in the given order and on the same line, 

and may be separated by an arbitrary number of characters. 

In practical rule-sets, dot-star conditions do not cause 

state blow-up when individual regular expressions are 

compiled in isolation. In fact, those patterns affect the 

transitions in the DFA but not the number of states. Figure 

1, which compares DFAs accepting regular expressions 

Figure 2: DFA representing (1) ab.*cd and (2) efgh. 

In the accepting states, the number following the “/” 

represents the accepted regular expression. 
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abcd and ab.*cd, illustrates this fact. It can be observed that 

the number of states is the same in the two cases; the 

transitions are “moved toward” the tail of the DFA in the 

second one.  

However, dot-star conditions add complexity when 

distinct regular expressions are compiled together (note that 

the same condition would arise in case of single regular 

expressions consisting of disjunctions of complex sub-

expressions). To see why, assume that we compile together 

expressions RE1 and RE2 (that is, build a DFA for the 

expression “.*(RE1|RE2)”) and that RE1 contains a “.*” term 

and RE2 does not. Since the dot-star term in RE1 can match 

any string, including all those strings matching RE2, a 

properly formed combined DFA will have additional states 

to determine a match of RE2 within the “.*” pattern 

belonging to RE1. This condition effectively duplicates the 

sub-DFA representing RE2 within the sub-DFA for RE1.  

Figure 1 illustrates this situation in the composite DFA 

for regular expressions “ab.*cd” and “efgh”. Notice that the 

sub-DFA matching “efgh” is replicated: first in states 2, 4, 7 

and 10, and second in states 6, 9, 11 and 12. The second 

replica originates from state 3, which derives from 

expanding the dot-star condition.  

If the regular expressions compiled together contain 

common sub-patterns, the replication may involve only sub-

expressions. However, in general, a sub-DFA will be 

replicated once for every occurrence of a dot-star term in 

other regular expressions. Thus, dot-star terms create linear 

increases in the number of DFA states. 

3.2 Counting constraints 
A counting constraint corresponds to the repetition of a sub-

pattern for a given number of times, and is expressed in the 

form sub-pattern{n,m} where n and m are the minimum and 

the maximum cardinality of the repetition. If n and m are 

equal, the counting constraint is expressed in the form sub-

pattern{n}. 

The most frequent situation occurring in practical data-

sets corresponds to the repetition of only one character, 

which can be a specific symbol, a wildcard or a character 

within a range. Since we are interested only in situations 

causing state blow-up, we will restrict ourselves to 

repetitions of wildcards and of large character ranges.  

In Snort, regular expressions with counting constraints 

are commonly used to detect buffer overflow situations. 

Again, “[\n\r]{n}”-like sub-expressions are utilized in order 

to split the text string on a line basis. As an example, the 

Snort rule “AUTH\s[^\n]{100}” would detect an IMAP 

authentication overflow attempt, where the buffer is 100 

characters long and a new line terminates the authentication 

string.  

In contrast to dot-star terms, counting constraints on 

wildcards and large character ranges cause exponential 

state blow-up when creating DFAs even for single regular 

expressions. This can be explained as follows: when 

expanding the counting constraint, all possible occurrences 

of the regular expression prefix must be considered at each 

instance of the wildcard or character range. Figure 3 

illustrates this fact on the simple regular expression 

“ab.{3}cd”. Clearly, the size of the DFA grows rapidly with 

the cardinality of the counting constraints.  

The situation gets dramatically worse when multiple 

regular expressions are compiled together in a combined 

DFA. In this situation, one has to also consider all possible 

occurrences of the other regular expressions into the one 

having the counting constraint. We note that counting 

constraints in typical data-sets consist of at least 100 

repetitions; it is therefore impossible to build reasonable 

DFAs for such rules, much less for groups of them. 

4. HYBRID-FA   
One obvious way to keep the size of the automaton 

contained when transforming a NFA into DFA is to 

interrupt the subset construction operation at those NFA 

states whose expansion would cause state explosion to 

happen. In the two specific cases described above, the 

critical states can be easily determined. In fact, they 

correspond to the first state of the dot-star constraint (that 
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Figure 3: DFA representing regular expression 

ab.{3}cd. 
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is, the one with the auto-loop) and the initial state of the 

repetition sub-expression.  

The outcome of interrupting subset construction at an 

intermediate state will be a hybrid automaton (which we 

will call hybrid-FA), consisting of not expanded NFA-like 

states, DFA-like states and “border” states. The latter can 

be considered as being part of both a DFA and of an NFA. 

Figure 4 shows a small example where subset 

construction is interrupted at NFA state 2. State numbering 

in the hybrid-FA reflects the subset construction operation. 

