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Abstract—Multi-field packet classification has evolved from tra-
ditional fixed 5-tuple matching to flexible matching with arbitrary
combination of numerous packet header fields. For example, the
recently proposed OpenFlow switching requires classifying each
packet using up to 12-tuple packet header fields. It has become
a great challenge to develop scalable solutions for next-genera-
tion packet classification that support higher throughput, larger
rule sets and more packet header fields. This paper exploits
the abundant parallelism and other desirable features provided
by current field-programmable gate arrays (FPGAs), and pro-
poses a decision-tree-based, 2-D multi-pipeline architecture for
next-generation packet classification. We revisit the techniques for
traditional 5-tuple packet classification and propose several op-
timization techniques for the state-of-the-art decision-tree-based
algorithm. Given a set of 12-tuple rules, we develop a framework
to partition the rule set into multiple subsets each of which is
built into an optimized decision tree. A tree-to-pipeline mapping
scheme is carefully designed to maximize the memory utilization
while sustaining high throughput. The implementation results
show that our architecture can store either 10K real-life S-tuple
rules or 1K synthetic 12-tuple rules in on-chip memory of a single
state-of-the-art FPGA, and sustain 80 and 40 Gbps throughput
for minimum size (40 bytes) packets, respectively.

Index Terms—Decision tree, field-programmable gate array
(FPGA), openflow, packet classification, pipeline, SRAM.

I. INTRODUCTION

HE development of the Internet demands next-generation

routers to support a variety of network functionalities,
such as firewall processing, quality of service (QoS) differen-
tiation, virtual private networks, policy routing, traffic billing,
and other value added services. In order to provide these ser-
vices, the router needs to classify the packets into different cate-
gories based on a set of predefined rules, which specify the value
ranges of the multiple fields in the packet header. Such a func-
tion is called multi-field packet classification. In traditional net-
work applications, packet classification problems usually con-
sider the fixed 5-tuple fields: 32-bit source/destination IP ad-
dresses, 16-bit source/destination port numbers, and 8-bit trans-
port layer protocol. Recently network virtualization emerges as
an essential feature for next-generation enterprise, data center
and cloud computing networks. This requires the underlying
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data plane be flexible and provide clean interface for control
plane [1]. One such effort is the OpenFlow switch which man-
ages explicitly the network flows using a rule set with rich defi-
nition as the software-hardware interface [2]. In OpenFlow, up
to 12-tuple header fields are considered [3]. We call such Open-
Flow-like packet classification the next-generation packet clas-
sification problems.

Due to the rapid growth of the Internet traffic, as well as the
rule set size, multi-field packet classification has become one
of the fundamental challenges to designing high speed routers.
For example, the current link rate has been pushed beyond the
OC-768 rate, i.e., 40 Gbps, which requires processing a packet
every 8 ns in the worst case (where the packets are of minimum
size, i.e.,40 bytes). Such throughput is impossible using existing
software-based solutions [4]. Next-generation packet classifica-
tion on more header fields poses an even bigger challenge. Most
of the existing work in high-throughput packet classification is
based on ternary content addressable memory (TCAM) [5]-[7]
or a variety of hashing schemes such as Bloom Filters [8]-[10].
However, TCAMs are not scalable with respect to clock rate,
power consumption, or circuit area, compared to SRAMs [11].
Most of TCAM-based solutions also suffer from range expansion
when converting ranges into prefixes [6], [7]. Hashing-based
solutions such as Bloom Filters have become popular due to their
O(1) time performance and high memory efficiency [12]. How-
ever, hashing cannot provide deterministic performance due to
potential collision and is inefficient in handling wildcard or prefix
matching [13]. A secondary module is always needed to resolve
false positives inherent in Bloom Filters, which may be slow and
can limit the overall performance [14].

