
520 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 2, JUNE 2016

PCAPLib: A System of Extracting, Classifying, and
Anonymizing Real Packet Traces

Ying-Dar Lin, Fellow, IEEE, Po-Ching Lin, Sheng-Hao Wang, I-Wei Chen, and Yuan-Cheng Lai

Abstract�This paper presents the PCAPLib system for provid-
ing extracted, well-classified, and anonymized packet traces from
real network traf�c with two mechanisms. First, active trace col-
lection actively extracts and classi�es packet traces into sessions
by leveraging multiple detection devices. Second, deep packet
anonymization protects the privacy in the packet payloads for
hundreds of application protocols while preserving the utility of
the traces. We evaluate 318 anonymized packet traces collected
over a period of four months and show that the ef�ciency of
anonymization is up to 96%. The usefulness of this system for
assessing false positives/false negatives in intrusion detection has
been also demonstrated.

Index Terms�Packet anonymization, privacy, trace repository,
utility.

I. INTRODUCTION

R EAL-WORLD Internet traffic is useful for studies ranging
from traffic characterization and analysis, diagnosis of

network events, to evaluation of network systems such as in-
trusion detection/prevention (IDP) systems. Network research
communities, as well as developers of network appliances,
usually rely on large, diverse, updated, and nonsynthetic packet
traces for experimental study and evaluation [1]. For exam-
ple, network analysts who collaborate on inspecting malicious
incidents and network behavior can share traces among one
another.

Capturing and sharing real traffic face two major chal-
lenges. First, the packet traces in a large repository involve
diverse application protocols, and they should be well classified
beforehand for users to easily find the desirable traces.
Several organizations have released packet traces for public
access, e.g., [2] and [3]. The traces are usually submitted and

Manuscript received July 18, 2013; revised October 22, 2013 and
December 24, 2013; accepted January 3, 2014. Date of publication May 9,
2014; date of current version May 30, 2016. This work was supported in part by
the National Science Council and the Industrial Technology Research Institute
of Taiwan and in part by ZyXEL, Inc., D-Link Corporation. Cisco Systems,
Inc., and Chung-Hwa Telecom.

Y.-D. Lin and I.-W. Chen are with the Department of Computer Science
and the Network Benchmarking Laboratory, National Chiao Tung University,
Hsinchu 300, Taiwan (e-mail: ydlin@cs.nctu.edu.tw; iwchen@nbl.org.tw).

P.-C. Lin is with the Department of Computer Science and Information
Engineering, National Chung Cheng University, Chiayi 621, Taiwan (e-mail:
pclin@cs.ccu.edu.tw).

S.-H. Wang was with the Department of Computer Science and the Network
Benchmarking Laboratory, National Chiao Tung University, Hsinchu 300,
Taiwan. He is now with the Institute for Information Industry, Taipei 106,
Taiwan (e-mail: howz.cs97g@cs.nctu.edu.tw).

Y.-C. Lai is with the Department of Information Management, National
Taiwan University of Science and Technology, Taipei 106, Taiwan (e-mail:
laiyc@cs.ntust.edu.tw).

Digital Object Identifier 10.1109/JSYST.2014.2301464

categorized subjectively by enthusiastic contributors. They are
often outdated, inconsistently categorized, and even unusable,
as the packet repository lacks a central control mechanism to
maintain the quality of packet traces and consistently categorize
them. Moreover, if the packet traces are derived from a real
environment, e.g., from an Internet service provider [4], the
volume will be usually huge, and it is essential to automat-
ically extract and consistently classify the packet traces in a
scalable way.

Second, the packet traces may contain private information
such as host addresses, e-mail addresses, and even authenti-
cation keys. Such information should be anonymized before
the traces are shared. Although packet anonymization helps
to protect the privacy of packet traces, it hurts their utility
at the same time. Many existing methods anonymize only
the fields in the Transmission Control Protocol/protocol suite
(TCP/IP) header [5]–[9] and strip away the payloads. However,
the payloads are likely to contain key information for network
analysis in terms of signature matching for intrusions [10], [11],
traffic identification [12], or payload-based anomaly detection
[13], [14]. Several research works have attempted to preserve
the payloads and anonymize specified key information in them
[15]–[19]. The anonymization methods are still limited to only
a few common protocols (e.g., HTTP and FTP) and unable to
satisfy the need for large packet traces, which may be from a
large number of application protocols. Although it is possible to
extend existing works to support the anonymization for so many
application protocols, the support will require implementing
that many protocol parsers as well, yet the implementation
effort is nontrivial.

In this paper, we design the PCAPLib system to automatically
extract, classify, and anonymize packet traces from a large
amount of real network traffic. The packet traces will be useful
for various purposes of network analysis. For extraction and
classification, the active trace collection (ATC) mechanism can
automatically classify captured packet traces into application
data sets. If the traces in a data set have malicious content, they
will be categorized into a separate class of that data set. Net-
work traffic classification and malicious content identification
leverage the knowledge of multiple application classification
systems and security appliances such as IDP, antivirus, and
antispam. For packet anonymization, the PCAPAnon mecha-
nism for semantics-preserving deep packet anonymization can
protect privacy while preserving several semantic features of
application fields. PCAPAnon supports the configuration that
allows users to specify the fields in hundreds of application
protocols to be anonymized with consistent transformation
while keeping the integrity and utility of the packet traces with
best efforts.

1937-9234 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html
mailto: ydlin@cs.nctu.edu.tw
mailto: iwchen@nbl.org.tw
mailto: pclin@cs.ccu.edu.tw
mailto: howz.cs97g@cs.nctu.edu.tw
mailto: laiyc@cs.ntust.edu.tw

LIN et al.: PCAPLib: A SYSTEM OF EXTRACTING, CLASSIFYING, AND ANONYMIZING REAL PACKET TRACES 521

The usefulness of this system for assessing false positives
(FPs) and false negatives (FNs) on a set of IDP systems was
demonstrated in [20]. The assessment is important to the IDP
system developers to optimize the accuracy of detection by
reducing both FPs and FNs because the FP/FN rate limits the
performance of a network security system due to the base-
rate fallacy phenomenon [21]. We also compare this work
with the recent ISCX intrusion detection evaluation data set
[22] in Section V-B. The packet traces in that data set are
generated in an emulated testbed (thus claimed to be exempt
from privacy concerns) based on a profile specifying the attacks
and a statistical profile characterizing real packet traces.

The contributions of this paper are summarized in four.
1) The ATC mechanism can automatically classify and ex-

tract application sessions from bulk network traffic in a
real environment such as BetaSite [23], and it is essential
to continuously maintain the repository of packet traces
in a scalable manner.