Since, for instance, processing symbol a in NFA state 0 

leads to NFA states 0 and 1, processing the same character 

in (DFA) state 0 of the hybrid automaton leads to a (DFA) 

state tagged 0-1. It can be noted that the border state 0-2-5 

has two distinct outgoing transitions on character c: one 

falling into the NFA-part and one into the DFA-part. 

Moreover, its sub-state 2 is ignored when computing the 

transition targets to the DFA-part.  

If we restrict ourselves to regular expressions 

consisting of sequences of sub-patterns possibly separated 

by dot-star conditions and counting constraints, we start 

subset construction at the NFA initial state and interrupt it 

as just described, then the resulting hybrid-FA will exhibit 

some useful properties. Specifically: i) the starting state will 

be a DFA-state; ii) the NFA part of the automaton will 

remain inactive till a border state is reached; and iii) there 

will be no backwards activation of the DFA coming from 

the NFA. 

In order to better illustrate these concepts, let us 

consider two examples: the first one containing a “.*” sub-

expression and the second one a counting constraint. The 

goal of the discussion will be two-fold. First, we want to 

show the characteristics of a hybrid-FA compared to the 

corresponding DFA and NFA. Second, we want to give an 

intuition about how the traversal of hybrid-FA works. 

4.1 “Dot-star” regular expressions 
In Figure 5 the NFA representing regular expressions: 

ab.*cd, cefc, cad and efb is shown. The double-circled 

states are accepting states; within them, the number 

following the slash indicates the accepted regular 

expression. State 0 is the initial state. The NFA is reduced 

by merging common prefixes.  

The corresponding DFA (which we don’t show for 

readability) has 21 states. For the reasons explained above, 

the dot-star term in the first regular expression leads to a 

replication of the portion of DFA devoted to the second, 

third and fourth regular expressions. Clearly, such state 

replication would increase with the number of regular 

expressions contained in the data set. Moreover, the 

situation would worsen if the number of regular expressions 

containing dot-star conditions also increased. 

We note that no state explosion would occur if the 

regular expressions containing dot-star conditions were 

compiled into separate DFAs; while this would avoid state 

explosion, it would trade space for bandwidth. In fact, 

memory bandwidth requirements increase linearly with the 

number of concurrent DFAs (each DFA makes one state 

transition for each character). 

While reducing the number of states, a NFA 

representation can increase memory bandwidth 

requirements. Specifically, the non-determinism inherent in 

an NFA implies that many states may be active at once. 

Unlike a DFA, an NFA can make multiple state transitions 

when consuming a single input character.  

The dynamic memory bandwidth needed by an NFA 

representation depends on the size of the active state set, 

that is, the set of states active in parallel. In fact, the number 

of active states implies the number of memory accesses 

required to make state transitions for each input character 

processed. In theory, processing a character in an NFA 

requires O(NNFA) memory operations, where NNFA is the 

total number of states. In practical cases, however, the 

active set size is much lower than NNFA. Operationally, the 

number of active states tends to increase if any current state 

Figure 5: NFA for RegEx: (1) ab.*cd, (2) cefc, (3) cad, 

(4) efb. 
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represented in bold; accepting states are underlined. 
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has several outgoing transitions on the given input 

character. Conversely, it tends to decrease if an active state 

has no transitions defined on the current input character. An 

important special case is represented by states having 

wildcard transitions back to themselves (e.g., states 0 and 2 

in Figure 5); these states are stable: once they are visited, 

they will never leave the active set.  

An example of traversal of the NFA in Figure 5 with 

input string “baacabcacefcde” is shown in Table 1. In this 

example, the states in the active set are never more than 5 

out of 14. 

Let us now consider the hybrid-FA for the given 

regular expressions (Figure 6). Subset construction is 

interrupted at state 2, which would cause state explosion to 

happen. As can be seen, the second, third and fourth regular 

expressions are completely matched within the DFA part. 

On the other hand, the first regular expression is matched 

within the DFA part only up to the second character. 

Beyond that, the matching operation is performed in an 

NFA. Note that the number of states in the hybrid FA does 

not exceed that of the NFA. Finally, the matching operation 

involves one state traversal per character as long as the 

border state 2 is not traversed. In other words, as long as the 

prefix of the first regular expression “ab” is not matched, 

processing is restricted to the DFA portion.  

An example of hybrid-FA traversal with text string 

“baacabcacefcde” is shown in Table 2. State 0 is no longer 

a “stable” state, but state 2 is. As can be seen, the active set 

will contain only one state until the border state 2 is 

traversed. One and only one activation of the DFA is 

possible; conversely, the NFA can have several parallel 

activations. Note that the size of the active set is in general 

lower than what we have with the pure-NFA counterpart 

(with at most 3 versus 5 states). 

