
A De-compositional Approach to Regular
Expression Matching for Network Security

Applications
Eric Norige Alex Liu

Department of Computer Science and Engineering
Michigan State University

East Lansing, Michigan 48824
Email: {norigeer,alexliu}@cse.msu.edu

Abstract—Regular expressions are a very common tool for
network security applications because they can match precisely
and maintain high matching speed even for many simultaneous
patterns. Their core feature is efficient representation as an
automaton, where much of the interaction between patterns can
be pre-computed and aggregated. Many algorithms have been
devised to try and improve this pre-computation to not take
exponential space while keeping high performance, but none has
met all the requirements of fast, automated construction, small
memory image, and high matching speed. We present Match
Filtering, a technique for de-composing regular expressions into
segments that can be matched independently, while a stateful
post-processing engine filters these matches to eliminate those
that do not correspond to matches of the original regular
expression. Using standard CPU instructions, the post-processing
engine can more efficiently represent constructs that would
require a multiplicative increase in automaton states. Because
the pre-processing is simple, automaton construction can be
automated and fast, and because most on-line processing is
done by a DFA, its matching speed is close to that of a DFA
alone. We demonstrate experimentally 30x smaller, fast (seconds,
not minutes) automaton construction and 43% faster matching
speeds than state-of-the-art software algorithms.

I. INTRODUCTION

A. Motivation

Deep Packet Inspection (DPI) is a very powerful tool for
network security applications to accurately detect malicious
network traffic. By inspecting the payload of packets, security
applications can block worm traffic that contains remote
exploits, a task that is not possible to do well by inspecting
packet headers, as network worms have no fixed source,
destination or other header. Blocking at the network level is
much faster and more efficient than patching endpoints, so it
is a favored tool of security administrators.

The category of DPI with the best cost-vs-accuracy tradeoff
is regular expression (regex) matching, because it is simple
enough for efficient implementation but complex enough to
precisely specify attack patterns. A major benefit of regex
matching for security applications is the availability of offline
pre-processing that greatly speeds online matching of packets.
The regex patterns supplied by the user can be pre-processed
into a finite automaton that will search for all the patterns

simultaneously. This finite automaton representation allows
fast processing of packet data by using a set of pre-computed
rules to update a single integer state on processing each
input character. When this state value is set to one of a pre-
determined collection of states, the automaton has found a
match, and a corresponding match id is reported.

The foundation for almost all security regex matching
solutions is the NFA, a simple structure that keeps a set of
“active states” with rules to change which states are active
after processing each input character. The downside of the
NFA is that the time to process each input character varies
with the number of active states, and since the rules are quite
irregular, compact organizations of the rules are slow to search.
The problems of searching the rules are fixed by converting
the NFA into a DFA, which always has a single active state
and has a single transition rule for each pair of input character
and state. The DFA is constructed by exploring all reachable
combinations of active states and pre-computing the result of
the NFA transition on each.

Because of the regular structure of a DFA transition table,
identifying the transition to apply can be done by direct
indexing, but the conversion can potentially exponentially
increase the number of rules, as the DFA may need a distinct
state for every subset of NFA states. This state explosion
makes constructing and storing the resulting DFA impractical
for even small numbers of patterns. One of our test cases
contains only 11 short regular expressions, but takes 250MB
of memory to store as a DFA and 0.1MB to store as an
NFA. There appears to be a fundamental tradeoff between the
complexity of each transition and the total memory size needed
to store the transition function. The goal of this work is to
present a novel automaton structure that offers fast processing
without requiring a large transition table memory.

B. Limitations of Prior Art

Many papers have attacked the transition table problem,
encoding the transition structure of an NFA in different ways
to save memory while keeping transition cost low. The most
promising solutions largely keep the DFA model of processing,
guaranteeing a single active state at a given time, this state

2016 IEEE 36th International Conference on Distributed Computing Systems

1063-6927/16 $31.00 © 2016 IEEE

DOI 10.1109/ICDCS.2016.63

680

determines which rules apply. These solutions augment the
automaton state with a memory that can be updated as the
automaton processes packet data. The existing solutions either
have complex automaton transitions or cannot be practically
constructed. Extended-FA [8] and HASIC [17] use transitions
that check the state of memory to determine the action to
take. This makes finding the correct transition much more
difficult, as direct lookup of the transition is not practical
when the auxiliary memory has more than a few bits, resulting
in slower performance. On the other hand, XFA [24] has
major issues with automatic construction, requiring significant
manual intervention and computational resources to construct
XFA automata from novel patterns. The use of EIDD tries to
guarantee efficient implementation on an arbitrarily-capable
processor, but it often completely prevents the compilation of
new patterns. Compiling a new pattern can require significant
human intervention to add new constructs to the EIDD tables,
which allows the algorithm to start its sometimes hours-long
search for an efficient implementation of the non-deterministic
update function it constructed.

Id Regex # Qs

R1 vi.*emacs|bsd.*gnu|abc.*mm?o.*xyz 106
R2 emacs|gnu|xyz|vi|bsd|abc|mm?o 23

TABLE I: Related regular expressions and # DFA states

vi.emacs..gnu.bsd.gnu..abc.mo.xyz

R1 1 2 3
R2 4 1 2 5 2 6 7 3

TABLE II: Matches for R1 and R2 on given string

Match-id: Action

4: Set bit 0
1: Test bit 0 to Match
5: Set bit 1
2: Test bit 1 to Match
6: Set bit 2
7: Test bit 2 to set bit 3
3: Test bit 2 to Match

TABLE III: Filter engine to turn R2 matches into R1 matches

C. Proposed Approach

In this paper, we propose Stateful Match Filtering, a decom-
positional approach to matching regular expressions. The core
idea is that by decomposing a complex pattern into simpler
patterns we can post-process the matches of the simpler pattern
to get the match results of the complex pattern. The example
in Table I shows two regular expressions R1 and R2. While
these regular expressions are similar in size and content, the
number of DFA states needed to represent R1 is four times as
large as for R2. The results of matching these two patterns on

an input string are shown in Table II, with numbers in each
position indicating which part of each regex matched at that
position. R1 matches on the emacs, on the second gnu, and
on the xyz, while R2 matches at those positions and at a
number of other positions. Because the matches for R2 are a
superset of the matches for R1, by filtering the extra matches
we could use the DFA for R2 to match the patterns in R1.