2) A ready-to-use implementation of the PCAPAnon mech-
anism can anonymize sensitive information in the packet
traces for hundreds of application protocols as much as
possible in current practices while preserving both the
semantics and length of important application fields to
keep the utility for later analysis.

3) The usefulness of this system for network analysis by IDP
systems has been demonstrated. It is noted that the packet
traces are not only useful for intrusion detection but also
for various kinds of network traffic analysis.

4) The implementation of this system is publicly available
as a SourceForge project [24]. The packet traces in the
evaluation are also available in [25].

The rest of this paper is organized as follows. Section II
presents the background and related work. Section III describes
the design and ideas of our methodology. Section IV addresses
the major system implementation issues. Section V evaluates the
efficiency of the packet traces in this system and compares
the traces with the ISCX data set [22]. Finally, Section VI
concludes this work and reports the current status.

II. BACKGROUND

This paper reviews the challenges of acquiring large, diverse,
updated, and well-classified packet traces for network analysis
in Section II-A, the existing methods of anonymizing packet
traces in Section II-B, and the methods of FP/FN assessment
with a repository of packet traces in Section II-C.

A. Challenges of Acquiring Packet Traces

There are two primary options of acquiring packet traces.
First, emulated packet traces can be generated in the laboratory
by custom scripts or traffic generators such as Harpoon [26]. A
well-known example of this approach is the DARPA-sponsored
evaluation data set for intrusion detection [27], [28], but the
data set was criticized for being too old to reflect contemporary
network traffic [29]. Moreover, the emulation is limited in
practice due to the heterogeneity and dynamics of network
traffic [30].

Some researchers capture packet traces from the backbone
of their affiliations rather than generate emulated traffic. This

approach can satisfy the requirement of working with network
traffic of realistic user activities, but the researchers have to
make a nontrivial effort to categorize the packet traces due
to the huge volume of diverse network traffic. A scalable
method to automatically extract and classify the packet traces
is therefore required. Moreover, the network operators may be
unwilling to allow the researchers to acquire the traces due to
privacy concerns [31]. The work in [32] summarizes the issues
and practices of using network data sets.

Overall, acquiring packet traces from public repositories is
more convenient than making the effort to capture packets by
individual researchers, if the issues raised in Section I can
be resolved. Table I compares six publicly available repos-
itories with PCAPLib in terms of the packet sources, up-
date frequency, categorization, and anonymization of packet
traces. A list of links to more repositories is available at
www.netresec.com/?page=PcapFiles. The contributors can an-
notate the categories of the packet traces submitted from them,
but the categorization may be inconsistent. If the packets are
captured from the backbone (e.g., those in Cooperative As-
sociation for Internet Data Analysis), the packet payloads in
the traces are truncated for privacy concerns, thereby seriously
hurting the utility of the traces for network analysis. The
ISCX data set is exempt from privacy concerns because its
packet traces are emulated. Despite its innovative contribution
for dealing with privacy, we find that the traces are not well
classified for different application protocols and contain only
few attacks to be analyzed statistically. In comparison, the
PCAPLib system can automatically categorize packet traces
in a scalable and consistent way and preserve the semantics
of application payloads during anonymization to maintain the
utility for analysis as much as possible.

B. Packet Anonymization

Packet anonymization is an important means to protect the
privacy of packet traces. Ideally, the private fields in both
the TCP/IP headers and the application level should be well
sanitized, but packet anonymization in the application payloads
still face the following two critical hurdles.

1) In addition to common application protocols, there are
far more from various network applications, such as P2P
online games. It is nontrivial to identify the private infor-
mation in the packet traces due to the diverse semantics of
so many application protocols. The work in [34] presents
several heuristics to infer the sensitivity of protocol fields,
if the fields can be correctly parsed.

2) Since most IDP systems rely on signatures for intrusion
detection, anonymization may accidentally modify an
attack signature and affect the analysis. For example, an
HTTP request may contain a malicious shellcode exploit
as follows:

GET/iframe3?C00jAE12BADcCRkAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAA4AAQACB3qzB.

A Snort rule [10] below contains the signature of all
A’s to detect the shellcode, but an anonymization tool can
make the detection fail by hiding the target of the request

522 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 2, JUNE 2016

TABLE I
COMPARISON OF EXISTING REPOSITORIES OF PACKET TRACES

TABLE II
COMPARISON OF ANONYMIZATION TOOLS

to protect the privacy of web browsing. In general, such
anonymization may alter the analysis of an IDP system.

alert ip EXTERNAL_NET any� > HOME_NET any
(msg : �SHELLCODE x86 inc ecx NOOP”;
content : �AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA”;
classtype : shellcode � detect; sid : 1394; rev : 10;).

Table II compares the available tools or libraries for packet
anonymization [5]–[7], [15]–[18]. Most tools support prefix-
preserving anonymization for IP addresses [35]. That is, if two
IP addresses have a common prefix of k bits, the anonymized
addresses will also have a common prefix of k bits. Only
Tcpanon, Anontool, SCRUB-tcpdump, and Bro can specify the
information in the application payloads to be removed; the
others simply drop or truncate the payloads. PCAPAnon is also

covered in the table. The tools that can specify the information
in the payloads to be anonymized are described below:

Tcpanon [15], written in Python, can parse and anonymize
specified fields in the HTTP, FTP, SMTP, POP, and IMAP
protocols but discard the payloads of other unsupported proto-
cols. It is possible to extend the number of supported protocols
by writing new protocol parsers in Python, but the effort of
extending the support to a large number of application protocols
in real network traffic is nontrivial. The tool is still far from
practical use in a real environment.

SCRUB-tcpdump [16] can search the payload for specified
patterns in regular expressions. Anontool [17] also provides a
set of application programming interfaces to support pattern
searching. This approach will miss some sensitive information
in the payloads if a precise pattern does not exist to describe the
sensitive information, such as user identifier and password. In
addition to the limitation of pattern searching, both tools lack

LIN et al.: PCAPLib: A SYSTEM OF EXTRACTING, CLASSIFYING, AND ANONYMIZING REAL PACKET TRACES 523

the ability to parse application-level protocols and specify the
application fields to be anonymized.

Bro [11] supports functions in its policy scripts to anonymize
both online and offline packet traces [18]. Despite the flex-
ibility of using scripts, the anonymization functions have
two limitations. First, as Bro works with events, a protocol
field can be anonymized only if the protocol has registered
events that support trace transformation. That is, a user needs
to write the parsers and policy scripts of individual proto-
cols for anonymization. Second, Bro buffers the bytes of the
anonymized application content and regenerates the packets
from the buffer, e.g., after the payload size exceeds the max-
imum transmission unit. The characteristics of packet traces,
such as number of packets and packet lengths, will be changed
after anonymization and may affect network analysis that relies
on such statistical characteristics.