As an alternative, our work focuses on optimizing and
mapping state-of-the-art packet classification algorithms onto
SRAM-based parallel architectures such as field-programmable
gate array (FPGA). FPGA technology has become an attractive
option for implementing real-time network processing engines
[71, [10], [15] due to its ability to reconfigure and to offer abun-
dant parallelism. State-of-the-art SRAM-based FPGA devices
such as Xilinx Virtex-6 [16] and Altera Stratix-IV [17] provide
high clock rate, low power dissipation and large amounts of
on-chip dual-port memory with configurable word width. In
this paper we exploit these desirable features in current FPGAs
for designing high-performance next-generation packet classi-
fication engines.

The contributions of this paper are as follows.

* To the best of our knowledge, this work is among the first
discussions of accelerating next-generation packet classi-
fication using FPGA. After revisiting the traditional fixed
S-tuple packet classification solutions, we adopt decision-
tree-based schemes, which are considered among the most
scalable packet classification algorithms [13], [18].

1063-8210/$26.00 © 2011 IEEE
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TABLE I
EXAMPLE 5-TUPLE RULE SET

[Rule | SA [ DA [ spP DP Protocol | Priority || Action
R1 * * 2-9 6—11 * 1 act0
R2 1* 0* 3-8 1-4 10 2 act0
R3 0* 0110% 9-12 10 - 13 11 3 actl
R4 0* 11* 11-14 4-8 * 4 act2
R5 011%* 11* 1-4 9-15 10 5 act2
R6 011* 11* 1-4 4-15 10 5 actl
R7 110* 00* 0-15 5-6 11 6 act3
RS 110* | 0110* 0-15 5-6 * 6 act0
R9 111* | 0110%* 0-15 7-9 11 7 act2
R10 111* 00* 0-15 4-9 * 7 actl
* We identify memory explosion to be the major challenge TABLE II
for handling 12-tuple packet classification. To address this HEADER FIELDS SUPPORTED IN CURRENT OPENFLOW
challenge, we propose a decision-tree-based multi-pipeline Header field Notation | # of bits
architecture. We develop a framework, called decision Ingress port Variable
forest, to partition a given set of 12-tuple rules into mul- Source Ethernet addresses Eth src 48
tiple subsets so that each subset uses a small number of Destination Ethernet address | Eth dst 48
header fields to build a decision tree of bounded depth. Ethernet type Eth type 16
» We tackle the problem of rule duplication when building VLAN ID 12
the decision tree. Two optimization techniques, called rule VLAN Priority 3
. . . Source IP address SA 32
overlap reduction and precise range cutting, are proposed o
to minimize the rule duplication. As a result, the memory Destination I address DA 32
K X R R ? IP Protocol Prtl 8
requirement is almost linear with the number of rules. IP Type of Service ToS 6
* To map the tree onto the pipeline architecture, we intro- Source port Sp 16
duce a fine-grained node-to-stage mapping scheme which Destination port DP 16

allows imposing the bounds on the memory size as well as
the number of nodes in each stage. As a result, the memory
utilization of the architecture is maximized. The memory
allocation scheme also enables using external SRAMs to
handle even larger rule sets.

*  We exploit the dual-port high-speed Block RAMs provided
in state-of-the-art FPGAs to achieve a high throughput of
two packets per clock cycle (PPC). On-the-fly rule update
without service interruption becomes feasible due to the
memory-based linear architecture. All the routing paths are
localized to avoid large routing delay so that a high clock
frequency is achieved.

+ Implementation results show that our architecture can store
1K 12-tuple rules in a single Xilinx Virtex-5 FPGA, and
sustain 40 Gbps throughput for matching minimum size
(40 bytes) packets. To the best of our knowledge, this is
the first FPGA design for 12-tuple packet classification to
achieve over 10 Gbps. For traditional 5-field packet classi-
fication, our design can store 10K 5-tuple rules in a single
Xilinx Virtex-5 FPGA, and sustain 80 Gbps throughput for
minimum size (40 bytes) packets.

The rest of this paper is organized as follows. Section II states
the problem we intend to solve, and summarizes several repre-
sentative packet classification algorithms. Section III reviews
the related work on FPGA-based multi-field packet classifica-
tion engines. Section IV introduces our algorithms for parti-
tioning the rule set and building the optimized decision tree.
Section V presents the SRAM-based multi-pipeline architec-
ture and the tree-to-pipeline mapping scheme. Section VI de-
scribes the FPGA implementation of our architecture in details.