A stateful filter to remove the extra matches is shown in
Table III. Each match-id that arrives at the filter triggers a
very simple program that can examine and modify a few bits
and decide whether to match. Note that a stateless filtering
would not be able to produce correct results, as match 2 is
returned by R2 twice, and in one case, it must be filtered, and
in the other it must be permitted.

Applying the filter in Table III to the matches resulting from
R2 being applied to the input string, the filter engine first
runs action 4 and sets bit 0. Since the action does not allow
matching, this first match-id 4 is filtered. Then it takes action
1, tests that bit 0 is set, and since it is, reports a match. It
then takes action 2, which tests if bit 1 is set. Since the filter’s
memory is initialized to 0, bit 1 is not set, so it does not match
at this point. Next, Action 5 sets bit 1, and then action 2 again
tests bit 1 and allows the match this time. Finally, action 6 sets
bit 2, action 7 checks that bit 2 is set and sets bit 3, and action
8 checks bit 3 to allow the final match.

D. Challenges and Proposed Solutions

There are three main challenges to make this kind of
solution workable. The first is to achieve fast, automated
generation of automata. If the solution requires hours of com-
putation or difficult adjustment by the system operator to be
usable, it is much less useful. To overcome this challenge, we
give an algorithm for automated transformation of the regular
expressions. These transformations introduce additional match
ids and the corresponding filter engine rules automatically.
This allows most of the generation time to be spent doing
standard DFA construction.

The second challenge is to identify an implementation of
match filtering that is flexible, efficient and will scale with
a large number of match ids to filter. By making the match
filtering too powerful, it can become a bottleneck in the
solution and prevent high-performance matching. If the match
filtering is too weak, it will not be able to scale to handle many
complex patterns. We develop a very simple computational
model that allows efficient implementations in both hardware
and software, and can scale to large numbers of complex
patterns.

The third challenge is to achieve correct behavior of the
composite system. As there is information lost when splitting
the initial regular expression, we have to ensure that the
resulting composite system returns the same matches as the
original regular expression would find. To do this, we analyze
the structure of the regular expression to ensure we do not
decompose in ways that would violate the result’s correctness.
As we build upon a DFA-based matching engine, this means
we are easily able to guarantee correct matching of all input

681

regular expressions in all scenarios at the cost of not being
able to eliminate some state explosion. Systems that use only
string matching as a primitive can easily lack this property or
can have much lower throughput on certain classes of regular
expressions due to having to re-implement all subtleties of
regex semantics.

E. Key Contributions

We make three contributions:

1) We propose Match Filtering, the first practical solution to
security regex matching that is based on stateful filtering
of match results from simplified versions of the original
patterns.

2) We develop an prototype implementation of de-
composition algorithms for construction and filter match-
ing automata engines for pattern matching packet traces.

3) We evaluate our match filtering prototype on a variety of
patterns and traffic and compare against the state-of-the-
art software solutions.

II. RELATED WORK

We divide related work in three categories, software/general
regex matching, TCAM-based regex matching and FPGA-
based regex matching. Software/general matching does not
assume any specific hardware support, and depending on the
algorithm are software-only, or could be implemented on spe-
cialized hardware. TCAM-based regex matching uses Ternary
Content Addressible Memory, a very fast pattern-searching
engine to store and search the automaton’s transition table.
FPGA-based regex matching uses the flexibility of FPGA to
represent the regex pattern as a logic circuit and then process
the input using this circuit.

A. Software/general matching

A major variety of software-based matching is determin-
istic automata extended with additional memory. Two major
examples of this are XFA [24] and HFA [15]. HFA extends
DFA with auxiliary memory and allows transitions to test and
modify the memory. While the HASIC paper [17] made HFA
much more efficient, it did not overcome the limitations of
having complex transitions that depend on the state of memory.
This limitation makes the automaton size larger and makes
processing slower. XFA is more similar to Match Filtering
Automata, where entering a state could modify the memory
and potentially return a match if the memory state met some
conditions. Fundamentally, XFA and Match-filtering are dif-
ferent because of the construction method; XFA’s construction
method is byzantine, requiring a search of a complex ex-
pression space to determinize a non-deterministic state update
function. Match filtering brings significant improvements in
constructability, being automatically constructible in very little
time.

Another approach taken by Yu et al. [26] and Becchi et al.
[6] is to produce automata that are guaranteed to have a fixed
or bounded number of active states. While these can greatly
reduce memory use by allowing multiple active states, using

just 2 active states reduces their throughput to 50% of a DFA
engine while significantly hampering their compression ability.
The matching of compressed traffic is tackled by Bremler-Barr
et al. [11] and Becchi et al. [5], and allows fast search of the
contents of GZIP compressed flows without decompression.
The techniques they develop can apply to this problem as
well, allowing compressed streams to be matched against more
complex patterns without needing exponential storage.

The technique that is most similar to ours is that used by
Snort [22], which uses an Aho-Corasic-based string-matching
engine as a pre-filter to limit what patterns are searched for.
Each Snort rule that needs regex matching can have a series
of “content” strings that are searched for in the primary pass.
By eliminating most regular expressions from consideration
through this pre-filtering, the number of simultaneous patterns
that need to be matched is greatly reduced. The downside
of this technique is that it requires multiple passes over the
input content, increasing the total amount of work done and
requiring more buffering.