PCAPAnon, on the contrary, provides hundreds of protocol
parsers based on Wireshark dissectors [36], which can be
applied to all packet fields up to the application level. The
support of anonymizing so many application protocols has been
ready to use, and protocol parsing allows precise specification
of the right fields for anonymization. To preserve the statistical
characteristics of packets as much as possible, PCAPAnon
replaces the field values with those of the same semantics
(e.g., replacing a URL with another URL) and length in the
anonymization. The preservation will benefit the methods that
rely on statistical characteristics for traffic analysis, e.g., [37],
and it also prevents the protocol parsers from triggering an error
during the parsing process since the semantics of application
fields remain the same.

In addition to the above tools, we are also aware of the work
in [38], which anonymizes private information in encrypted
packet payloads. It is restricted to decode encrypted shellcode
by emulation and then look for possible private information
such as URLs. Because a generic method of decoding encrypted
network traffic is unavailable, the best practice is probably hid-
ing the entire encrypted payloads. Decoding and anonymizing
encrypted payloads in general cases are therefore beyond the
scope of this paper. There are also some studies about attacks
intending to de-anonymize network traces, such as [39]. The
countermeasures to such attacks are not part of this paper and
will be left to the future work.

C. Methods of FP/FN Assessment

Packet traces in real traffic can serve as the test data set
for evaluating the design of IDP systems, particularly in terms
of the FP and FN rates. Chen et al. designed a system of
attack session extraction (ASE) [40] to integrate the efforts
of signature analysis and development from different vendors
to find out FPs and FNs in IDP systems. ASE captures real
packet traces in the PCAP files and then replays them to a
set of IDP systems developed by various vendors. The time
on the replay tool and the IDP systems are all synchronized
before session extraction. By associating the replay logs for
the packets with the alarm logs on the IDP systems by com-
paring the key information such as the timestamps and the
five-tuple fields (i.e., the source/destination IP addresses, the
source/destination ports. and the protocol), ASE can identify

Fig. 1. PCAPLib block diagram.

the anchor packets that trigger alarms on the IDP systems.
For example, if the alarm log records that an attack occurs
from 10:10:01 to 10:10:18, the ASE will look for the packets
replayed during that period and having the same five tuples
as the anchor packets. The system then extracts the associated
connections (having the same five tuples as those of the anchor
packets) and the associated sessions (having similar payloads)
that contain the anchor packets. Thus, the attack sessions can
be automatically extracted from real packet traces. The system
also finds potential FPs and FNs of an IDP system with a voting
mechanism. The work in [20] looked into the causes behind
possible FPs and FNs using the packet traces from the PCAPLib
system and demonstrated the usefulness of this system for
assessing FPs and FNs.

III. PCAPLib METHODOLOGY

The PCAPLib system has two major components: 1) ATC,
which is described in Section III-B; and 2) PCAPAnon, which
is described in Section III-C.

A. Overview of the Components in PCAPLib

Capturing the entire traffic in an environment such as a
campus can easily consume up the storage space, and searching
for specific events of interest in a huge trace is time consuming;
hence, leaving only the traffic associated with specific events
and well classifying the packet traces are desired. As shown
in Fig. 1, the ATC actively extracts both benign and mali-
cious packet traces from real traffic in National Chiao Tung
University (NCTU) BetaSite (see [23] or a brief introduction
at speed.cis.nctu.edu.tw/~ydlin/Betasite.html), i.e., an opera-
tional network involving voluntary students at a large university
campus. The network traffic is from the daily network usage
by the students, and the volume in the BetaSite is roughly
100 GB/h. The traffic data are processed in an offline fashion.
The packet traces from the BetaSite are stored in a repository
of disk arrays first and are later retrieved by the ATC for further
processing. The offline processing (i.e., extracting, classifying,
and anonymizing) rate is roughly 60 GB/h in our experience.
The rate is acceptable because we do not need to collect the
packet traces from all of the captured traffic. Randomly picking

524 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 2, JUNE 2016

Fig. 2. ATC system flow.

the traffic captured over a period of time, for example, half
a day, and then deriving the packet traces offline from the
captured traffic are fine because the amount of captured traffic
is huge enough.

Furthermore, packet anonymization protects privacy from
leakage in the trace sharing. The PCAPAnon parses applica-
tion protocols and anonymizes sensitive fields in the collected
traces. Both ATC and PCAPAnon are essential components
in the PCAPLib system to provide high-quality packet traces
that meet the requirements. They are described in detail in the
following sections.

B. ATC

The quality of many packet repositories relies on the active
involvement and frequent update from users. In contrast, the
ATC mechanism can automatically capture, extract, and clas-
sify large-scale packet traces from real traffic. Fig. 2 shows
the ATC system flow. The collection involves two phases. In
the first phase, a traffic replay tool (e.g., tcpreplay) replays
captured raw traffic to multiple devices under test (DUTs) to
leverage their domain knowledge. A DUT will trigger a log
upon detecting specific behavior in the traffic or when the
application protocols of interest appear (see Section V). The
specific behavior may be web attacks (e.g., SQL injection),
denial of service, spamming, and so on, depending on the
detection results of the DUTs. The users can configure the
DUTs to specify which application protocols are of interest.
The logs contain primarily the source/destination IP addresses,
the source/destination ports, the protocol, the name of behavior
or protocol, and optionally the payloads with attacks in some
DUTs. The exact log format may slightly vary with the DUTs.
The packets that do not trigger any logs will be replayed
again to avoid FNs. If they still do not trigger logs, they
will be discarded without further processing. The ATC then
locates the anchor packets that trigger the logs by comparing
the timestamps of the packets and the five-tuple fields, and
processes packet and connection associations to extract each
specific session into the packet traces. The extraction is similar
to that of ASE in [40].

In the second phase, we use supervised classification to
categorize the extracted packet traces. The ATC associates the
sessions according to the log messages and classifies the traces
into different categories by matching the logs with representa-
tive keywords. The ATC also verifies the classification to ensure
that the packet traces are useful. The verification replays the
categorized sessions to the particular DUT(s) and see whether
they can trigger the same logs again. If the logs are the same, the
ATC stores the trace in that session into the database; otherwise,

Fig. 3. PCAPAnon system.

the trace is invalid. The ATC also judges whether the traces are
benign or malicious with majority voting based on the detection
results from a set of security devices (IDP, antivirus, etc.).

