
227886165

FPGA based High speed and low area cost pattern
matching

Jian Huang, Zongkai Yang, Xu Du, and Wei Liu
Department of Electronic and Information Engineering, Huazhong University of Science and Technology

Abstract-Intrusion detection and prevention system have to
define more and more patterns to identify the diversification
intrusions. Pattern matching, the main part of almost every
modern intrusion detection system, should provide
exceptionally high performance and ability of reconfiguration.
FPGA based pattern matching sub-system becomes a popular
solution for modern intrusion detection system. But there is
still significant space to improve the FPGA resource efficiency.
In this paper, we present a novel pattern matching
implementation using the Half Byte Comparators (HBC). HBC
based pattern matching approach can increase the area
efficiency. But the operating frequency will be a little decrease.
We also explored some methods to improve the operating
frequency in this paper. The result shows for matching more
than 22,000 characters (All the rules in SNORT v2.0) our
implementation achieving an area efficiency of more than 3.13
matched characters per logic cell, achieving an operating
frequency of about 325 MHz (2.6Gbps) on a Virtex-II pro
device. When using quad parallelism to increase the matching
throughput, the area efficiency of a logic cell is decrease to 0.71
characters for a throughput of almost 8.5 Gbps.

Index Terms-FPGA, Half-byte Comparator, Intrusion
Detection System, LUT, Register, Combination Logic, Pattern
Matching, Rule, SNORT

I. INTRODUCTION

Network security becomes a hot topic nowadays. Methods
commonly used to protect against network attacks include
firewalls with packet filter to filter out obviously dangerous
packets, and Intrusion Detection Systems (IDS) which use
much more sophisticated rules and pattern matching to
distinguish potential dangerous packets. But these
techniques require huge computing powers of network
security devices. The traditional software solution is not
competent for the high speed networks nowadays [14].
Hardware based solution can meet the performance
requirements of the today and tomorrow's networks. The
key module of the hardware based network security device
is pattern matching.

The signature of an attack may exist at any position of
data packets in network traffic. In order to identify ifthere is
any of the predefined patterns existing in the target packet,
pattern matching module should inspect the packet byte by
byte. In general, the input of pattern matching system is one
byte per clock period. In order to improve the throughput of
the pattern matching module, the input will be parallel
N-bytes per clock period. The output of string matching
system are matching signal and pattern index. The matching
signal indicates whether there is predefined pattern matched.
The pattern index indicates the existence of predefined
pattern in the target data packets. The patterns defined by the

SNORT [10], a well known open source software based IDS,
are often used in all kinds of IDS. It defines thousands of
patterns in its anti-attack rules. In order to check input
packets in wire speed, the pattern matching module should
compare the packet data with all the predefined patterns
synchronously when the packet passes by. The parallel
compare is the most important and complex part in hardware
based pattern matching system.

Hardware based pattern matching system has the
advantages of high speed and parallel processing [6]. It can
provide high throughput at multi-giga bits per second. But
such system should consider two issues: how to reduce the
hardware resource consumption and how to have the
reconfiguration ability. FPGA based pattern matching
system can deal with the second issue very well, which make
it widely used in the nowadays IDS. However, the resource
in FPGA is limited. With the diversifying trend of network
attack methods, more and more SNORT patters are defined.
The latest SNORT [10] version (v2.32) defines almost 5,600
patterns (more than 57,000 characters). It is difficult to
implement those patterns in just a single FPGA chip. Thus,
improve the area efficiency ofFPGA resource is necessary.

In this paper we advocate using HBCs in FPGA based
pattern matching module. Because of the share of the
comparing results, our pattern matching implementation can
improve the area efficiency in FPGA significantly.
Thousands of predefined matching patterns can be
implemented in a single FPGA chip. Combined with some
timing improvement methods, our approach can operate at a
very high speed which can meet the performance
requirement of the giga bits Ethernet, OC-48 (2.5Gbps),
even if the OC- 192 (1OGbps) networks.

The rest ofthis paper is organized as following: Section II
reviews the previous related work; Section III introduces the
architecture of HBC based pattern matching module;
Section IV proposes some methods to improve the
throughput of pattern matching module; and Section V
present the evaluation results of the pattern matching
module implementation; Finally Section VI concludes this
paper.