B. TCAM-based matching

While TCAM-based solutions like [12], [18], [21] are
very effective at storing the transition table of deterministic
automata in a compact way in a TCAM chip, these solu-
tions have two main limitations. The first limitation is that
the TCAM chip is very power hungry, which makes these
solutions difficult to implement in cost-efficient ways. While
small TCAMs can be more efficient than large ones, large
TCAMs are needed to be able to handle large pattern sets.
Secondly, the search done by TCAM chips is inefficient; each
TCAM query causes a highly parallel search of every entry in
its memory. While using TCAM may give high throughput,
the check-every-possibility approach of TCAM search allows
a solution relying on brute-force to be mistaken for an efficient
one.

C. FPGA-based matching

There are many FPGA-based solutions for pattern matching
[4], [10], [13], [14], [16], [19], [23], [25]. These are able to
leverage parallelism of hardware to achieve higher throughput
matching, and can take advantage of being able to reprogram
the FPGA to adapt to new patterns. The disadvantage of these
is two fold: First, reprogramming the FPGA is not easily
automatable, and there are many reasons it can fail, making
updates more difficult. Second, these solutions generally have
problems multiplexing a large number of simultaneous flows,
as needed in high-end network security applications. This is
because they embed the matching state deep in the operation
of the circuit, where it is hard to save and load, and even then,
they can have large matching state, over 1Kbit for [4].

When the problems of FPGA or TCAM-based matching are
not significant for a particular application, they can be used to
implement the de-composed regex matching needed in match
filtering, as match filtering is built on top of an arbitrary regex
matching solution.

682

Fig. 1: Match filter generation and use

III. MATCH FILTERING AUTOMATA

To construct a match filtering automata, the input pattern is
decomposed in such a way that the parts efficiently handled by
the DFA engine are separated from those parts that do not have
an efficient DFA implementation. After de-composing a com-
plex regular expression into simple pattern matches, a filter
engine can post-process the matches of these simple patterns
to determine whether any complex pattern was matched. The
more types of regular expressions that can be de-composed in
this way, the more patterns that can be efficiently implemented.

In this section, we will first give a formal specification
of match filtering automata. Then we will lay out the the
processing model under which an automaton will be presented
with packet data to produce matches. Finally, we will give high
level details of the construction process that will be further
expanded in Section IV.

A. Definition

A Match-filtering automaton can be defined as a 9-tuple
(Q,Σ, δ, q0, Di, Dq, w,D, f) Intuitively, the first six com-
ponents define a DFA that processes input characters and
identifies possible matches. The last three components define
the stateful match filtering component that determines which
of the DFA matches are matches for the original patterns. The
DFA is over alphabet Σ with state space Q, start state q0,
transition function δ : Q ∗ Σ → Q, decision set Di and
decision function Dq : Q → 2Di which indicates for each
state which match-ids, if any, are found. Note that D is the
final decision set, and Di is D augmented with new match-
ids that will always be filtered. The match filtering component
has a w-bit memory, which can be represented as the set
of states M = 2w. It also has a filtering transition function
f : M ∗Di → M ∗ {Confirm,Drop}. Each time the DFA
produces a possible match, the match filter processes that
match against the memory, creating a new memory state and
a decision of whether to confirm or drop that match. For all
inputs where the match-id is not an element of D, the match
filter must Drop the match. By convention, the initial value
of the memory is all zeros.

Note that this model is intended to describe a general pattern
of many possible match filtering automata and not only the

specific match filtering automaton construction evaluated in
this paper. It places no restriction on the complexity of the
filtering function f . An efficient implementation of f should
inspect a small set (possibly only one) of these memory bits
to determine which few bits to modify and whether to return
a match. It is also preferred to have a smaller w to reduce the
amount of memory that each processing context will need in
an environment that simultaneously processes many flows.

To make it easy to describe a particular f , we will simply
specify a pseudocode action for each Di. For example, an
match with action only may be written “2a: set 4.” This means
that the Filter Engine will set memory bit 4 when it receives
match-id 2a, and not send a match. A more complex action
could be “7: Test 2 to increment 8–12 and match.” When
receiving a match id 7, this filter would do nothing if bit 2 is
not set. If bit 2 was set, it would increment the counter in bits
8–12 and report a match. Using a single action for each match-
id allows efficient action lookup, leveraging the multi-match
capability of the underlying DFA to trigger many actions as
necessary, although this requires an efficient hand-off between
DFA and filter engine, as the filter engine will be triggered
more often. Further, there is an ambiguity in the behavior of
the automaton under these multi-match conditions, as the order
of processing the actions can lead to different behavior. While
our construction avoids this undefined behavior, it must be
accounted for in each implementation of this model.

We will not give a more specific definition of what is
allowed in actions, as the only real limit is what can be
efficiently computed by whatever hardware this automaton
runs on. This means that for an ASIC implementation, the
actions will need to have a structure that is implementable
efficiently in binary logic, so as to be small and fast, but can
have significant parallelism without much cost. For a software
implementation, a few CPU instructions is usually sufficient
to give great flexibility, although more complex processing
is not forbidden if it leads to potentially useful in some
circumstances.

B. Matching process

The general flow of matching is illustrated in Figure 1,
where the black lines and boxes represent data flows and

683

processing engines active for this online processing. The
packet payloads are sent to the DFA engine, which reads
from the Character DFA and sends match events to the Filter
Engine. When a match-id arrives at the Filter Engine, it looks
up the corresponding action, runs that action to update its state
and potentially permits a match to pass through it.