C. PCAPAnon: Deep Packet Anonymization

The ATC provides well-classified packet traces, but we still
face the problem of privacy leakage when releasing the traces.
PCAPAnon supports a precise method for privacy protection of
packet traces. The method involves two phases: 1) trace parsing
to specify which information in the traces should be hidden;
and 2) identity substitution to choose how the data elements
are anonymized. Fig. 3 presents the PCAPAnon system for
deep packet anonymization, which anonymizes each layer with
different policies. The system provides a large set of protocol
parsers and substitutes the identities with those of the same
length and data type to maintain the semantics of application
protocols. The two phases are detailed as follows.

1) Trace Parsing: It is exhausted to implement precise pars-
ing for the semantics of possible application fields in real
packet traces due to the large number of application pro-
tocols. We leverage Wireshark (www.wireshark.org), a net-
work packet analyzer, for its hundreds of protocol dissectors
(www.wireshark.org/docs/dfref) registered as plug-ins to parse
the traces for the protocol fields. The Wireshark code is mod-
ified to support anonymizing the specified application fields
from the command options or custom scripts, based on subjec-
tive judgment on sensitive fields or analysis from the heuristics
in [34]. For example, the options “�Tfield �ehttp.host”
mean anonymizing the content in the HTTP HOST field. The
specification is particularly useful when an application field is
private (e.g., a password) yet difficult to specify the content with
a pattern.

To avoid missing sensitive application fields due to careless
specification, PCAPAnon also supports pattern substitution
with regular expression (RegExp) matching to seek and match-
sensitive identities such as IP addresses, mail addresses, and
URLs. The substitution is also useful if the identities are from
an unknown application protocol or not precisely identified in
protocol parsing.

2) Identity Substitution: PCAPAnon provides several
anonymization functions, including Block Black Marker
for MAC address, Prefix-Preserving and Length-Prefix-
Preserving (LPP) for IP address, Length-Semantics-Preserving
(LSP) for pattern substitution with RegExp matching, Field

LIN et al.: PCAPLib: A SYSTEM OF EXTRACTING, CLASSIFYING, AND ANONYMIZING REAL PACKET TRACES 525

Transformation for protocol fields, and Checksum Adjustment
for all network and transport protocols,1 thereby supporting
adequate functionality for various identities. The functions are
described as follows.

1) Block Black Marker sets the bits in a field to all zeros.
2) Prefix-Preserving function for IP addresses (particularly

in the network layer) has been common in existing
anonymization tools since the work in [35].

3) LPP preserves the length of an IP address represented
in ASCII, in addition to the attempt of prefix-preserving
anonymization. The details will be described in
Section IV-B.

4) LSP searches the payload for an identity such as a mail
address, URL, or domain name in the payload and then
substitutes another mail address, URL, or domain name
of the same length for that identity, thereby preserving
the semantics of the identity.

5) Field Transformation fills a field identified in protocol
parsing with a repeating pattern (e.g., “XXXXX”), which
can be an integer or a string.

6) Checksum Adjustment keeps the checksum valid because
some network appliances will drop the packets with in-
valid checksums.

This paper attempts to preserve the characteristics of
anonymized packet traces as many as possible. For example,
this work substitutes an application field of the same type and
length for the original one in LPP and LSP. This approach has
three main benefits.

1) Preserving the number and lengths of the original packets
allows anomaly detection and traffic classification based
on statistical characteristics [37], [41] to still work after
anonymization.

2) An IDP system can parse the payloads for protocol se-
mantics as usual; otherwise, parsing errors (e.g., finding
a malformed mail address) will occur.

3) Keeping the lengths of the original application fields
facilitates the design of anonymization tools. Otherwise,
fields such as the sequence/acknowledgement numbers in
the TCP header, as well as those in an application proto-
col, e.g., the HTTP Content � Length field, should be
adjusted accordingly, or traffic analysis that examines the
sequence/acknowledge numbers (e.g., packet reassembly
in an IDP system) will result in errors.

With the lengths preserved, the above values do not need to
be recalculated after anonymization.

IV. IMPLEMENTATION ISSUES OF PCAPLib

This section details the implementation of the PCAPLib,
which is built on a 64-bit Linux system. Section IV-A will
cover the extraction and classification phases in the ATC.
Section IV-B will cover packet dissection, field transformation,
and pattern substitution in the PCAPAnon.

1Note that the frame check sequence in the data-link layer is not included in
the adjustment since it is not part of the PCAP format.

TABLE III
CLASSIFICATION OF TRACES AND THEIR REPRESENTATIVE KEYWORDS

A. Implementation of ATC

The ATC involves two phases. In the extraction phase, the
ATC extracts the sessions associated with the logs generated
from the DUTs. In the classification phase, the ATC classifies
the extracted packet traces into each application category with
keyword matching against the logs.

1) Extraction Phase: This phase consists of three-pass scan-
ning throughout the packet traces: 1) finding an anchor packet
that generates a DUT log; 2) associating the other packets in
the same TCP or User Datagram Protocol (UDP) connection2

with the anchor packet; and 3) associating the other connections
with this anchor connection into a session. The implementation
involves an alarm log table (ALT) to record the logs from the
DUTs and a replay log table (RLT) to record the time when
tcpreplay sends each packet. The identification of the anchor
packets correlates the five-tuple and time information in the
ALT with those in the RLT. Since the five tuples may be unable
to uniquely identify a packet, the log time in the ALT and
the packet time in the RLT are correlated to set up a time
frame for narrowing down the searching scope and correctly
identifying the anchor packets. The packet association looks
for all the other packets sharing the same five tuples with the
anchor packet and groups them as the anchor connection. The
connection association groups the connections sharing similar
payloads into a session (see [40] for details of session extrac-
tion). The ATC then stores the packet traces in each individual
session, as well as related information such as the logs, into the
database for later classification.

2) Classification Phase: The repository is intended to pro-
vide packet traces in taxonomy for users to select the desirable
category of traces. Table III lists ten categories for the classi-
fication, each associated with a few representative keywords.
The classification matches the keywords in the DUT logs and
finds out the associated packet traces. This phase then separates
the packet traces into benign or malicious ones based on the
detection results of multiple security devices. If a packet trace
triggers a log on most of the security devices, it is considered
malicious with high possibility. Therefore, the classification is
2-D: One is based on applications, and the other is based on the
security events involved.

2We mean having the same five tuples, although UDP is connectionless.

526 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 2, JUNE 2016

Fig. 4. PCAPAnon packet processing.

Fig. 5. Protocol tree for dissection.

B. Implementation of the PCAPAnon System

PCAPAnon provides a configurable policy on three levels
of anonymization: 1) TCP/IP header; 2) regular-expression
matching; and 3) application-level protocol dissection. Most
anonymization tools support the first; hence, we do not repeat
here. Fig. 4 illustrates the three stages in packet processing,
i.e., 1) packet dissection, 2) field transformation, and 3) pattern
substitution, to realize the latter two levels. They are explained
as follows.