II. RELATED WORKS

FPGA based pattern matching can provide high speed and
ability of reconfiguration. In order to deal with the area
efficiency issue, many methods are investigated in our
previous work:

* In regular expression matching [7, 12], the authors
proposed to use Non-deterministic Finite
Automaton in matching regular expressions and

I

227886165

implemented it on a FPGA. They also provided a
simple, fast algorithm that can quickly construct the
NFA for the given regular expression.

* In [4], a KMP (a well known software algorithm
proposed in 1977[17], it was proposed by D.E.
Knuth, J. Morris, and V.R. Pratt, shorted in KMP)
algorithm based on FPGA implementation was
proposed. It can support rule reconfiguration by
modifying the patterns in the distributed RAM and
block RAM in FPGA. But it only achieves low
throughput and low FPGA resource efficiency.

* In [5], a novel hashing mechanism using the method
of Bloom filter was discussed. The authors
implemented the pattern matching block based on
hashing-table lookup. This approach only uses a
moderate amount of logic and external or internal
memory. It is an efficient method to compare
thousands of strings in a single pass and the rules can
be added or modified in the memory. However, its
implementation relies on the FPGAs with
multi-ports block RAMs, which is very expensive.
And because of using complex RAM and hash
algorithm, the system speed was limited.

* In [14], a deep packet filter using dedicated logic
and read only memory was introduced. The author
proposed two effective methods to design dynamic
pattern search engines in FPGA. The first method
uses RDL (Reconfigurable Discrete Logic) to detect
dynamic patterns in data stream. The second method
uses built-in memory in the FPGA and XOR based
comparators.

* In [1,2,3,1 1], a Content Addressable Memory (CAM)
based software/hardware IDS was proposed. CAM
is used to match against possible attacks contained in
a packet. These CAM based pattern matching
approaches have very high system throughputs.
While have lower area efficiency.

The above techniques have the following shortcomings: 1)
byte comparator does not fit the 4-input LookUp Table
(LUT) in FPGA [16]. 2) Large numbers of fan out of input
signals and comparator outputs will cause the decrease of
system operating frequency. 3) The amount of comparators
will increase with the number of pattern of system. 4) The
last disadvantage is the waste of FPGA source. The two
main kinds of resources in FPGA are Combination Logic
and Register. The above approaches focus on combination
logic and their excessively using of Combination Logic
wastes the register resource.

III. ARCHITECTURE OF PATTERN MATCHING

The main idea of this paper is to use half-byte
comparators (HBC) in the pattern matching system. HBCs
are simply 4 to 1 decoders. Ifthe input 4 bits match the value
configured in the HBC, the output of HBC will be asserted
high. A HBC just fits an FPGA LUT [16]. Every character
needs two Half-byte comparators, for higher 4bits and lower
4bits respectively. In our design, the same higher/lower 4
bits comparators are fully shared.

Taking "ABCA" as an example pattern, we illustrate the

system architecture in Figure 1. The ASCII code of"ABCA"
in HEX is 141 42 43 411, as a result, 8 comparators are
needed in normal matching implementation. Since the four
higher 4 bits comparators all compare to 0x4, it can be
shared. In the same idea, the comparator for OxI ofthe lower
4 bits can also be shared. By this way, the pattern "ABCA"
only needs 4 HBCs. As shown in Figurel, the module has
one byte input per clock period (cycle). If we assume the
first character of string "ABCA" arrived at cycle t, then the
higher HBC for 0x4 and lower HBC for Oxl will be matched.
Because there are 3 delay registers at the output side of
HBCs for comparing 0x4 and Oxl, these two matched signal
will be sent to the AND gate at cycle t+3. And at cycle t+1,
character "B" arrived, its match signal will also be sent to the
AND gate at cycle t+3. The rest characters will be processed
in the same way. So we can get the pattern matching signal
at cycle t+3. These delayed half-bytes matching signals will
be AND-ed by an 8 inputs AND gate. The output ofAND
gate is the final pattern matching signal.

D)D),
4i;t [7: j.-F-]

8bit [17MH0 at7rt
input, CO ramtolZ~~~~~~~i~~

I, 1j0 axo I

4bit G,02

.)1t 1)
.

} .. `....