Section VII evaluates the performance of the algorithms and the
architecture. Section VIII concludes this paper.

II. BACKGROUND

A. Problem Statement

In traditional 5-tuple packet classification, an IP packet is
usually classified based on the 5 fields in the packet header:
the 32-bit source/destination IP addresses (denoted SA/DA),
16-bit source/destination port numbers (denoted SP /DP), and
8-bit transport layer protocol. Individual entries for classifying
a packet are called rules. Each rule can have one or more
fields and their associated values, a priority, and an action to
be taken if matched. Different fields in a rule require different
kinds of matches: prefix match for SA/DA, range match for
SP/DP, and exact match for the protocol field. Table I shows a
simplified example, where each rule contains match conditions
for 5 fields: 8-bit source and destination addresses (SA/DA),
4-bit source and destination port numbers (SP/DP), and a 2-bit
protocol value.

Next-generation packet classification aims to match a larger
number of header fields. The recently proposed OpenFlow
switch [2], [3] enables network virtualization and brings pro-
grammability and flexibility to the network infrastructure. The
major processing engine in the OpenFlow switch is packet
classification, where up to 12-tuple header fields of each packet

IThe width of the ingress port is determined by the number of ports of the
switch/router. For example, 6-bit ingress port indicates that the switch/router
has up to 63 ports.
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TABLE III

EXAMPLE OPENFLOW RULE SET (ETHERNET SRC/DST: 16-BIT; SA/DA:8-BIT; SP/DP: 4-BIT)

Rule

Ingr
port

Eth
src

Eth
type

VLAN

VLAN
priority

IP src
(SA)

IP dst
(DA)

1P
Protocol

1P
ToS

Port src
(SP)

Port dst
(DP)

Action

R1

*

00:13

*

*

*

*

*

*

act0

R2

00:07

*

¥

¥

act0

R3

*

*

actl

R4

00:1F

0x8100

*

*

actl

R5

0x0800

*

01%*

¥
¥
*
¥

act2

R6

*| %] %

0x0800

001*

11*

act0

R7

0x0800

001*

11*

act3

R8

0x0800

100*

110*

actl

R9

00:FF

0x0800

0011*

1100*

act0

R10

AR IREIEIEIREIEIES

00:1F

0x0800

N x| x| %] x| | w| *

01000001

10100011

O] #| *| ®| *®| %[ %| *| %

NN

act0

are matched against all the rules [3]. The 12-tuple header
fields supported in the current OpenFlow specification include
the ingress port, source/destination Ethernet addresses, Eth-
ernet type, VLAN ID, VLAN priority, source/destination IP
addresses, IP protocol, IP Type of Service bits, and source/des-
tination port numbers [3]. Table II shows the width of each
field.!

Each field of an OpenFlow rule can be specified as either
an exact number or a wildcard. IP address fields can also be
specified as a prefix. Table III shows a simplified example of
OpenFlow rule table, where we consider 16-bit Eth src/dst, 8-bit
SA/DA, and 4-bit SP/DP. In the subsequent discussion, we have
the following definitions.

» Simple rule is the rule of which all the fields are specified

as exact values, e.g., R10 in Table III.
* Complex rule is the rule containing wildcards or prefixes,
e.g., R1-9 in Table III.

A packet is considered matching a rule only if it matches all
the fields within that rule. A packet can match multiple rules,
but only the rule with the highest priority is used to take action.

B. Revisiting Packet Classification Algorithms

Next-generation packet classification can be viewed as a
natural extension from traditional 5-tuple packet classification
whose solutions have been extensively studied in the past
decade. Comprehensive surveys can be found in [4] and [18].
Most of those algorithms fall into two categories: decomposi-
tion-based and decision-tree-based approaches.