1) Packet Dissection: Wireshark provides more than 800
protocol dissectors to handle packet parsing for various appli-
cation protocols. Each dissector decodes its part of the protocol
and then hands off decoding the encapsulated protocol to subse-
quent dissectors. Wireshark uses a data structure called protocol
tree to keep the relationship between protocol layers and to
handle each layer properly. Fig. 5 illustrates a simple protocol
tree for parsing up to the TCP layer. Parsing starts with a frame
dissector, which dissects the packet details (e.g., timestamps) of
the capture file, passes the data to an Ethernet frame dissector
that decodes the Ethernet header, and then passes the payload to
the next dissector (e.g., IP), and so on. Each dissector decodes
the information in the layer it is responsible for.

Moreover, Wireshark uses protocol signatures to identify an
encapsulated protocol in the sibling nodes. Each protocol can
register its specific signature for Wireshark to distinguish the
children nodes from another. For example, registering the TCP
port field “tcp.port = 21” is considered as a signature of FTP.

Fig. 6. Patterns for private identities.

Packets with this signature will be passed to the FTP dissector.
The system is therefore highly flexible for expansion.

2) Field Transformation: This work leverages the packet
dissection in Wireshark to correctly parse and locate the
fields of hundreds of application protocols to be anonymized;
hence, the number of fields that can be specified is much
more than those of existing anonymization tools. A proto-
col field list is provided (www.wireshark.org/docs/dfref) for
users to specify the identities to be anonymized, e.g., user
identifier, password, or authentication key, which usually in-
volve private information not easily specified as a pattern.
The configuration can be also written in a script. In Fig. 4, the
Proto_tree_get_node_field_value function returns the
node field value of the protocol tree. The Hash_table_lookup
function then locates the fields to be anonymized, and the
subsequent functions replace the field values with a pattern of
equal length (e.g., from PASS 1234 to PASS XXXX).

3) Pattern Substitution: Anonymization also searches the
packet payloads for private identities with the patterns in regular
expressions (as listed in Fig. 6) to avoid missing sensitive
application fields. If a pattern matches a specific identity in
the payload, the LSP function substitutes another identity of
the same length and semantics for that identity, but if the
match is an IP address in ASCII, the LPP function is applied.
Thus, the number and lengths of packets are preserved after
anonymization. Preservation is important if the packet traces
are to be analyzed with such statistical characteristics.

Fig. 7 presents the pseudocode for LPP and LSP. Suppose
that the ASCII form of an IP address is B1 • B2 • B3 • B4. The
LPP follows four steps.

1) The number of digits in the four blocks is recorded in Di
for i = 1, 2, 3, 4.

2) DES_ECB encrypts each block Bi with the DES algo-
rithm in the ECB mode [42]. The encryption guaran-
tees that the blocks in an IP address are consistently
anonymized if they appear multiple times in the packet
traces.

3) MSB_PAD sets the most significant bit in each Bi with 1
to make every block a three-digit value.

4) The last step performs Bi = Bi%(10Di) to restore each
block to the original length in ASCII.

Note that the current implementation of LPP is prefix pre-
serving only if the prefix length is a multiple of 8 bits, which is
a common case. Prefix preserving for an arbitrary prefix length
is feasible only if the IP address is represented in binary so
far. Achieving full LPP for an arbitrary prefix length is left

LIN et al.: PCAPLib: A SYSTEM OF EXTRACTING, CLASSIFYING, AND ANONYMIZING REAL PACKET TRACES 527

Fig. 7. Pseudocode of LPP and LSP.

to future work. In LSP, PCAPAnon derives a string from the
template pattern of the same type and expands its length to
that of the matched pattern (see the examples in Fig. 7). The
matched pattern is then anonymized with the derived string.

V. EVALUATION AND OBSERVATION

The real traffic in the evaluation was captured from NCTU
BetaSite during the period from October 1, 2009 to February
1, 2010. Eight DUTs are involved in the classification, namely,
BroadWeb, Cisco, D-Link, Fortinet, McAfee, TrendMicro, Tip-
pingPoint, and ZyXEL security devices. It is noted that the
library of traces in PCAPLib depends on the DUTs, but since the
eight DUTs are representative ones on the market and we could
always extend the set of DUTs, the dependence on a particular
DUT is reduced.

Both the ATC and the PCAPAnon are evaluated in this paper,
and the evaluation for assessing FPs/FNs is in [20]. First, the
ATC classifies 318 packet traces3 randomly sampled from the
much larger repository in PCAPLib. The total size of the classi-
fied traces is 696.90 MB and should be sufficiently large for the
evaluation. We could have used much larger traces, but using
much larger ones would be too costly for manual inspection to
find the ground truth in the evaluation. Table IV presents the
numbers of the classified traces in a 10�5 classification matrix,
each entry representing distinct application behavior. The num-
ber of connections in and the total size of each packet trace are

3The evaluated packet traces are publicly accessible at [25].

also presented. Second, the privacy and utility of anonymization
tools, as well as the efficiency of three different anonymization
policies supported by PCAPAnon, are also evaluated. Table V
summarizes the ten application categories and the application
names.

A. Privacy, Utility, and Efficiency of Anonymization Policies

The privacy and utility for anonymization are defined in the
evaluation. Privacy is evaluated with the percentage of sensitive
fields in the packet traces that have been anonymized precisely,
whereas utility is evaluated with the percentage of malicious
packet traces after anonymization that can be still detected by
the DUTs. We use the open-source IDP system, Snort 2.8.5, as
the DUT for easily investigating and interpreting the results by
comparing Snort’s signatures with the packet traces.

The first step in the evaluation replays the traces collected
by the ATC to Snort and collects the logs. Next, the evaluation
anonymizes the packet traces and replays them again to calcu-
late the four metrics defining privacy and utility.

1) T P�eld denotes the set of sensitive fields that are really
anonymized.

2) F N�eld denotes the set of sensitive fields that are not
anonymized.

3) T Ptrace denotes the set of traces with malicious sig-
natures that can be still detected by the DUT after
anonymization.

4) F Ntrace denotes the set of traces with malicious sig-
natures that cannot be detected by the DUT after
anonymization.

Privacy and utility are defined as follows:

Privacy =
|T P�eld|

|T P�eld| + |F N�eld|
� 100% (1)

Utility =
|T Ptrace|

|T Ptrace| + |F Ntrace|
� 100%. (2)

Figs. 8 and 9 compare the privacy and utility of PCA-
PAnon with two other anonymization tools, i.e., anontool and
tcpanon. We choose the two tools for comparison because
they represent typical examples of payload anonymization by
pattern substitution and field transformation. Table VI lists the
sensitive identities in the four protocols HTTP, FTP, POP3, and
SMTP for a fair comparison because tcpanon supports these
parsers. Fig. 8 presents the results. We have the following two
observations.