4.2 Regular expressions with counting 

constraints on wildcards 
Figure 7 represents the hybrid-FA for a small dataset 

containing a regular expression with a wildcard repeated 

exactly 3 times. The reader can easily draw the 

corresponding NFA, also consisting of 19 states.  The state-

minimized DFA (not shown for readability) has 46 states. 

In this case subset construction is interrupted at the state 

which immediately precedes the counting constraint.  

An example of traversal of the hybrid-FA with text 

string “baacababcefcde” is shown in Table 3. Notice that 

the hybrid-FA does not have any stable states. Again, the 

DFA is always active and there is a single activation of it 

during the whole matching operation. On the contrary, the 

NFA part can have several parallel activations, one for each 

border state traversal. Note that, if this was not the case, the 

match reported on state 4 would have not been detected. 

Finally, the active set size is less than that of the NFA 

counterpart (whose maximum value is 6). 

5. IMPROVING THE WORST CASE 
As mentioned, the hybrid-FA consisting of a head-DFA and 

many tail-NFAs represents a compromise between a mere 

DFA and a mere NFA solution, and allows dealing with 

situations where a DFA is unfeasible. In particular, this 

solution trades memory occupancy (number of states) with 

processing time/memory bandwidth requirements (size of 

the active set). 

While the described automaton can provide satisfactory 

average case performance and improves the worst case as 

compared to a pure NFA, the worst case bound can still 

result unacceptable. In fact, as it has been pointed out: 

• The head-DFA is always active in one and only one 

state; 

• Each tail-NFA is activated each time the border state is 

reached. Moreover, every activation may involve 

several states. 

Therefore, the theoretical worst case is represented by 

the number of NFA states present in the hybrid automaton 

plus one (the DFA active state).  

In this section we explore two techniques to further 

reduce the worst case bound: one suitable to dot-star 

conditions and the other applicable to counting constraints.  

5.1 Tail-DFAs 
The first obvious way to limit the worst case active set size 

is to transform the tail-NFAs into tail-DFAs, as exemplified 

in Figure 8. In fact, this will ensure that, for every 

activation, each tail-automaton will be active only in one 

state.  

Table 2: Hybrid-FA traversal example. Stable states 

represented in bold; accepting states are underlined. 
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Figure 7: Hybrid-FA NFA for RegEx: (1) ab.{3}cd, 

(2) cefc, (3) cad, (4) efb 

Table 3: Hybrid-FA traversal examples. Stable states 

represented in bold. 
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While this technique can be applied to any hybrid-FA, 

it is effective only in case of dot-star conditions. In the 

general case, the number of parallel activations of a tail-

DFA depends on the number of times the border state is 

traversed. If, for any given DFA, it is possible to compute 

the minimum number of characters to be processed between 

two consecutive border-state traversals, this measure is 

DFA dependent and not likely to provide satisfactory 

bounds.  

In the context of NIDS we are interested in determining 

the set of rules to be fired on a packet. Thus, it is enough to 

detect only one (the first) possible match of each regular 

expression. This will allow us to show that, in the case of 

the most dot-star conditions, a single tail-DFA activation is 

sufficient to have correct traversal and detect all possible 

matches. This allows us to limit the worst case bound on 

memory bandwidth/processing time to the number of sub-

DFAs the hybrid-FA is decomposed into. 

In the remainder of this section we provide evidence of 

this consideration. The reader interested only in the main 

results can skip to section 5.2. 

To demonstrate the above property, we distinguish 

pure wildcard repetitions from [^x]*-like conditions. Note 

that the following discussion can be directly extended to the 

more general case [^c1c2...ck]*. 

Wildcard-repetitions (.*) Let us assume to have a 

regular expression of the form sub-pattern1.*sub_pattern2. 

This means, “try to match sub_pattern2 if and only if sub-

pattern1 did previously occur in the text string”. 

Operationally, the head-DFA will recognize .*sub-pattern1 
and the tail-DFA will match .*sub_pattern2. The activation 

of the tail-DFA will occur upon border-state traversal. This, 

in turn, will happen once sub-pattern1 is matched. Since, 

upon matching of sub-pattern1, we are interested only in the 

first occurrence of sub-pattern2, we may ignore any 

subsequent activation of the tail-DFA. Also note that, since 

tail-DFA represents a regular expression starting with “.*”, 

it won’t contain any “dead-states” (that is, any stable state 

which, once reached, will prevent any progress). 