Decomposition-based algorithms (e.g., parallel bit vector
[19]), perform independent search on each field and finally
combine the search results from all fields. Such algorithms are
desirable for hardware implementation due to their parallel
search on multiple fields. However, substantial storage is usu-
ally needed to merge the independent search results to obtain
the final result. Decomposition-based algorithms have poor
scalability, and work well only for small-scale rule sets.

Decision-tree-based algorithms (e.g., HyperCuts [20]), take
the geometric view of the packet classification problem. Each
rule defines a hypercube in a d-dimensional space where d is
the number of header fields considered for packet classification.
Each packet defines a point in this d-dimensional space. The
decision tree construction algorithm employs several heuristics
to cut the space recursively into smaller subspaces. Each sub-
space ends up with fewer rules, which finally allows a low-

R1

R4

R2

(a)
X: 2 cuts X: 2 cuts

Y: 2 cuts
R1 Y: 2 cuts

R1 R R1 R1
Rz| 3| |Bl||R1) 'g>llRg

R4 R4 R4 R4

(b) ©

Fig. 1. Example of HiCuts and HyperCuts decision trees. (a) X and Y axes
correspond to SP and DP fields for R1-R5 in Table I. (b), (¢) A rounded rectangle
in plain color denotes an internal tree node, and a rectangle in gray a leaf node.

cost linear search to find the best matching rule. After the de-
cision tree is built, the algorithm to classify a packet is simple.
Based on the value of the packet header, the algorithm follows
the cutting sequence to locate the target subspace (i.e., a leaf
node in the decision tree), and then performs a linear search
on the rules in this subspace. Decision-tree-based algorithms
allow incremental rule updates and scale better than decomposi-
tion-based algorithms. The outstanding representatives of deci-
sion-tree-based packet classification algorithms are HiCuts [21]
and its enhanced version HyperCuts [20]. At each node of the
decision tree, the search space is cut based on the information
from one or more fields in the rule. HiCuts builds a decision
tree using local optimization decisions at each node to choose
the next dimension to cut, and how many cuts to make in the
chosen dimension. The HyperCuts algorithm, on the other hand,
allows cutting on multiple fields per step, resulting in a fatter
and shorter decision tree. Fig. 1 shows the example of the Hi-
Cuts and the HyperCuts decision trees for a set of 2-field rules
which can be represented geometrically. These rules are actu-
ally R1-R5 given in Table I, when only SP and DP fields are
considered.
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In the worst case, both decision-tree-based and decomposi-
tion-based algorithms suffer from O(N¢) memory explosion
where IV denotes the number of rules and d the number of fields
in a rule [18].

III. RELATED WORK

A. FPGA Designs for 5-Tuple Packet Classification

Although traditional 5-tuple packet classification is consid-
ered a saturated area of research, little work has been done
on FPGAs. Most of existing FPGA implementations of packet
classification engines are based on decomposition-based packet
classification algorithms, such as BV [19] and DCFL [22].

Lakshman et al. [19] propose the Parallel Bit Vector (BV)
algorithm, which is a decomposition-based algorithm targeting
hardware implementation. It performs the parallel lookups on
each individual field first. The lookup on each field returns a
bit vector with each bit representing a rule. A bit is set if the
corresponding rule is matched on this field; a bit is reset if the
corresponding rule is not matched on this field. The result of the
bitwise AND operation on these bit vectors indicates the set of
rules that matches a given packet. The BV algorithm can pro-
vide a high throughput at the cost of low memory efficiency.
Given N rules with D fields, since the projection of the /V rules
on each field may have U = O(N) unique values and each
value corresponds to one N-bit vector, the memory require-
ment of BV algorithms is U x N * D = O(N?). By combining
TCAMs and the BV algorithm, Song et al. [7] present an archi-
tecture called BV-TCAM for multi-match packet classification.
A TCAM performs prefix or exact match, while a multi-bit trie
implemented in Tree Bitmap [23] is used for source or desti-
nation port lookup. [7] does not report the actual FPGA imple-
mentation results, though it claims that the whole circuit for 222
rules consumes less than 10% of the available logic and fewer
than 20% of the available Block RAMs of a Xilinx XCV2000E
FPGA. It also predicts the design after pipelining can achieve
10 Gbps throughput when implemented on advanced FPGAs.