Given a filter automaton constructed for a set of patterns
and a flow payload to inspect, the process of matching those
patterns is more formally as follows. First, the DFA state
q and memory m are initialized to (q0, 0

w). For each byte
of payload c, the DFA is advanced to its next state by its
transition function, q := f(c, q). Then, possible matches are
identified by looking up Di(q) and processing the actions
for each match. For each action function f , we compute
(m, pass) := act(m), updating the memory and reporting a
match at the current position if pass == Confirm. After all
actions are processed, DFA processing continues at the next
input character. To handle many flows arriving in multiplexed
fashion, all that is necessary is to keep a (q,m) pair for each
flow, as all parsing state is kept therein. Note that the DFA
processing and the match filtering do not have to be done in
lock-step, but the DFA processing could put matches with the
position of the match into a queue, and the match filtering
could read from that queue and report matches as they’re
found.

C. Construction

The general pattern for constructing the match filter au-
tomaton is shown in grey boxes and arrows on the left side
of Figure 1. The input regex is first processed by a regex
splitter that decomposes more complex regular expressions
into simpler ones, returning new regular expressions. These
new regular expressions are processed by standard DFA con-
struction rules to produce the Character DFA that will match
packet payloads in the filter automaton. The regex splitter
also outputs a collection of match filters that capture the
relationships between split regular expressions, for use in
the Filter Engine. When the input is a collection of regular
expressions, each triggering a different match id, the regex
splitting can be done separately to each, producing a de-
composed regular expression and match filter actions. All
these de-composed regular expressions can be combined as
the input regexes would be, with a giant n-way union operator.
To combine the filters, simply modify the actions so they are
globally unique and concatenate the action tables and remove
overlaps in memory use.

IV. REGEX SPLITTING DETAILS

This section describes some common regular expression
patterns that cause large increases in the size of DFAs.
Better matching engines can be created by de-composing these
problematic regexes into simpler regexes whose matches can
be easily filtered to produce correct results. We use the notation
{{x}} as part of a regular expression to indicate that when
the prefix of the regular expression before the annotation has
been matched, match-id x should be reported. An unmarked

set of regular expressions is interpreted as having implicit
{{1}}, {{2}}, etc. appended to each rule. To describe the
splitting patterns on general regular expressions, we will use
the capital letters A, B, C, etc. to refer to arbitrary regular
expressions and lower case letters a, b, c, etc. as characters
in the input alphabet. For example, A{{1}}|B{{1}} can refer
to any regular expression for which matching either A or B
results in match id 1, also written (A|B){{1}}.

A. Dot Star

A common pattern in security regular expressions is
.*A.*B{{1}}, which we call dot-star. It is used to find
occurrences of regex B after regex A has matched. This pattern
is capable of causing a multiplicative increase in the number
of DFA states when it is added to a pattern set. This is because
all DFA states that can be active before starting the match of A
must have a corresponding distinct state that can become active
after matching A, doubling the number of states needed. Each
pattern with dot-star contributes another multiplicative factor
to the size of the final DFA, which can greatly increase its
size.

To combat this size increase, we will de-compose this
pattern into .*A{{1a}}|.*B{{1}}. Adding this decomposed
pattern to a pattern set will cause only an additive increase
in the number of DFA states, instead of the multiplicative
increase caused by the original dot-star pattern. The memory
of the match filtering component will be used instead of
DFA states to record the successful matching of A. The
de-composition is valid only provided that following two
conditions are met.

First, both match ids 1a and match id 1 must be filtered; 1a
cannot be reported, but must set a bit flag, and match id 1 must
be reported only when that bit is set. If we choose to use bit
0 of memory for this filter, we can write the filters compactly
as: 1a: Set 0, 1: Test 0 to Match. Logically, this corresponds
to remembering whether pattern A has been matched and only
matching B after such a match.

Second, in order to de-compose .*A.*B{{1}}, no
suffix of A can be a prefix of B. For example, if
this rule is used to de-compose .*abc.*bcd{{1}} into
.*abc{{1a}}|.*bcd{{1}} as above, the result will incor-
rectly report a match on input abcd. This happens because
after matching abc, bit 0 will be set, and then d will trigger
the “1: Test 0 to Match” action and allow the match to succeed,
even though it should fail. This problem occurs because the
de-composed patterns allow overlap, where B begins matching
before A finishes matching.

This de-composition step can be used multiple times on a
single regex: .*A.*B.*C{{1}} can be de-composed twice,
resulting in .*A{{1a}}|.*B{{1b}}|.*C{{1}} with two
memory bits used for filtering. In this case, the match filters
are: 1a: Set 0, 1b: Test 0 to Set 1, 1c: Test 1 to Match. Similar
requirements on A, B, and C exist as before; no suffix of A
can be a prefix of B and no suffix of B can be a prefix of C. In
this way, this de-composition can be generalized to patterns
with any number of dot-stars.

684

B. Almost Dot Star

For IDS pattern sets, an even more common pattern
than dot-star is almost-dot-star: .*A[ˆX]*B{{1}}. Regexes
in line-oriented protocols like HTTP commonly search
for two strings on the same line. This can be done as
.*abc[ˆ\n]*xyz, which will match abc followed by xyz
only if there’s no line break between them. Note that X is a
character class, not a full regular expression. This pattern can
be de-composed to .*A{{1a}}|.*[X]{{1b}}|.*B{{1}}
under the two conditions that follow. Note that the de-
composed regex searches for X and not the negated X as was
present in original pattern.

First, all three match-ids 1a, 1b and 1 must be filtered so that
1a and 1b are never reported and 1 is only sometimes reported.
A single bit of memory will be used to track whether A has
been matched and X has not been matched since then. If this
bit is set, it is correct to report matches on pattern 1 as A
has matched and there hasn’t been a X since. Specifically the
match filters are, 1a: Set 0, 1b: Clear 0, 1: Test 0 to Match.