[^x]*-like conditions Let us assume to have a regular 

expression of the form sub-pattern1[^x]*sub_pattern2. This 

means, “try to match sub_pattern2 if and only if sub-

pattern1 did previously occur in the text string and the two 

sub-patterns are not separated by character x”. Again, the 

head-DFA will recognize .*sub-pattern1 whereas the tail-

DFA will match [^x]*sub_pattern2.  

In this case, the tail-DFA will have a dead-state which 

can be reached on character x for some tail-DFA states. We 

can safely assume that reaching the dead-state is equivalent 

to deactivating the tail-DFA.  

There are two possibilities: x may or may not appear in 

sub_pattern2. Let us consider those two cases separately. 

• x ∉∉∉∉ sub_pattern2: All the states in tail-DFA will have a 

transition to the dead-state on character x. This 

situation is exemplified in Figure 9, where the NFA 

and the DFA corresponding to [^x]*abc are 

represented.  

Let us assume to reach the border state when the tail-

DFA is active. There are two sub-cases: 

o x is the last character processed (e.g.: ax[^x]*abc). 

In this case the former activation of tail-DFA will die, 

and the new activation will be the only one in place. 

o  x is not the last character processed (e.g.: ad 

[^x]*abc). Since we are interested in the first match of 

sub_pattern2, we can safely ignore the second 

activation. Notice that, doing that, we don’t risk 

missing matches. In fact, let us assume that an 

occurrence of x followed, which would inactivate tail-

DFA. Since such occurrence would follow also the 

potential second activation, it would invalidate it as 

well. Therefore, ignoring the second activation is, in 

this case, safe.  

• x ∈∈∈∈ sub_pattern2: In this case some tail-DFA states 

will have a transition to the dead state on character x, 

but some won’t. Therefore, depending on the current 

state, an occurrence of character x can cause either a 

deactivation of the tail-DFA or a progress in the match 

of sub_pattern2. This fact is exemplified in Figure 10, 

where the NFA and the DFA corresponding to 

[^x*]axb are represented. Note that all states starting 

from 3 have mismatching transitions leading to state Ø. 

In this situation, it is in general not true that a single 

activation of the tail-DFA is always sufficient to 

preserve correct operation. If the border state is 

traversed when the tail-DFA is active, discarding one 

of the two activations is unsafe. In fact, the next 

transition could invalidate the first one while keeping 

the second alive. One simple example is given by 

regular expression ax[^x]*axb and string axaxaxb.  

From the above discussion it should be clear how, in the 

case of [^x]*-like conditions, we can ensure that keeping 

only one activation of the tail-DFA preserves correctness 

only if the sub-expression following the repetition does not 

contain the characters excluded from the repetition itself.  

However, there are a few exceptions to this general rules 

which represent common cases in Snort rule-set. 

.* masking: Let us consider rules where the part of 

regular expression following the first [^x]* condition is a 

complex sub-pattern containing a “.*” repetition. In other 

words, let us consider regular expressions of the type: 

sub_pattern1 [^x]*sub_pattern2.*sub_pattern3. The “.*” 

condition will “mask” all occurrences of x in sub_pattern3. 

Therefore, if x does not occur in sub_pattern2, then keeping 
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Figure 8: Hybrid-FA exemplification. 



at most a single activation of the tail-DFA will preserve 

correct operation.  

Overlapping tail-DFA activations: A second case 

which occurs frequently in Snort rule-sets can be described 

as follows: sub_pattern1 is a simple string and tracing it 

from any state of the tail-DFA always bring to its entry 

state. In this case, one can ensure that a new activation of 

the tail-DFA will take place either if such DFA is inactive, 

or if it finds itself in the entry state. Therefore, two 

consecutive activations will always overlap. 

The argument above, which refers to regular 

expressions in isolation, can be easily extended to groups of 

regular expressions sharing a common prefix (at least up to 

the dot-star repetition included). 

5.2 Counter mechanism 
Even if applicable, tail-DFAs would not be effective in 

addressing counting constraints. In fact, for correct 

operation, a new activation of the tail-DFA is required each 

time the border state is traversed. To have an intuition 

about this fact one can consider the simple regular 

expression ab.{3}cd, whose head- and tail- DFAs are 

represented in Figure 12, and the text string ababxyzcd. 

Ignoring the second tail-DFA activation would in this 

example lead to missing the match on the last character.  

Since, in the worst case, the tail-automaton can be 

activated every clock cycle, the bound does not improve 

with a DFA solution. We will therefore think of a 

mechanism to limit the number of state traversals starting 

from a tail-NFA. For an exhaustive discussion on a general 

methodology to handle this case we address the reader to 

our technical report [20]. 