1) anontool provides only pattern substitution in the pay-
loads, leading to serious privacy leak.

2) tcpanon uses customized parsing to hide more identities
than anontool. However, it does not design the FTP pro-
tocol parser correctly and misses some sensitive identities
such as PORT and STOR. Even if we ignore its parsing er-
ror, PCAPAnon still performs slightly better than tcpanon
for the other protocols in terms of privacy.

Like the F1 score, which is a single measure of a test’s
accuracy,4 we define a similar measure for the efficiency of

4F1 score is the harmonic mean of precision and recall.

528 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 2, JUNE 2016

TABLE IV
TRACE CLASSIFICATION MATRIX (NUMBER OF PACKET TRACES/NUMBER OF CONNECTIONS/TOTAL SIZE)

TABLE V
CATEGORIES OF APPLICATIONS

Fig. 8. Privacy of the anonymization tools.

anonymization to consider both privacy and utility simultane-
ously. The measure takes the harmonic mean of privacy and
utility in the following equation:

Efficiency =
2

1
Privacy + 1

Utility
� 100%. (3)

Fig. 9. Utility of the anonymization tools.

TABLE VI
SENSITIVE IDENTITIES FOR THE PROTOCOLS IN THE

PRIVACY EVALUATION

Fig. 10. Efficiency of the anonymization tools.

Fig. 10 presents the efficiency of the anonymization tools.
The efficiency of anontool and tcpanon is 43% and 52%,
respectively, whereas that of PCAPAnon is up to 96%, meaning
PCAPAnon can maintain both privacy and utility well.

LIN et al.: PCAPLib: A SYSTEM OF EXTRACTING, CLASSIFYING, AND ANONYMIZING REAL PACKET TRACES 529

Fig. 11. Efficiency of the three-level anonymization policies.

Fig. 11 presents the efficiency of PCAPAnon’s three-level
anonymization policies. Here, are three observations.

1) Hiding MAC/IP addresses in the L2/L3/L4 headers is
insufficient to protect sensitive identities in the payloads.

2) Pattern matching allows to replace email addresses, IP ad-
dresses, and URLs within the payloads, but if an identity
is undefined in the patterns, it will be exposed without
protection.

3) Protocol dissection can precisely parse application pay-
loads and anonymize the field values. Combining the
three policies can gain good efficiency up to 96%.

We also consider the comparison with binary protocols. The
comparison is harder than that with the preceding four human-
readable ASCII protocols because neither tcpanon nor anontool
has the parsers of the binary protocols, and it is difficult to
specify sensitive patterns for binary protocols in anontool,
except for a few cases such as the domain names appearing
in the DNS queries. Even an IP address in a DNS response
cannot be specified as a pattern because it is represented in a
4-byte binary value. If the payloads are truncated by default,
the utility will be seriously affected since the DUT relies on
deep packet inspection for malicious signatures in the packet
payloads. Thus, rather than compare PCAPAnon with the other
two tools, we study the privacy and utility of the packet traces
anonymized by PCAPAnon.

We select four binary protocols, i.e., SSH, Telnet, DNS, and
SMB/NBT, in this paper. For privacy, it is feasible to study
the syntax of each protocol and specify the right fields to be
anonymized. The anonymized fields include ssh.protocol
in SSH, telnet.data in Telnet, five fields in DNS such as
dns.qry.name and dns.resp.name, and 15 fields in SMB/NBT
such as smb.security_blob and smb.sm.password. We also
perform pattern substitution to ensure that no private infor-
mation will be inadvertently leaked. After manual inspection
of the packet traces in the extracted sessions, we see that no
sensitive information is leaked. The utility values for SSH,
Telnet, DNS, and SMB/NBT are 50%, 100%, 100%, and
72.5%, respectively.

This paper also selects malicious HTTP traces to study which
fields will affect the utility most, as many of them are in
the collection. Fig. 12 presents the impact of the anonymized
HTTP header fields on the utility. It is observed that most
malicious signatures are embedded in the host, cookie, and

request URI fields. If these fields are anonymized, the traces
will be unlikely to trigger logs. Fig. 13 illustrates an exam-
ple of FN that occurs after anonymizing the request URI
field. The original packet payload includes a request for
/etc/passwd in the URI. If the field is anonymized, the
“/etc/passwd” signature in the payload will be lost, i.e.,
the alert of “WEB � MISC/etc/passwd” will not be triggered
anymore.

B. Comparison With the ISCX Data Sets

We also compare PCAPLib with the recent ISCX data sets
[22], which consist of packet traces appearing from June 11,
2010 to June 17, 2010, and are available upon requests. That
work claims to be free from privacy issues because the data
sets are emulated from a controlled testbed environment based
on the profiles describing the attack scenario and the statistical
distribution from real networks.

Despite the innovation of that work, we find that it still has
a few weaknesses when compared with this paper. First, the
packet traces are not well classified in terms of application
protocols. A user is unable to easily get the packet traces of
a desired application protocol on demand and may have to
seek it from the huge packet traces (up to several gigabytes
for each trace). PCAPLib can automatically classify and extract
application sessions for users to search and download. This
feature is essential to a repository of packet traces.

Second, the attacks present in the ISCX data sets should be
manually specified with an exploit language. In other words,
it takes human efforts to write the scripts to describe attack
scenarios. Therefore, the provider of packet traces has to study
the attacks in real network traffic before being able to precisely
describe them. In contrast, this paper can automatically extract
packet traces with attacks and is more scalable.

Third, we find the data sets sacrifice the diversity of activities
in real network traffic. For example, in the packet traces of web
traffic in June 12, the data set contains mostly the browsing
content on an online bookstore, probably sampled from a real
user’s browsing and examined beforehand to ensure that no
privacy is inside. The SMTP traffic on that day, which contains
repeated deliveries with the mail content of the sentences from
the Exodus, is also not diverse in content. The activities in a
real environment are obviously much richer and more diverse
than those in the emulated data sets. To be numerically specific,
there are 318 packet traces out of 47 application protocols
(see Table V) from PCAPLib in the evaluation alone, but the
ISCX data sets consist of only six traces from few protocols
(HTTP, IRC, SSH, etc.). Moreover, the ISCX data sets lack
a mechanism to automatically extract packet traces from real
traffic, and without active maintenance, the data sets may be
easily outdated. It is a fundamental limitation of emulated
traffic. We argue that extraction from real network traffic is
valuable for network analysis to study Internet activities.