&

MatAc
" ABCA

DI)

Figure 1, HBC architecture for pattern "ABCA" matching. The output of
comparator for 0x04 is shared in comparing the higher 4 bits for all the 4

characters. The output of comparator for OxOl is shared in comparing lower
4 bits for the first and last character "A".

The patterns of SNORT system are made up of ASCII
characters and bytes in HEX. There are total 256 kinds of
variety for a byte. After dividing a character into two half
bytes, every halfbyte has 16 kinds of variety. Then there are
only 32 kinds ofvariety in total. So, pattern matching system
using HBCs can set total 32 HBCs to compare the incoming
bytes simultaneously. The outputs of these comparators
connect to a well organized delay register array. The delay
register array is used to generate right character input
sequence for every SNORT pattern. Dedicated pattern
matching circuits are designed for every pattern. Necessary
delayed Half-byte matching signal is send to every matching
circuit. For example, matching circuit for pattern "ABCD"
needs 8 delayed Half-byte matching signals: matching
signals of 0x4 and Oxl (delayed 3 cycles) for "A", 0x4 and
0x2 (delayed 2 cycles) for "B", 0x4 and 0x3 (delayed 1 cycle)
for "C", 0x4 and 0x4 (delayed 0 cycle) for "D". Matching
circuit generates a final signal which tells the encoder if the
pattern did match. Figure 2 shows the implementation for all
SNORT patterns.

2

227886165

2 iX I ~~~~~~~atchi3ng 1

32HBCs, tHeaupulf dyelinayregiter aryi hrd vr atr a

-iox;'9 ig n akc0rnItt |* =L

Lowr ' m-I
4bfits<iof 1 B t C m arato

ieicnal iui. T matc tcal
elts as inl

Asshownin Figure2, HBCs-andmatCircuit us h

Figure 2, Using HBCs to implement all the SNORT Rules, There are total
32 HBCs, the output of delay register array is shared. Every pattern has a
dedicated matching circuit. The matching circuit connects the necessary

delayed compare results as inputs.

As shown in Figure2, HBCs and matching circuit use the
LUT and routing resources in FPGA. The delay register
array uses the used filp-flop resource in FPGA. Because the
outputs ofdelay register array are shared, the used amount of
LUTs is larger than the used flip-flop resource. We found
the used amount ofLUT resource is related to the amount of
target characters. It is doable to partition the SNORT rules
into small groups. This partition can reduce the complexity
of the total matching circuit and improve the system
operating frequency.

IV. METHODS TO IMPROVE PERFORMANCE

A. M bytes Parallel matching
In order to improve the performance of pattern matching

system, we designed M bytes in parallel pattern matching
module. We can widen the input bus by a parameter of M
providing M copies ofHBC pattern matching group and the
corresponding matching circuits.

D)

I)

If the start character of the predefined matching pattern
occurs at the higher byte, output of the upper AND gate in
figure 3 will be asserted. If it occurs at the lower byte, output
of the bottom AND gate in figure 3 will be asserted high.
Ether of the two conditions will cause the OR gate outputs
asserted high. For any value ofM, this scheme can be used.

B. Decreasing the numbers offan out
Because of the output of delay register array shared, the

fan out ofsome register will be as large as hard to implement
in FPGA with high system frequency. In order to decrease
the numbers of fan out of these registers, we add some
registers to share in the fan out. Figure 4 illustrates the
sharing method to decrease the numbers of fan out.

a) b)

C. Decreasing the combination logic delay
Propagation and gate delay of combination logic can be

ended by registers. The combination logic in Xinlinx [16]
makes up of LUTs and routing resources. The inputs of
AND gates larger than 4 bits will cause the stacking ofLUTs,
which will increase the propagation delay. In order to
decrease the propagation delay, registers and small AND
gates are used. Figure 5 shows the method to decrease the
propagation delay.

Nmatch
.ABC

ai "Iz-ahl-1loo I

4hi.13-
4.bl'S'0 10 i02

it

Figure 3, Doubled HBC groups process 2 input bytes per cycle. The start
character ofthe predefined matching pattern may occur at the higher byte or

lower byte of the input parallel two bytes

& HD

32
input
AND
gate

& HJ)
&

& HD

& HD
Figure 3 shows a pattern module ofM = 2. There are two

conditions for the alignment of pattern exists in the target
packet. The start character of the predefined pattern may
occur at the higher byte or lower bytes of the input parallel
two bytes. We must design two pattern matching circuits for
the two conditions. Thus, the resource in FPGA is doubled.

a;) b)
Figure 5, Using registers to the huge combination logic. 32 inputs AND

gate in a) can be divided into two groups of small AND gate (8 inputs and 4
inputs) which separated by registers in b).