Let us first consider counting constraints of the form 

“.{n}”, where the wildcard is repeated exactly n times. 

Figure 12 shows the NFA for the generic .{n}suffix regular 

expression. As can be seen, the NFA consists of n-1 similar 

states (from b+1 to b+n-1), each having all outgoing 

transitions directed towards the next state of the chain. 

Those states simply operate as a counter. The last state of 

the sequence b+n is the first one whose outgoing transitions 

represent progress information within the suffix. 

The same information could be simply stored through 

an auto-decrementing counter and a pointer to state b+n. 

The counter can be activated and set to n when the border 

state is reached. At each character processed, the counter 

gets auto-decremented. Only when the counter is nullified 

the state associated to the corresponding pointer is 

accessed. 

The worst-case is characterized by n active counter 

instances plus the size of the suffix-NFA. However, it can 

be noticed that the counters can be kept in on-chip memory, 

and do not involve real state traversals. Moreover, as we 

point out in [20], a proper representation allows the update 

and query of at most two counter instances to suffice for 

correct operation. 

The [^c1c2...ck]{n} condition can be treated in a similar 

way; in this case the counter should be associated the set of 

characters c1c2...ck which would cause its de-allocation.  

A special case which is very common in practice is the 

one where the counting constraint is located at the end of 

the regular expression. In this situation, a single counter 

instance always suffices independent of the number of 

times the border state is traversed. In fact, in case of 

wildcard repetitions, the occurrence of the first n wildcards 

will determine a match. In case of [^c1c2...ck]{n}-like 

counting constraints, an occurrence of an invalidating ci 
character within n characters from the oldest tail-NFA 

activation would be also within n characters from any 

newer parallel one. Therefore, it is in this case safe to 

Figure 12: NFA corresponding to regular expression 
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ignore subsequent activations of the tail-NFA thus keeping 

at most one active counter. 

Counting constraints of the form .{n,} and 

[^c1c2...ck]{n,}, where at least n occurrences of the 

wildcard/character range are of interest, can be treated as a 

direct generalization of the above. In the NFA of Figure 12, 

this would correspond to adding an auto-loop to state b+n 

on the same character range in the repetition. Thus: i) the 

counter mechanism can also be applied to states from b+1 

to b+n-1. ii) Additionally, the suffix (of which state b+n is 

the entry state) can be converted to DFA. Again, in the case 

of wildcard repetitions or if the invalidating characters 

c1c2...ck, do not appear in the suffix, a single activation of 

the suffix-DFA does always guarantee proper operation.  

Finally, cases .{n,m} and [^c1c2...ck]{n,m} can be 

treated as follow. Upon traversal of the border state b, the 

auto-decrementing counter is set to m, and a fixed value m-

n is associated to it. Once again, the counter will be 

dropped once nullified (or upon occurrence of any 

invalidating character ci). However, state b+m is accessed 

for every value of the counter less than or equal to m-n. The 

considerations above about the worst case apply to this 

situation as well. 

In conclusion, if the data-set contains NT counting 

constraints located at the end of the corresponding regular 

expression and NNT counting constraints in intermediate 

positions, then the worst case bound on memory bandwidth 

is reduced to NT + 2NNT +1 (“one” representing the head-

DFA activation) memory accesses per character processed. 

6. MEMORY LAYOUT 
One important point to address to implement the proposed 

scheme is how to layout the data structure representing the 

above automaton so to limit memory requirement and allow 

an efficient state traversal.  

As far as the DFA part (head-DFA and possible tail-

DFAs) is concerned, any compression technique proposed 

in literature [15][17][18][19] can be reused. 

Let us now address the encoding of the NFA portion of 

the automaton. Content addressing, a technique proposed in 

[16] in the context of DFAs, can be adapted to NFAs. The 

goal is to limit the number of memory accesses when 

processing a state without any transitions defined on the 

current input character. Specifically, one can observe that 

the most part of NFA states have either transitions defined 

on a very small set of characters, or on all but one or two 

characters. Thus, by encoding in the state identifier the 

information about the set of symbols a transition is (or is 

not) defined on, it is possible to limit the number of 

memory accesses below the active set size. For details the 

interested reader can refer to [15]. 

Finally, border and counter states should be treated in a 

special way: the former imply the need for pointers from the 

DFA to the corresponding NFA entries, whereas for the 

latter the information listed in Section 5.2 must be stored. 

7. EXPERIMENTAL RESULTS 
In this section we validate the proposal on rule-sets from 

the Snort IDS.  