Taylor et al. [22] introduce Distributed Crossproducting of
Field Labels (DCFL), which is also a decomposition-based al-
gorithm leveraging several observations of the structure of real
filter sets. They decompose the multi-field searching problem
and use independent search engines, which can operate in par-
allel to find the matching conditions for each filter field. Instead
of using bit vectors, DCFL uses a network of efficient aggre-
gation nodes, by employing Bloom Filters and encoding inter-
mediate search results. As a result, the algorithm avoids the
exponential increase in the time or space incurred when per-
forming this operation in a single step. The authors predict that
an optimized implementation of DCFL can provide over 100
million packets per second (MPPS) and store over 200K rules
in the current generation of FPGA or application-specific inte-
grated circuit (ASIC) without the need of external memories.
However, their prediction is based on the maximum clock fre-
quency of FPGA devices and a logic intensive approach using
Bloom Filters. This approach may not be optimal for FPGA im-
plementation due to long logic paths and large routing delays.
Furthermore, the estimated number of rules is based only on the
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assumption of statistics similar to those of the currently avail-
able rule sets. Jedhe et al. [15] realize the DCFL architecture
in their complete firewall implementation on a Xilinx Virtex
2 Pro FPGA, using a memory intensive approach, as opposed
to the logic intensive one, so that on-the-fly update is feasible.
They achieve a throughput of 50 MPPS, for a rule set of 128 en-
tries. They also predict the throughput can be 24 Gbps when the
design is implemented on Virtex-5 FPGAs. Papaefstathiou et
al. [9] propose a memory-efficient decomposition-based packet
classification algorithm, which uses multi-level Bloom Filters
to combine the search results from all fields. Their FPGA im-
plementation, called 2sBFCE [10], shows that the design can
support 4K rules in 178 Kbytes memories. However, the design
takes 26 clock cycles on average to classify a packet, resulting in
low throughput of 1.875 Gbps on average. Note that both DCFL
[22] and 2sBFCE [10] may suffer from false positives due to the
use of Bloom Filters, as discussed in Section I.

Two recent works [24], [25] discuss several issues in imple-
menting decision-tree-based packet classification algorithms on
FPGA, with different motivations. Luo et al. [24] propose a
method called explicit range search to allow more cuts per node
than the HyperCuts algorithm. The tree height is dramatically
reduced at the cost of increased memory consumption. At each
internal node, a varying number of memory accesses may be
needed to determine which child node to traverse, which may
be infeasible for pipelining. Since the authors do not implement
their design on FPGA, the actual performance results are un-
clear. To achieve power efficiency, Kennedy et al. [25] imple-
ment a simplified HyperCuts algorithm on an Altera Cyclone
3 FPGA. They store up to hundreds of rules in each leaf node
and match them in parallel, resulting in low clock frequency (32
MHz reported in [25]). Since the search in the decision tree is
not pipelined, their implementation can sustain only 0.47 Gbps
in the worst cases where it takes 23 clock cycles to classify a
packet for the rule set FW_20K.

B. Hardware Accelerators for OpenFlow

While OpenFlow switch technology is evolving, little atten-
tion has been paid on improving the performance of 12-tuple
packet classification. Luo et al. [26] propose using network pro-
cessors to accelerate the OpenFlow switching. Similar to the
software implementation of the OpenFlow switching, hashing
is adopted for simple rules while linear search is performed
on the complex rules. When the number of complex rules be-
comes large, using linear search leads to low throughput. More-
over, hashing-based solutions may suffer from hash collision
and cannot produce deterministic throughput. Naous ef al. [27]
implement the OpenFlow switch on NetFPGA which is a Xilinx
Virtex-2 Pro 50 FPGA board tailored for network applications.
They use hashing for simple rules and a small TCAM imple-
mented on FPGA for complex rules. Due to the high cost to
implement TCAM on FPGA, their design can support no more
than few tens of complex rules. Though it is possible to use ex-
ternal TCAMs for large rule tables, high power consumption of
TCAMs remains a big challenge. To the best of our knowledge,
none of existing schemes for OpenFlow-like packet classifica-
tion can sustain throughput above 10 Gbps in the worst case
where packets are of minimum size i.e., 40 bytes.
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Input: Rule set R.
Input: Parameters: listSize, depthBound, P.
Output: Decision forest: {7;i =0,1,---,P —1}.
1: 1+ 0, R; + R and split + TRUE.
2: while i < P do
3:  if 4 == P — 1 then {The last subset / tree}
4: split < FALSE
5 {Ti,Riy1} < BuildTree (R,
depthBound)
6 i+ i+1