3

227886165

V. EVALUATIONS
There are two important metrics generally used to

evaluate the pattern matching modules: performance and
area cost. Performance can be presented by the system
operation frequency and throughputs. And area efficiency
can be presented by the implemented characters per logic
cell. In order to get these two metrics, the implementation of
pattern matching system should be done. Considering the
mapping from patterns to RTL code is simple in our design,
we developed a program that can translate the specified
patterns into synthesizable Verilog HDL. We implemented
the SNORT rule set v2.0 [9] with M=1 and M=4 on a
Vertex2 pro 30 FPGA. The speed grade ofFPGA is -5. The
synthesis tool is Xilinx ISE version 7.1.

PerfirmanceXM.(1)
Vdrtekff pro 30

o-~
360 -

V~ 340-
2_

Iu

AREA efc1ency (M = I4
Vertexil pro 30

30-

20 I I I II
0 4K SK 12K, 16K 20K

Nunm ofCharaete(bytes)

Figure 8, area efficiency analysis ofHBC based pattern matching
implementation. The parallelism parameterM = 1. With the increasing of
matched characters, the matched characters of a logic cell will increase. The
Max area efficiency will in crease to 3.13 matched characters per logic cell

when implementing all the SNORT v2.0 rules.

ARREA cfficiency (M 4)
Vertex,Il pm 30

W>

j.--

Q.--

~,2 96 4.-

-1 So -Z
to

12.64 2

0
I I I I I I I I
0 AK. 8K 12KR 16K 2;0K

Ntjm of Character (b1ytes)

Figure 6, performance analysis ofHBC based pattern matching
implementation. The parallelism factorM = 1. The max system clock is 325

Mhz when implement all the SNORT v2.0 rules (more than 22,000
characters). And the max throughput is 2.6Gbps.

P&friormlnle (M 44)
Vert4xK1 pKo30

300 -I

280_
!60-

4K 8;K4 12K l 16K 20K
NtIM of Character (bytes)

Figure7, performance analysis ofHBC based pattern matching
implementation. The parallelism parameter M = 4. The system clock can be

268 Mhz when implement all the SNORT v2.0 rules. And the max
throughput is 8.576Gbps.

. l
0 4K 8K 12K I 6K

Num of Chdaracter (bytcs)

Figure 9, area efficiency analysis ofHBC based pattern matching
implementation. The parallelism factor M = 4. The max area efficiency is

0.71matched characters per logic cell.

Figure 6 shows the evaluation result ofperformance when
the parallel parameter equals 1. And figure 7 shows the
evaluation result of performance when the parallel
parameter equals 4. Figure 8 shows the evaluation result of
area efficiency when the parallel parameter equals 1. And
figure 9 shows the evaluation result of area efficiency when
the parallel parameter equals 4. The operating frequency is
decrease when implemented character increasing but the
area efficiency is increased when implemented character
increasing.

VI CONCLUSIONS
In this paper, we present a novel pattern matching

approach using the HBCs. With our approach, tens of
thousands of characters can be implemented in a single
FPGA chip. The following methods are used in our
approach. First, we reduce the area cost of character using (i)
32 HBCs to buildup all the possible ASCII character and (ii)
register array and combination logic to implement all
possible character combination for SNORT signatures.
Second we achieve high operating frequencies by (iii) using
parallel HBC group for processing M bytes parallel input
and (iv) using state-of-the-art pipelines for faster circuits.

In a Xilinx Vertex II pro 30 FPGA, we implemented the
entire rule set for SNORT version 2.0 (more than 22,000
characters for 2,000 patterns). The pattern matching module

1- I

I

4

O.-oo- is.........

-,IF-

9.92

928

&.64F

227886165

totally used 7,000 logical cells. The area efficiency is 3.13
characters per Logic Cell. And the system operation
frequency is about 325MHz (about 2.6Gbps). When using
quad parallelism to increase the throughput, the throughput
can be increased to almost 8.576 Gbps (268 MHz) with
acceptable decrease of the area efficiency to 0.71 characters

per Logic Cell. TABLE I shows the compare result with
other pattern matching approaches. It shows our approach
has area efficient advantage. The operating frequency is a
little lower than the pre-decode CAM which is the fastest
approach.