Regex .*abc{{1a}}|.*[\n]{{1b}}|.*xyz{{1}}
Input abc:...\n...:xyz\nabc:xyz\n

Raw M’s 1a 1b 1 1b 1a 1
Actions S C T C S T
Filtered M’s 1

TABLE IV: Raw matches, filter actions and filtered matches
of a split regex on given input; Actions are S=Set, C=Clear,
T=Test to match

Decomposing the above example, we get
.*abc{{1a}}|.*[\n]{{1b}}|.*xyz{{1}} with three
match filters. When this filter-match automaton is presented
with the input string shown in Table IV, it will find the six
matches listed as Split M’s. The 1a pattern matches on the
first line (before the first \n) and sets the memory bit, but
that memory bit is cleared by the 1b pattern before the 1
pattern matches in the second line. Only in the third input
line does the full pattern match because 1a is followed by 1
without an intervening 1b.

The second condition to be able to de-compose this pattern
is similar to the non-overlap requirement of dot-star de-
composition. The pattern A is not permitted to have a suffix
that matches any prefix of B. In addition, the characters in
X cannot appear in B, as this would result in the memory
bit being cleared during the processing of B, preventing all
matches. It is only allowed for characters in X to be in non-
final positions in A, as the clearing of the memory bit will
be overridden by the setting of that bit when A is matched.
Characters in X being in final positions of A would result in
the memory bit being set and cleared simultaneously, so we
disallow de-composition in this case.

Excessive application of this pattern can result in loss of
throughput. Even in a hardware implementation, action pro-
cessing is not free, so it is important to not cause an excessive
number of matches that need to be filtered. Improper applica-

tion of this pattern can cause excessive numbers of matches,
for example, the pattern .*abc[a-f]*xyz{{1}} could
be decomposed into .*abc{{1a}}, .*[ˆa-f]{{1b}},
.*xyz{{1}}. Running these patterns on an input would pro-
duce match 1b on every character of the input except for a-f,
very likely a large proportion of the input. Processing actions
for such a number of matches can reduce the throughput of
even a very efficient implementation.

The root cause of this problem is the number of matches
generated by the second component of the de-composed pat-
tern. If the character class X is small, the cost of reporting
and filtering matches from .*[X]{{1b}} is likely to be
low, but if X was nearly the entire alphabet, almost every
input character would result in matches being generated and
processed. Even with a small character class X, a similar loss
of performance could be triggered by maliciously generated
traffic that repeat long strings of characters in X. There are
mitigation strategies for this problem, such as adjusting the
1b pattern to .*[X]+[ˆX]{{1b}}, so that only one match
is generated on the first character not in X to be found
after a sequence of one or more characters from X. For our
implementation, we choose to instead use a size threshold of
128 characters to determine whether or not to de-compose.
This means that if X has 128 or more characters in it, we will
not apply the almost-dot-star pattern. This rule works well for
common security regexes, which use character classes that are
small sets or everything but a small set.

C. Using patterns to build MFA

The algorithm to construct an MFA from an input regex
is presented in Algorithm 1. The core of this algorithm is
the Regex Splitter, a function that takes the input regex and
rewrites it into a collection of simpler regexes. These simpler
regexes can be turned into a standard DFA to maximize the
matching speed of the result. Regex splitting also produces a
corresponding collection of match filtering rules that are used
to transform the set of matches from the simpler regexes into
matches of the original regex. The regex splitting algorithm
can be divided into two parts: RegexSplit and Decomp.

The first part, RegexSplit, is largely management code.
It orchestrates the decomposition process across all elements
of rxes and tracks the usage of auxiliary memory so each
decomposed pattern gets different bit positions. Note that as
it runs, it removes the de-composed regexes from the original
list and appends new regexes to the list. It is important that
the new regexes be appended to the list so that Decomp can
be run on them to further decompose as necessary.

The second part, Decomp analyzes the structure of the input
regexes and creates a collection of new regexes from pieces of
the input regexes. The original match-id, n, is also preserved in
the final component of the initial regex, and it will be filtered
to only result in a match when the original regex would match.

In the pseudocode, both Dot-star and Almost-dot-star are
illustrated. The details of traversing parsed regular expressions
to determine if any patterns match and to divide the regex
into components are omitted for simplicity. We also omit

685

the tests for prefix/suffix compatibility, as these are standard
algorithms. Once the regex has been divided into pieces, the
recipe for the replacement pieces is fixed, so we assemble
new regexes in a set manner. Some of these new regexes
have new match ids, labeled n′ and n′′ in the pseudocode.
These new match ids will always be match-filtered, but they
will be able to trigger changes in the state of the match filter.
Similarly, the match filters generated for each pattern follow
a fixed scheme, so their generation is straightforward. In the
prototype implementation, we also handle anchored regular
expressions that must match a specific pattern at the start of
the input. To do this, we simply prepend this pattern to each
of the de-composed regexes so they only match when that
specific pattern is at the start.

To implement Match Filters, we use a simple bytecode with
4 integers specifying the behavior of each action. The first
integer specifies the memory index, if any, that must be true
for this action to have any effect. The second integer specifies
what memory index, if any, to set if this action takes effect.
The third integer specifies what memory index, if any, to clear
if this action takes effect. Setting and clearing are mutually
exclusive, so this could be further compacted to save space,
although at the cost of more expensive action processing.
The final integer specifies the match-id to report. While the
match-id could be replaced with a boolean, this would not
have significant gain and would have some cost. Because of
memory alignment, the extra space saved by storing just a
bool would be wasted, and storing the full match-id makes it
slightly easier to track Match Filters.