It is noted that we are unable to numerically compare the
PCAPLib with the ISCX data sets in terms of privacy and
utility defined in Section V-A since the original packet traces
from which the emulated traffic was derived are unavailable.
We speculate that the privacy of the ISCX data sets should be
excellent, if the packet payloads in them are closely examined

530 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 2, JUNE 2016

Fig. 12. Anonymization impact of HTTP header fields.

Fig. 13. FN in an anonymized HTTP trace.

and sanitized beforehand. Nonetheless, the utility for network
analysis will be limited because the diversity of network activi-
ties in them has been greatly reduced.

VI. CONCLUSION AND FUTURE WORK

This paper has presented the PCAPLib system to automati-
cally extract and classify application sessions from bulk traf-
fic in a scalable manner. The packet traces can be flexibly
anonymized for protecting privacy and used for network analy-
sis of various purposes not just for network security study. The
system has been proven effective by running it in an operational
network, the BetaSite, and its source code is available as a
SourceForge project at [24].

The PCAPLib system has been operating for a long time to
continuously extract the application sessions from the BetaSite.
The packet traces have been provided to cooperating organi-
zations and are planned to be made public completely in the
future. We are also working on another work toward improving
packet anonymization [34]. That work will be effectively inte-
grated with the PCAPLib and ease locating sensitive application
fields to be anonymized.

ACKNOWLEDGMENT

The authors would like to thank the staff at Network Bench-
marking Lab (NBL) for their assistance in the experimental
works.

REFERENCES

[1] P. Porras and V. Shmatikov, “Large-scale collection and sanitization of
network security data: Risks and challenges,” in Proc. Workshop NSPW,
2006, pp. 57–64.

[2] PCAPR collaborative network forensics. [Online]. Available: http://www.
pcapr.net/forensics

[3] Packetlife repository. [Online]. Available: http://www.packetlife.net/
captures

[4] CAIDA traces dataset. [Online]. Available: http://www.caida.org/home
[5] G. Minshall, TCPDPRIV: Program for eliminating confidential infor-

mation from traces. [Online]. Available: http://ita.ee.lbl.gov/html/contrib/
tcpdpriv.html

[6] R. Pang, M. Allman, V. Paxson, and J. Lee, “The devil and packet trace
anonymization,” ACM SIGCOMM Comput. Commun. Rev., vol. 36, no. 1,
pp. 29–38, Jan. 2006.

[7] K. Lakkaraju and A. Slagell, “Evaluating the utility of anonymized net-
work traces for intrusion detection,” in Proc. 4th Intl. Conf. SecureComm,
2008, p. 17.

[8] T. Farah and L. Trajkovi, “Anonym: A tool for anonymization of the
Internet traffic,” in Proc. IEEE Int. CYBCONF, Jun. 2013, pp. 261–266.

[9] TraceWrangler. [Online]. Available: http://www.tracewrangler.com
[10] M. Roesch, “Snort: Lightweight intrusion detection for networks,” in

Proc. 13th USENIX Conf. System Admin. LISA, Nov. 1999, pp. 229–238.
[11] V. Paxson, “Bro: A system for detecting network intruders in real-time,”

Comput. Netw., vol. 31, no. 23/24, pp. 2435–2463, Dec. 1999.
[12] B. Park, Y. J. Won, M. S. Kim, and J. W. Hong, “Towards automated appli-

cation signature generation for traffic identification,” in Proc. IEEE/IFIP
NOMS, Apr. 2008, pp. 160–167.

[13] K. Wang, G. Cretu, and S. Stolfo, “Anomalous payload-based worm
detection and signature generation,” in Proc. 8th Int. Symp. RAID, 2005,
pp. 227–246.

[14] W. Lu, M. Tavallaee, G. Rammidi, and A. A. Ghorbani, “BotCop: An on-
line botnet traffic classifier,” in Proc. 7th Annu. Commun. Netw. Services
Res. Conf., May 2009, pp. 70–77.

[15] Tcpanon. [Online]. Available: http://www.ing.unibs.it/ntw/tools/tcpanon
[16] W. Yurcik, C. Woolam, L. K. G. Hellings, and B. Thuraisingham,

“Scrub-tcpdump: A multi-level packet anonymizer demonstrating
privacy/analysis tradeoffs,” in Proc. 3rd IEEE Intl. Workshop SECOVAL,
2007, pp. 49–56.

[17] D. Koukis, S. Antonatos, D. Antoniades, E. P. Markatos, and
P. Trimintzios, “A generic anonymization framework for network traffic,”
in Proc. IEEE ICC, Nov. 2006, pp. 2302–2309.

[18] R. Pang and V. Paxson, “A high-level programming environment
for packet trace anonymization and transformation,” in Proc. Conf.
Appl., Technol., Architectures Protocols Comput. Commun., Aug. 2003,
pp. 339–351.

[19] Pktanon. [Online]. Available: http://www.tm.uka.de/software/pktanon
[20] C. Y. Ho, Y. C. Lai, I. W. Chen, F. Y. Wang, and W. H. Tai, “Statistical

analysis of false positives and false negatives from real traffic with intru-
sion detection/prevention systems,” IEEE Commun. Mag., vol. 50, no. 3,
pp. 146–154, Mar. 2012.

[21] S. Axelsson, “The base-rate fallacy and the difficulty of intrusion detec-
tion,” ACM TISSEC, vol. 3, no. 3, pp. 186–205, Aug. 2000.

[22] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Towards
developing a systematic approach to generate benchmark datasets for
intrusion detection,” Comput. Secur., vol. 31, no. 3, pp. 357–374,
May 2012.

http://www.pcapr.net/forensics
http://www.pcapr.net/forensics
http://www.packetlife.net/captures
http://www.packetlife.net/captures
http://www.caida.org/home
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html
http://www.tracewrangler.com
http://www.ing.unibs.it/ntw/tools/tcpanon
http://www.tm.uka.de/software/pktanon

LIN et al.: PCAPLib: A SYSTEM OF EXTRACTING, CLASSIFYING, AND ANONYMIZING REAL PACKET TRACES 531

[23] Y. D. Lin, I. W. Chen, P. C. Lin, C. S. Chen, and C. Hsu, “On campus
beta site: Architecture designs, operational experience, and top product
defects,” IEEE Commun. Mag., vol. 48, no. 12, pp. 83–91, Dec. 2010.

[24] The PCAPLib project in the SourceForge. [Online]. Available: http://
sourceforge.net/projects/pcaplib

[25] The PCAPLib framework. [Online]. Available: http://scholars.nbl.org.tw/
pcaplib

[26] Harpoon traffic generator. [Online]. Available: http://pages.cs.wisc.edu/
jsommers/harpoon

[27] R. Lippmann, R. K. Cunningham, D. J. Fried, I. Graf, K. R. Kendall,
S. E. Webster, and M. A. Zissman, “Results of the 1998 DARPA
offline intrusion detection evaluation,” in Proc. Int. Symp. RAID, 1999,
pp. 262–271.