TABLE I

Result of performance and efficiency comparison with other pattern matching approaches

Frequency Throughput Implemented
Description Device Chars /LC

(MhzII) (Gbps) Bytes

Virtex II pro 268 8.576 22,138 0.71
Huang, el Half-byte Comparators

Virtex II pro 325 2.60 22,138 3.13

Sourdis, el Pre-decoded CAMs [2] Virtex2 385 9.708 18,031 0.28

Bu Long, el, CAMs[1] Virtex II Pro 281 2.251 560 0.33

Geir Nilsen, el, Variable Word-Width CAM[9] Virtex II Pro 100 0.8 3,601 0.20

Zachary K, el, KMP algorithm in FPGA [4] Virtex II Pro 285 2.4 - -

Wash U, el. Bloom filter using hash[5] XCV2000E 81 2.592 1,434 0.13

REFERENCES
[1] Bu Long, J.A. Chandy. FPGA based network intrusion detection using

content addressable memories. Field-Programmable Custom
Computing Machines (FCCM 2004), Pages 316-317, Apr 2004.

[2] I. Sourdis, D. Pnevmatikatos. Pre-decoded CAMs for efficient and
high-speed NIDS pattern matching. Field-Programmable Custom
Computing Machines(FCCM 2004), Pages 258-267, Apr 2004.

[3] G. Nilsen, J. Torresen, 0. Sorasen. A variable word-width content
addressable memory for fast string matching. Proceedings ofNorchip
Conference 2004, Pages 214-217, Nov 2004.

[4] Zachary K. Baker, Viktor K. Prasanna. Time and Area Efficient
Pattern Matching on FPGAs. Field-Programmable Custom
Computing Machines (FCCM 2004), Pages 125-134, Feb 2004.

[5] Sarang Dharmapurikar, Praveen Krishnamurthy, T.S. Sproull, J.W.
Lockwood. Deep packet inspection using parallel bloom filters. Micro,
IEEE. Volume 24, Issue 1, Pages 52-61, Jan. 2004.

[6] M. Fisk and G. Varghese. An analysis of fast string matching applied
to content-based forwarding and intrusion detection. In Techical
Report CS2001-0670 (updated version), University of California -
San Diego, 2002.

[7] R. Sidhu, V.K. Prasanna. Fast Regular Expression Matching Using
FPGAs. Field-Programmable Custom Computing Machines (FCCM
01), Pages 227-238, 2001.

[8] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood.
Implementation of a Deep Packet Inspection Circuit using Parallel
Bloom Filters in Reconfigurable Hardware. In Proceedings of
HOTiO3, 2003.

[9] Geir Nilsen, Jim Torresen and Oddvar S0rasen. A Variable
Word-Width Content Addressable Memory for Fast String Matching.
In Norchip, 2004.

[10] Sourcefire. Snort: The Open Source Network Intrusion Detection
System. http://www.snort.org, 2005.

[11] I. Sourdis and D. Pnevmatikatos. Fast, Large-Scale String Match for a
1OGbps FPGA-Based Network Intrusion Detection System. In
Proceedings of FPL2003, 2003.

[12] R. Franklin, D. Carver, and B. Hutchings. Assisting network intrusion
detection with reconfigurable hardware. In IEEE Symposium on
Field-Programmable Custom Computing Machines, April 2002.

[13] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and V.
Hogsett. Granidt: Towards gigabit rate network intrusion detection
technology. In Proceedings of 12th International Conference on Field
Programmable Logic and Applications, France, 2002.

[14] Young H. Cho and William H. Mangione-Smith. Deep Packet Filter
with Dedicated Logic and Read Only Memories, Field-Programmable
Custom Computing Machines (FCCM 2004).

[15] N. Desai. Increasing performance in high speed NIDS. In
www.linuxsecurity.com, March 15 2002.

[16] Xilinx. Virtex-II Platform FPGAs: Detailed description.
h i/ df, October

2004.
[17] D.E. Knuth, J. Morris, and V.R. Pratt. Fast Pattern Matching in Strings.

In SIAM Journal on Computing, 1977.

5