We use a multi-part bytecode because multiple actions can
be generated for a single match-id, so we merge these into a
single bytecode that can execute them all. For example, the
action “1a: Test bit 1 to set bit 2” could result from merging
“Test bit 1” with “Set bit 2”.

V. EXPERIMENTAL RESULTS

The important properties of a regex engine include

• Automaton size
• Automaton construction time
• Matching throughput

We present comparison results of Match Filtering Automata
(MFA) with DFA, NFA, HFA (as represented by HASIC
[17]) and XFA [24]. DFA is a baseline to compare against
for performance. NFA is a baseline to compare against for
construction time and automaton size. HASIC and XFA are
the state-of-the-art software algorithms for achieving high
performance at small automaton size.

A. Patterns and Traces

To compare different construction costs, each algorithm
must be used to construct automata for the same sets of
patterns. The patterns we use come from various security
applications, and have the number of regular expressions,
NFA states and DFA states summarized in Table V. The
S-patterns and B-patterns come from Snort [22] and Bro
[20], and are publicly available [7]. The C-patterns come

Algorithm 1: Regex Splitter

1 Function RegexSplit(rxes)
Input: Regex-set rxes
Output: Match filters
/* Index of next memory bit */

2 biti ←− 0;
/* Set of match filters to return */

3 match filters←− {};
/* Decompose each regex in turn */

4 foreach rx ∈ rxes do
5 if rx matches some decompose pattern then
6 (split rx,match fs)← Decomp(rx, biti);
7 Remove rx from rxes;
8 Append split rx to rxes;
9 biti ← biti + 1;

10 Add match fs to match filters;

11 return match filters;

12 Function Decomp(rx, i)
13 if rx has form .*A.*B{{n}} then
14 rxes← .*A{{n’}}|.*B{{n}};
15 match fs← {n’: Set bit i,
16 n: Test bit i to match};

17 else if rx has form .*A[ˆX]*B{{n}} then
18 rxes← .*A{{n’}}|[X]{{n’’}}|.*B{{n}};
19 match fs← {n’: Set i, n”: Clear i,
20 n: Test i to match};

21 return (rxes,match fs);

from a major networking vendor and are proprietary. The ‘p’
versions of some pattern sets are constructed by restoring some
commented patterns from the original C7, S31 and B217 sets.

In general, the C patterns use dot star and almost dot star
patterns heavily, often having multiple per pattern. The S
patterns are a mix of many almost dot star and long string
matches with a few dot star patterns. The S patterns often have
an anchored component, meaning it is expected to match at the
beginning of the flow. This makes the matching problem much
easier, as if the patterns aren’t found at the beginning, they
don’t have to be searched for later in the flow. The B pattern
has many unanchored string matches, with a small number of
dot stars mixed in to make things more difficult. Pattern set
B217p could not be constructed as a DFA, so its number of
DFA states is unavailable.

To compare the performance of various solutions, it is
necessary to apply the constructed automata to trace files to
identify any matching traffic in them. We use both synthetic
and real-life traces. The real-life trace files we use are from
the DARPA intrusion detection data set (DP) [1], the Inter-
service academy Cyber Defence Competition (CD) [2], and
the Nitroba University Harrassment Scenario (N) [3]. The
DP traces total 4.1GB and are the Monday, Wednesday and
Thursday traces from week 5. The CD traces total 550M

686

Set RegExes NFA Qs DFA Qs MFA Qs

B217p 224 2,553 — 5,332
C7p 11 295 244,366 104
C8 8 99 3,786 341
C10 10 123 19,508 81
S24 24 702 10,257 766
S31p 40 1,436 39,977 1,584
S34 34 1,003 12,486 1,499

TABLE V: RegEx set Properties

and are the traces 11–13 and 110–113. The N trace is 60
MB. All these traces are .pcap files with packet-level details
and not pre-assembled flows. While the DARPA traces are
ancient for many purposes, they still show similar performance
characteristics to newer traces, so they give further evidence
of quality.

The synthetic inputs were created by Becchi et al.’s flow
generator [9]. This tool takes as input a collection of regular
expressions and can create trace files with varying difficulties.
For this experiment, we use the commonly tested difficulties
pM of 0.35, 0.55, 0.75 and 0.95. We also test a purely random
trace as a baseline for non-matching traffic.

B. Experimental Setup

We measure the construction time by measuring cpu-
seconds taken to construct the automaton. To measure au-
tomaton size, we determine the amount of contiguous memory
needed to store all static transition tables and auxiliary struc-
tures needed by the parsing engine. To measure performance,
we run the engine on a trace and measure the number of
cpu cycles needed to examine the trace, as reported by rtdsc
instruction. This number of cycles is divided by the payload
size of the packets in the trace to get Cycles per Byte (CpB).
As we are not able to construct XFA automata, we present esti-
mated throughput results using the same methodology in [17].
All construction and matching algorithms are implemented in
3700 lines of OCaml 4.02.1, and are run on a i7–4500U CPU,
using only a single core.

C. Construction Costs

Pattern NFA DFA HFA MFA

B217p 0.5 — 108 2.6
C7p 0.1 250 4 0.05
C8 0.1 4 0.8 0.16
C10 0.1 20 2 0.04
S24 0.2 10 6 0.37
S31p 0.4 41 16 0.77
S34 0.3 13 9 0.73

Fig. 2: Memory Image Sizes (MB)

Table 2 gives memory image sizes in megabytes for au-
tomata of the various patterns encoded using each algorithm.