7.1 Rule-sets 
The rule-sets considered have been taken from the Snort 

IDS [7]. Specifically, since some Snort rules only use exact-

match strings, in this paper we only consider those having a 

Perl Compatible Regular Expression (PCRE) in their firing 

condition.  

As mentioned before, the rules under consideration do 

not exhibit the whole expressive power of regular 

expressions. Rather, they can normally be decomposed into 

sequences of simple sub-patterns separated by dot-star 

conditions (either in the pure .* or in the [^c1c2...ck]* form) 

and counting constraints on wildcards and character ranges.  

 Character ranges (and their repetition) are very 

common within sub-patterns. Specifically, they appear 

either in the form [c1-ck], or as special escape sequences: \s 

(all space characters), \S (all but space characters), \d 

(digits), \D (all but digits), \w (alphanumeric characters) 

and \W (all but alphanumeric characters). 

Nested repetitions and disjunctions of complex sub-

patterns (e.g.: patterns containing dot-star conditions or 

wildcard repetitions) have not been observed in the rule-

sets. We expect that these more general types of patterns 

will be the subject of important future work, but we do not 

consider them here since they are not found our rule-sets. 

Of 982 distinct regular expressions: 25% contain long 

counting constraints, generally located at the end of the 

regular expressions, 11.4% contain .* conditions and 

54.89% [^c1c2...ck]* conditions.  

Table 4: Summary of Snort rule-sets 

Header Characteristics  

Rule-

set 

Nr. 

of 

rules 
Protocol Source IP Src. 

Port 

Destination IP Destination Port .* and 

[^x]* 

.{n,m} 

Group1 329 Tcp $HOME_NET any $EXTERNAL_NET $HTTP_PORTS/any 283 - 

Group2 40 Tcp $HOME_NET any $EXTERNAL_NET 25/any 24 - 

Group3 18 Tcp $EXTERNAL_NET any $HOME_NET 7777:7778/any 5 10 

Group4 45 Tcp $EXTERNAL_NET any $HOME_NET 143/any 24 19 

Group5 20 Tcp $EXTERNAL_NET any $HOME_NET 119/any 6 11 

Group6 24 Tcp $EXTERNAL_NET any $HOME_NET 110/any 7 12 

 



A large part of Snort rules start with character “^”, 

which normally forces the match operation only at the 

beginning of the text string (i.e., of the packet payload). 

This could theoretically decrease the complexity of the 

corresponding DFA, and avoid state explosion when regular 

expressions with counting constraints are compiled in 

isolation. Unfortunately, nearly all Snort PCREs use the 

“m” modifier. Combined with symbol “^” at the beginning 

of the regular expression, this forces the match operation 

not only at the beginning of the text string, but also at the 

beginning of each line. In other words, the m modifiers acts 

on regular expression ^pattern transforming it into ^pattern 

| ([\n\r]pattern). This, in turn, keeps the complexity of the 

resulting DFA high. 

The Snort IDS performs packet payload inspection 

only after header filtering (i.e. packet classification). 

Therefore, we clustered rules with common header and 

performed experiments on some of the largest groups. A 

summary of the derived rule-sets is presented in Table 4. 

7.2 Memory storage requirement 
In this section, we study the memory storage requirement of 

the different rule-sets by generating the corresponding 

automata. As can be observed in the second and in the last 

two columns of Table 4, the rule-sets differ in the number 

of regular expressions, dot-star conditions and counting 

constraints they include.  

Rule-sets group1 and group2 do not contain counting 

constraints, whereas group3-group6 do. The counting 

constraints encountered consist of 20 to 1024 repetitions of 

large character ranges; however, they are always located at 

the end of the corresponding regular expressions (and can 

therefore benefit in the best way of the counter mechanism). 

Moreover, the [^x]*-like conditions present in the rule-set 

make it possible to build tail-DFAs which can be safely 

traversed with at most one activation. 

In Table 5 a summary of the characteristics of the size 

of the NFA, DFA and hybrid-FA corresponding to the 

given rule-sets are reported. Consider the following 

observations.  

First, a DFA solution is never feasible in the case of 

rule-sets containing counting constraints. In fact, because of 

the high number of repetitions, exponential state explosion 

is observed also if DFAs are generated in isolation for each 

of the regular expressions. Therefore, in those cases, N-A 

(not applicable) is indicated in the table (experimentally, 

subset construction was aborted after generation of 10 

million states). 