split, listSize,

Fig. 2. Building the decision forest.

IV. MOTIVATIONS AND ALGORITHMS

A. Rule Set Partitioning

1) Motivation: Decision-tree-based algorithms (such as
HyperCuts) usually scale well and are suitable for rule sets
where the rules have little overlap with each other. But they
suffer from rule duplication which can result in O( N¢) memory
explosion in the worst case, where N denotes the number of
rules and ¢ the number of fields in a rule. Moreover, the
depth of a decision tree can be as large as O(W), where W
denotes the total number of bits per packet for lookup. d = 12,
W > 237 in OpenFlow. For the example of OpenFlow table
shown in Table III, if we consider only SA and DA fields,
decision-tree-based algorithms such as HyperCuts [20] cut the
search space recursively based on the values from SA and DA
fields. No matter how to cut the space, R1-4 will be duplicated
to all children nodes. This is because their SA/DA fields are
wildcards, i.e., not specified. Similarly, if we build the decision
tree based on source/destination Ethernet addresses, R5—8 will
be duplicated to all children nodes, no matter how the cutting
is performed.

Hence an intuitive idea is to partition a table of complex rules
into different subsets. The rules within the same subset specify
nearly the same set of header fields. For each rule subset, we
build the decision tree based on the specified fields used by the
rules within this subset. For instance, the example rule table
can be partitioned into two subsets: one contains the rules R1-4
and the other contains R5-10. We can use only source/destina-
tion Ethernet addresses to build the decision tree for the first
subset while only SA/DA fields for the second subset. As a re-
sult, the rule duplication will be dramatically reduced. Mean-
while, since each decision tree after such partitioning employs
a much smaller number of fields than the single decision tree
without partitioning, we can expect considerable resource sav-
ings in hardware implementation.

2) Algorithm: We develop the rule set partitioning algorithm
to achieve the following goals:

* reduce the overall memory requirement;

* bound the depth of each decision tree;

* bound the number of decision trees.

Rather than perform the rule set partitioning and the decision
tree construction in two phases, we combine them efficiently in
the algorithm shown in Fig. 2. The outcome of the algorithm is
multiple decision trees, which we call decision forest. The rule
set is partitioned dynamically during the construction of each
decision tree. The function for building an optimized decision
tree i.e., BuildTree( - ) is detailed in Fig. 4 in Section IV-B.
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The parameter P bounds the number of decision trees in a
decision forest. We have the rule set R, to build the ¢th tree
whose construction process will split out the rule set R, 4. ¢ =
0,1,..., P — 1. In other words, the rules in R; — R;;; are ac-
tually matched in the ith tree. The parameter spli¢ determines
if the rest of the rule set will be partitioned. When building
the last decision tree, split is disabled so that all the remaining
rules are used to construct the tree. The rule duplication in the
first P — 1 trees will thus be reduced. Other parameters include
depthBound which bounds the depth of each decision tree, and
listSize which is inherited from the original HyperCuts algo-
rithm to determine the maximum number of rules allowed to
be contained in a leaf node.

The decision tree construction algorithm shown in Fig. 4 is
based on the original HyperCuts algorithm, where Lines 6—7
and 17-19 are the major changes related to rule set partitioning.
Lines 6-7 are used to bound the depth of the tree. After deter-
mining the optimal cutting information (including the cutting
fields and the number of cuts on these fields) for the current
node, we identify the rules which may be duplicated to the chil-
dren nodes (by the PotentialDuplicatedRule() function). These
rules are then split out of the current rule set and pushed into the
split-out rule set R.x. The split-out rule set will be used to build
the next decision tree(s).