As expected, the NFA are the smallest, taking 0.5 MB or
less for each of the patterns. This is because these automata
have very few states and transitions to store. At the other
extreme, DFA are the largest; even though each transition is
very easy to store, these automata have vastly more states and
transitions than other solutions, so require much space. HFA
are in the middle, having to store many fewer transitions than
the DFA because of the compressed transition structure, but
the size of each transition is larger in HASIC, making them
far from as compact as the NFA. MFA has very good results
in this comparison, achieving a similar image size to NFA
and taking an average of 30x less space than HFA. Almost
all the memory image bytes used in MFA are for the DFA
automaton, with filters taking up an average of less than 0.2%
of each image. The total memory image of MFA can be so
small because the use of filters reduces the number of DFA
states needed effectively without making the transitions any
more complicated.

1/10

10

1000

B217p C10 C7p C8 S24 S31p S34

Ruleset

T
im

e
(m

s
)/

N
F
A

 s
ta

te

DFA NFA HFA MFA

Fig. 3: Construction times for DFA, HFA, NFA and MFA

Construction times are shown in Figure 3, and largely
correspond to memory image sizes. NFA construction is by far
the fastest, as it has very little work to do even for complex
patterns. DFA fails to construct B217p, and takes a relatively
long time on each of the other patterns, as it has to spend much
work to expand each NFA state into a large number of DFA
states. While the total construction time for DFA may often be
small, the results for C7p show that DFA construction can be
slow even small numbers of regexes because DFA construction
depends heavily on the number of DFA states constructed.
Even when the regex set has good behavior, adding a single
extra regex with multiple dot-stars can increase construction
time to many times what it was. HASIC does its construction
very quickly, using its approximation to entirely skip critial
NFA states and generating its automaton faster than MFA in
many cases. Match Filter Automata construction isn’t able to
construct the final automaton as fast as HASIC because the
DFA in MFA has more states than the corresponding HFA.
While the additional states require more subset construction
time, but MFA’s construction time is still orders of magnitude
better than plain DFA, as it has eliminated most state explo-
sion.

687

10

100

1000

C
1

1

C
1

1
0

C
1

1
1

C
1

1
2

C
1

1
3

C
1

2

C
1

3

L
L

M

L
LT

L
L
W N

Trace Set

C
yc

le
s
 p

e
r

B
y
te

DFA NFA HFA MFA XFA

Fig. 4: Throughput measurements in cycles per byte

10

30

100

300

rand pM = 0.35 pM = 0.55 pM = 0.75 pM = 0.95

Malicious Factor

C
yc

le
s
 p

e
r

B
y
te

DFA NFA HFA MFA XFA

Fig. 5: Synthetic throughput in cycles per byte

D. Processing Throughput

The results of running all patterns against all real-life traces
using all algorithms are summarized in Figure 4. Each point
represents a single pattern on a single trace using a single
algorithm; each algorithm gets its own point shape, and the
traces are organized horizontally in no particular order; Cx
is CD trace x, LLx is DP trace x, and N is the Nitroba
trace. The DFA engine beat all others on matching speed, as
when the DFA is manageable, it runs very quickly, with this
implementation requiring an average of 19 cycles to process
each byte. The variation in throughput that exists in DFA
results seems related to the trace, as some traces may have
shorter packets, increasing the relative cost of flow reassembly.
NFA exhibits a bimodal distribution, with most trace and
pattern combinations needing around 130 cycles per byte, but
the B217p pattern requires ten times that, over 1300 cycles per
byte. As B217p has some very short patterns, so we speculate
that the number of active NFA states is about 10 times higher
when matching the B217p pattern than others, thus requiring
much more processing time.

The memory-augmented automata (HFA, MFA and XFA)
have mixed results on the real-life througput tests. HFA does

poorly in this test, usually taking an average of 360 cycles to
process each byte. This seems to be because the simulation
was run in OCaml code which is not as optimized for speed
as the C++ simulator used in the HASIC paper. The estimated
performance of XFA is slightly better than that of NFA in this
test, giving it a mid-range performance result with an average
of 125 cycles per byte. For MFA, the performance varies more
than any other, but in general, it performs very well on all
traces except C112, which it performs quite poorly on, taking
an average of 306 cycles per byte. Ignoring this trace’s results,
MFA takes 49 cycles per byte, an average of 43% faster than
XFA. MFA is also the only algorithm that was able to complete
the B217p test using an OCaml implementation, using an
average of 123 cycles per byte despite the complexities of
this pattern.

When measuring our five algorithms on synthetic traces, we
can see better how well they stand up to increased numbers
of matches. Results of these tests ate shown in Figure 5. Each
algorithm has its mean results connected by a line, with NFA
and HFA taking the longest at the top of the graph, MFA and
DFA at the bottom of the graph and XFA in the middle. For
all algorithms, there is some increase in processing time as
more matches are injected into the traffic. DFA still performs
the best, but its performance falls by 83% between the least
and most malicious traffic. Worst is NFA, which starts the
slowest and has its performance fall by over 2x over the same
range. In the middle, XFA and HFA are mediocre, but neither
having as bad a decrease in performance over the variety of
traffics as NFA. Finally, MFA does quite well, losing a bit
more performance at high maliciousness than DFA. This is
due to the extra work that its filtering engine has to do on
traffic with many matches. But even with heavily matching
traffic, it still has better performance than any other algorithm
(except DFA) on any traffic.

VI. CONCLUSION

The methods presented here are effective at dealing with
state space explosion while still being automatically generable,
and without producing an overly complex automaton that
performs slowly. This work has picked the low hanging fruit;
further work can still be done to add more patterns that
can be de-composed. Notable among the missing patterns is
counting conditions, such as /abc.{n}xyz/. These require
the filter to count how many times a certain sub-pattern is
matched, which is more complex than just keeping a bit flag,
but is solvable in the general framework presented here. Also,
additional work can be done to to eliminate the restrictions
on the existing patterns. This could be done by reducing the
number of matches produced by the de-composed pattern,
by adding conditions before trailing segments that prevent
matching too close to the previous segment. It might also be
done by tracking the offsets of previous matches and using this
information to correctly filter matches even when the segments
can overlap. While it is not a silver bullet for all possible
regular expressions, this approach will only become more

688

powerful as additional effort is put into implementing efficient
de-compositions and filters to efficiently match commonly
used patterns.