For rule-sets group1 and group2, a DFA solution is 

possible but the regular expressions must be distributed 

across multiple DFAs in order to avoid state-blow-up. Rule 

partitioning is performed according to heuristics, as 

follows. First, rules containing a dot-star condition and 

sharing the prefix to it are compiled together. Second, rules 

containing multiple dot-star conditions are compiled in 

isolation or in combination with just a few other rules. In 

effect, as explained in Section 3, each dot-star condition 

tends to generate a replication of the DFA being merged 

with the current regular expression.  

When creating the hybrid-FA, tail-DFAs and the 

counter mechanism have been used in order to limit the 

worst case bound. Because of the varying complexity of the 

rule-sets, dot-star conditions have been treated in different 

ways: some of them have been expanded through subset 

construction, and some have been made border-states. 

Specifically, the goal was the one of keeping the head-DFA 

below 50,000 states. This threshold was selected as a good 

head-DFA target size because proposed DFA compression 

techniques [15][17][19] can encode those states in around 

2MB, a size that can be realized in on-chip memory in an 

ASIC or microprocessor. We can create a head-DFA of any 

specific number of states by expanding the head DFA in a 

greedy fashion until the target size has been reached; 

thereafter, all dot-star conditions become border-states and 

lead to tail-FAs. As a result, all dot-star conditions in 

group1 have been moved to tail-DFAs, the ones in groups 

3-6 have been expanded in the head-DFA, and a mixed 

solution has been adopted for group2. 

In the case of rule-set group2, two different DFA 

groupings have been tested: the first consisting of the same 

number of DFAs as the hybrid-FA, and the second 

consisting of one less DFA. As one could expect, in the first 

scenario the overall number of states in the two automata is 

similar, whereas in the second one the pure DFA solution 

pays for the better worst case performance bound with a 

higher memory occupancy (specifically, it requires 50% 

more states).  

In the case of rule-set group1, the pure-DFA and the 

hybrid-FA solution have comparable size. But, as will be 

pointed out in the next section, the hybrid automaton is 

preferable in terms of average case memory bandwidth. 

For rule-sets group3-6, the DFA cannot be constructed 

at all due to exponential state blow-up, while the hybrid-FA 

solution has an easily realizable size. Also, it is worth 

noticing the reduction in the number of states when moving 

from a NFA to a hybrid-FA, which is due to removing the 

long chains of counting states. 

Table 5: Automata sizes for corresponding rule-sets. 

NFA DFA Hybrid-FA  

Rule-

set 
# 

states 

# 

DFA

s 

Total 

states 

# 

tail-

FA 

head-

DFA 

states 

Total 

tail-

states 

Group1 15679 31 71234 30 40461 30321 

Group2 1036 3 

2 

22651 

31521 

2 20724 1905 

Group3 8871 N-A N-A 10 514 - 

Group4 3119 N-A N-A 19 2560 - 

Group5 5205 N-A N-A 11 2485 - 

Group6 1952 N-A N-A 12 4878 - 
 



In terms of absolute memory occupancy, the use of 

default transitions [15][19] and of content addressing [17] 

to encode the hybrid-FA lead to storage requirements 

varying from 21KB (group3), up to 3MB (group1). In fact, 

the former technique allows eliminating around 98-99% of 

the DFA transitions, while the latter imply the use of 64 bit 

wide state identifiers. Notice that this range makes it 

possible to accommodate the automaton data structures in 

on-chip memory [26]. 

7.3 Memory bandwidth requirement 
The memory bandwidth requirement can be expressed in 

terms of the number of memory operations to be performed 

for each input character processed. In this section, we want 

to compare the different automata in both worst case and 

average case behaviors. 

7.3.1 Worst case behavior 
The worst-case memory bandwidth requirement can be seen 

in Table 5. In the case of NFAs, the worst-case bandwidth 

corresponds to the number of states, which is reported in 

the second column of the table. For example, 1036 states 

corresponds to 1036 concurrent memory operations to 

implement state transitions for each input character 

processed. This bound, even if rarely achieved, is clearly 

unacceptable. 

DFA solutions have a worst case bound corresponding 

to the number of DFAs needed to represent the regular 

expressions (i.e.: the number of groups the rule-set is 

decomposed into). This value (column 3) is attractive when 

those solutions are feasible, that is when the regular 

expressions do not contain large counting constraints.  

In the case of Hybrid-FAs, the worst case bound is 

equal to 1 plus the number of tail-DFAs (each tail-DFA 

being a simple counter for rule-sets group3-6). For data-

sets group1-2, this coincides with the worst case bound of 

the DFA counter-part. In case of counting constraints, this 

value is far less than that of the NFA solution, and depends 

only on the number of regular expressions (as opposed as 

to the number of states). 