[28] DARPA intrusion detection evaluation data sets. [Online]. Available:
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/
index.html

[29] V. Paxson, “Considerations and pitfalls for conducting intrusion detection
research,” in Proc. 4rth GI Int. Conf. DIMVA, 2007, pp. 1–37.

[30] S. Floyd and V. Paxson, “Difficulties in simulating the Internet,”
IEEE/ACM Trans. Netw., vol. 9, no. 4, pp. 392–403, Aug. 2001.

[31] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in Proc. IEEE Symp. Secur.
Privacy, May 2010, pp. 305–316.

[32] J. Heidemann and C. Papadopoulos, “Uses and challenges for network
datasets,” in Proc. IEEE CATCH, Mar. 2009, pp. 73–82.

[33] Wireshark SampleCaptures. [Online]. Available: http://wiki.wireshark.
org/SampleCaptures

[34] P. C. Lin and Y. W. Lin, “Towards packet anonymization by
automatically inferring sensitive application fields,” in Proc. ICACT ,
Feb. 2012, pp. 87–92.

[35] R. Ramaswamy and T. Wolf, “High-speed prefix-preserving IP address
anonymization for passive measurement systems,” IEEE/ACM Trans.
Netw., vol. 15, no. 1, pp. 26–39, Feb. 2007.

[36] U. Lamping, “Wireshark developer’s guide,” Wireshark Foundation,
Tech. Rep., 2008. [Online]. Available: http://www.wireshark.org/docs/
wsdg_html_chunked

[37] J. Erman, M. Arlitt, and A. Mahanti, “Traffic classification using cluster-
ing algorithms,” in Proc. ACM SIGCOMM, 2006, pp. 281–286.

[38] M. Foukarakis, D. Antoniades, and M. Polychronakis, “Deep packet
anonymization,” in Proc. 2nd EUROSEC, Mar. 2009, pp. 16–21.

[39] M. Burkhart, D. Schatzmann, B. Trammell, E. Boschi, and B. Plattner,
“The role of network trace anonymization under attack,” ACM SIGCOMM
Comput. Commun. Rev., vol. 40, no. 1, pp. 5–11, Jan. 2010.

[40] I. W. Chen, P. C. Lin, C. C. Luo, T. H. Cheng, Y. D. Lin, Y. C. Lai, and
F. C. Lin, “Extracting attack sessions from real traffic with intrusion
prevention systems,” in Proc. IEEE ICC, Jun. 2009, pp. 1–5.

[41] Y. D. Lin, C. N. Lu, Y. C. Lai, W. H. Peng, and P. C. Lin, “Application
classification using packet size distribution and port association,” J. Netw.
Comput. Appl., vol. 32, no. 5, pp. 1023–1030, Sep. 2009.

[42] Block cipher modes of operation. [Online]. Available: http://en.wikipedia.
org/wiki/Block_cipher_modes_of_operation

Ying-Dar Lin (F’13) received the Ph.D. degree in
computer science from the University of California,
Los Angeles, CA, USA, in 1993.

He is currently a Professor of computer sci-
ence with National Chiao Tung University, Hsinchu,
Taiwan. He served as the Chief Executive Offi-
cer of Telecom Technology Center, Taipei, Taiwan,
in 2010–2011 and a Visiting Scholar with Cisco
Systems, San Jose, CA, in 2007–2008. In 2002,
he founded the Network Benchmarking Laboratory
(www.nbl.org.tw), National Chiao Tung University,

which reviews network products with real traffic where has been also the
Director. He also cofounded L7 Networks, Inc., in 2002, which was later ac-
quired by D-Link Corporation. He published a textbook “Computer Networks:
An Open Source Approach” (www.mhhe.com/lin), with R.-H. Hwang and
F. Baker (McGraw-Hill, 2011). His research interests include the design, anal-
ysis, implementation, and benchmarking of network protocols and algorithms;
quality of services; network security; deep packet inspection; and embedded
hardware/software codesign. His work on multihop cellular was the first along
this line, and it has been cited for more than 600 times and standardized into
IEEE 802.11s, IEEE 802.15.5, IEEE 802.16j, and 3GPP LTE-Advanced.

Prof. Lin became an IEEE Fellow (class of 2013) for his contributions to
multihop cellular communications and deep packet inspection. He is an IEEE
Distinguished Lecturer for 2014/2015. He has also served in the editorial boards
of several journals and program committees of many conferences.

Po-Ching Lin received the B.S. degree in computer
and information education from National Taiwan
Normal University, Taipei, Taiwan, in 1995 and the
M.S. and Ph.D. degrees in computer science from
National Chiao Tung University, Hsinchu, Taiwan,
in 2001 and 2008, respectively.

In August 2009, he joined the faculty of the
Department of Computer and Information Science,
National Chung Cheng University, Chiayi, Taiwan,
where he is currently an Assistant Professor. His
research interests include network security, network

traffic analysis, and performance evaluation of network systems.

Sheng-Hao Wang received the Master’s degree in
computer science from National Chiao Tung Univer-
sity, Hsinchu, Taiwan, in 2010.

He is currently a Research and Development Soft-
ware Engineer with the Institute for Information
Industry, Taipei, Taiwan. His research interests in-
clude system behavior analysis, network security,
and cloud security.

I-Wei Chen received the B.S. and M.S. degrees
in computer and information science from National
Chiao Tung University (NCTU), Hsinchu, Taiwan.

In 2003, he joined the Network Benchmarking
Laboratory (NBL), NCTU, where he is currently the
Executive Director. At NBL, he is engaged in the
development of testing technologies for network and
communication devices. He is particularly interested
in technologies using real-world network traffic to
test products.

Yuan-Cheng Lai received the Ph.D. degree in com-
puter science from National Chiao Tung University,
Hsinchu, Taiwan, in 1997.

In 2001, he joined the faculty of the Department
of Information Management, National Taiwan Uni-
versity of Science and Technology, Taipei, Taiwan,
where he has been a Professor since 2008. His re-
search interests include wireless networks, network
performance evaluation, network security, and social
networks.

http://sourceforge.net/projects/pcaplib
http://sourceforge.net/projects/pcaplib
http://scholars.nbl.org.tw/pcaplib
http://scholars.nbl.org.tw/pcaplib
http://pages.cs.wisc.edu/jsommers/harpoon
http://pages.cs.wisc.edu/jsommers/harpoon
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html
http://wiki.wireshark.org/SampleCaptures
http://wiki.wireshark.org/SampleCaptures
http://www.wireshark.org/docs/wsdg_html_chunked
http://www.wireshark.org/docs/wsdg_html_chunked
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