Acknowledgements

This material is based in part upon work supported
by the National Science Foundation under Grant Num-
ber CNS-1318563, Michigan State University Discretionary
Funding Initiative, the National Natural Science Foundation
of China under Grant Numbers 61472184 and 61321491,
and the Jiangsu High-level Innovation and Entrepreneurship
(Shuangchuang) Program.

REFERENCES

[1] Darpa intrusion detection evaluation data set. www.ll.mit.edu/mission/
communications/ist/corpora/ideval/data/1998data.html, 1998.

[2] Us army itoc research cdx 2009 trace. http://www.itoc.usma.edu/
research/dataset/index.html, 2009.

[3] Nitroba university harrassment scenario trace. http://digitalcorpora.org/
corpora/scenarios/nitroba-university-harassment-scenario, 2014.

[4] M. Bando, N. Artan, and H. Chao. Scalable lookahead regular expression
detection system for deep packet inspection. Networking, IEEE/ACM
Transactions on, 20(3):699 –714, june 2012.

[5] M. Becchi, A. Bremler-Barr, D. Hay, O. Kochba, and Y. Koral. Accel-
erating regular expression matching over compressed http. 2015.

[6] M. Becchi and P. Crowley. A hybrid finite automaton for practical deep
packet inspection. In Proc. of ACM CoNEXT. ACM, 2007.

[7] M. Becchi and P. Crowley. An improved algorithm to accelerate regular
expression evaluation. In Proc. ANCS, 2007.

[8] M. Becchi and P. Crowley. Extending finite automata to efficiently
match perl-compatible regular expressions. In Proc. CoNEXT, pages
1–12, 2008.

[9] M. Becchi, M. Franklin, and P. Crowley. A workload for evaluating
deep packet inspection architectures. In Proc. IEEE IISWC, 2008.

[10] I. Bonesana, M. Paolieri, and M. D. Santambrogio. An adaptable fpga-
based system for regular expression matching. In Proc. DATE, pages
1262–1267, 2008.

[11] A. Bremler-Barr, S. T. David, D. Hay, and Y. Koral. Decompression-
free inspection: Dpi for shared dictionary compression over http. In
INFOCOM, 2012 Proceedings IEEE, pages 1987–1995. IEEE, 2012.

[12] A. Bremler-Barr, D. Hay, and Y. Koral. Compactdfa: Generic state
machine compression for scalable pattern matching. In INFOCOM, 2010
Proceedings IEEE, pages 1–9. IEEE, 2010.

[13] C. R. Clark and D. E. Schimmel. Efficient reconfigurable logic circuits
for matching complex network intrusion detection patterns. In Proc.
Field-Programmable Logic and Applications, pages 956–959, 2003.

[14] J. Kořenek and V. Košař. Nfa split architecture for fast regular expression
matching. In Proc. ANCS, pages 14:1–14:2, New York, NY, USA, 2010.
ACM.

[15] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese. Curing regular
expressions matching algorithms from insomnia, amnesia, and acalculia.
In Proc. ANCS, pages 155–164, 2007.

[16] C.-H. Lin, C.-T. Huang, C.-P. Jiang, and S.-C. Chang. Optimization of
regular expression pattern matching circuits on fpga. In Proc. DATE,
pages 12–17, 2006.

[17] A. X. Liu, E. Norige, and S. Kumar. A few bits are enough-asic friendly
regular expression matching for high speed network security systems.
In Network Protocols (ICNP), 2013 21st IEEE International Conference
on, pages 1–10. IEEE, 2013.

[18] C. Meiners, J. Patel, E. Norige, E. Torng, and A. Liu. Fast regular
expression matching using small tcams for network intrusion detection
and prevention systems. In Proc. 19th USENIX Security, 2010.

[19] A. Mitra, W. Najjar, and L. Bhuyan. Compiling pcre to fpga for
accelerating snort ids. In Proc. ANCS, pages 127–136, New York, NY,
USA, 2007. ACM.

[20] V. Paxson. Bro: a system for detecting network intruders in real-time.
Computer networks, 31(23):2435–2463, 1999.

[21] K. Peng, S. Tang, M. Chen, and Q. Dong. Chain-based dfa deflation
for fast and scalable regular expression matching using tcam. In Proc.
ANCS, pages 24–35, Washington, DC, USA, 2011. IEEE Computer
Society.

[22] M. Roesch. Snort: Lightweight intrusion detection for networks. In Proc.
13th Systems Administration Conference (LISA), USENIX Association,
pages 229–238, November 1999.

[23] R. Sidhu and V. K. Prasanna. Fast regular expression matching using
fpgas. In Proc. IEEE FCCM, pages 227–238, 2001.

[24] R. Smith, C. Estan, S. Jha, and S. Kong. Deflating the big bang: fast and
scalable deep packet inspection with extended finite automata. In Proc.
ACM SIGCOMM 2008 Conf. on Data communication, SIGCOMM ’08,
pages 207–218, New York, NY, USA, 2008. ACM.

[25] Y.-H. E. Yang, W. Jiang, and V. K. Prasanna. Compact architecture for
high-throughput regular expression matching on fpga. In Proc. ANCS,
pages 30–39, 2008.

[26] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz. Fast
and memory-efficient regular expression matching for deep packet
inspection. In Proc. ANCS, pages 93–102, 2006.

689