7.3.2 Average case behavior 
To evaluate the average case memory bandwidth, we 

compare the behavior of the different solutions on real 

traffic. To this end, we perform simulations using twelve 

packet traces downloaded from [25] of size varying from 

about 17MB to about 264MB. 

Table 6 reports statistics about the size of the active 

vector across the different data-sets. The average values 

have been derived by first computing, for each trace, the 

weighted average of the active vector size across the 

simulation interval. Then, the values obtained for different 

traces on the same rule-set have been again averaged. For a 

given rule-set, we have not observed a substantial variance 

across the traces. The maximum value displayed is, in all 

cases, the maximum active vector size achieved for a 

particular rule-set across all traces and all simulations. 

As can be seen, the average behavior of the NFA 

solution is far better than what the worst case would 

indicate. This is due to the fact that only a few rules are 

matched, and dead branches in the NFA are often taken. 

The hybrid-FA outperforms the NFA both in terms of 

average behavior and maximum active vector size. In fact, 

the automaton traversal remains for the most part within the 

head-DFA. Note that a value of 1 could be achieved only if 

it was possible to compile all the regular expressions in a 

single DFA. 

Finally, since the average case behavior of a DFA 

solution is the same as its worst case, the hybrid-FA 

outperforms also the DFA solution with regular expression 

grouping adopted for the group1 and group2 data-sets. 

8. RELATED WORK 
Regular expression matching at line rate has been 

recognized as an important problem, and has been 

considered in related work. The prior work in this area 

focuses on two distinct directions: FPGA based 

implementations [22][23][24] and general-purpose or 

software oriented approaches [6][15][15][17][18][19]. Our 

work falls into the second category, although one could 

offload the tail-automaton operation to an FPGA.  

As mentioned, memory compression techniques 

allowing an efficient representation of generic DFAs have 

been presented in [15][17][18][19]. However, such 

proposals assume that the DFA is given a priori. On the 

opposite, in this work we address the case where a DFA is 

either practically unfeasible or not a suitable representation 

of the regular expressions of interest. 

Our work has a practical character in that it does not 

address generic regular expressions, but particular 

subclasses which are common in broadly used NIDS [6] [7] 

[8]. To this end, our work has commonalities with the one 

presented in [15], which proposes rewriting rules to 

simplify DFA in the case of common patterns. However, 

our focus is different in that we concentrate on the 

automaton rather than on modifying the input patterns. 

It is worthwhile to compare and contrast the hybrid-

FAs presented in this work and lazy-DFAs [12]. The two 

proposals share the common idea of partially performing 

subset construction on a NFA. However, lazy-DFAs assume 

that subset construction is done dynamically depending on 

the input string (that is, on the incoming packets’ payload.) 

Table 6: Active vector sizes for Snort rule-sets 

NFA Hybrid-FA  

Avg Max Avg Max Worst case 

Group1 1.15 34 1.009 5 32 

Group2 1.06 13 1.001 2 3 

Group3 1.04 4 1.002 2 11 

Group4 2.45 12 1.001 2 20 

Group5 1.04 5 1.001 2 12 

Group6 2.99 6 1.088 2 13 

 



Specifically, the NFA paths covered by the input string are 

dynamically converted to DFA. While this may be helpful 

in the average case, it does not address the worst case, 

which is of first interest in the context of NIDS. Moreover, 

this solution is suitable only for a software implementation. 

Therefore, we assume that the partial subset construction be 

done statically a priori so to prevent state explosion from 

happening. Moreover, we introduce refinements to further 

bound the worst case. 

9. CONCLUDING REMARKS 
Regular expression matching is an important task in modern 

NIDS. Recent proposals have in their experimental 

evaluations drawn selectively from regular expression rule-

sets to avoid troublesome rules. For example, fully 25% of 

the regular expressions in the current Snort rule-set include 

counting constraints for which no DFA can be constructed 

using a reasonable amount of memory, such as that 

normally found in a workstation or PC. In all prior work we 

have seen, these rules have been excluded from discussion 

or evaluation, presumably for this reason.  

The primary contribution of this work is the hybrid-FA, 

which is, to our knowledge, the first automaton that is 

capable of evaluating all the regular-expression types found 

in common NIDS systems such as Snort and can be 

implemented efficiently in practical high-speed systems.  

The key characteristics of a hybrid-FA are: a modest 

memory storage requirement comparable to those of an 

NFA solution, an average case memory bandwidth 

requirement similar to that of a single DFA solution 

(although the DFA would be unfeasibly large), a worst case 

memory bandwidth linear in the number of regular 

expressions containing counting constraints and dot-star 

conditions (and, notably, independent of the number of 

states in the automaton).  
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