B. Optimizing HyperCuts

1) Motivation: After rule set partitioning, the rule duplica-
tion due to wildcard fields will be reduced. However, the Hi-
Cuts/HyperCuts algorithm may still suffer from rule duplication
due to its own inefficiency. For example, as shown in Fig. 1,
rules R1, R2, and R4 are replicated into multiple child nodes, in
both HiCuts and HyperCuts trees.

We identify that the rule duplication when building the deci-
sion tree comes from two sources: 1) overlapping between dif-
ferent rules and 2) evenly cutting on all fields. Taking the rule
set in Fig. 1 as an example, since R1 overlaps with R3 and RS,
no matter how to cut the space, R1 will be replicated into the
nodes which contain R3 or RS5. Since each dimension is alway
evenly cut, R2 and R4 are replicated though they do not overlap
with any other rule. The second source of rule duplication exists
only when cutting the port or the protocol fields of the packet
header, since the prefix fields are evenly cut in nature. A prefix
is matched from the most significant bit (MSB) to the least sig-
nificant bit (LSB), which is equal to cutting the value space by
half per step.

Accordingly, we propose the following two optimization
techniques, called rule overlap reduction and precise range
cutting.

* Rule overlap reduction: We store the rules (e.g., R1 shown
in Fig. 3) which will be replicated into child nodes, in a list
attached to each internal node. These rule lists are called
internal rule lists.

* Precise range cutting: Assuming both X and Y in Fig. 3 are
port fields, we seek the cutting points which result in the
minimum number of rule duplication, instead of deciding
the number of cuts for this field.
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Y I
|
R5 X: 2 cuts
s Y: 2 cuts Bl
_-—--R1-—!————
] R4
Ll R2 R4 R5 R3
R2:|
I
I =X

Fig. 3. Reducing rule duplication in HyperCuts tree.

As shown in Fig. 3, after applying the two optimizations, rule
duplication is dramatically reduced, compared with Fig. 1(c).
The memory requirement becomes linear with the number of
rules. Section IV-B2 discusses the details about building the de-
cision tree.

The proposed rule overlap reduction technique is similar to
the push common rule upwards heuristic proposed by the au-
thors of HyperCuts [20], where rules common to all descen-
dant leaves are processed at the common parent node instead
of being duplicated in all children. However, the push common
rule upwards heuristic can solve only a fraction of rule dupli-
cation that is solved by our technique. Taking the HyperCuts
tree in Fig. 1(c) as an example, only R1 will be pushed upwards
while our technique allows storing R2 and R4 in the internal
nodes as well. Also, the push common rule upwards heuristic is
applied after the decision tree is built, while our rule overlap re-
duction technique is integrated with the decision tree construc-
tion algorithm.

2) Algorithm: Starting from the root node with the full rule
set, we recursively cut the tree nodes until the number of rule in
all the leaf nodes is smaller than a parameter named /istSize. At
each node, we need to figure out the set of fields to cut and the
number of cuts performed on each field. We restrict the max-
imum number of cuts at each node to be 64. In other words, an
internal node can have 2, 4, 8, 16, 32, or 64 children. For the
port fields, we need to determine the precise cut points instead
of the number of cuts. Since more bits are needed to store the cut
points than to store the number of cuts, we restrict the number
of cuts on port fields to be at most 2. For example, we can have
2 cuts on SA, 4 cuts on DA, 2 cuts on SP, and 2 cuts on DP. We
do not cut on the protocol field since the first 4 fields are nor-
mally enough to distinguish different rules in real life [28].

We use the same criteria as in HiCuts [21] and HyperCuts
[20] to determine the set of fields to cut (ChooseField()) and
the number of cuts performed on SA and DA fields (OptNum-
Cuts()). Our algorithm differs from HiCuts and HyperCuts in
two aspects. First, when the port fields are selected to cut, we
seek the cut point which results in the least rule duplication.
Second, after the cutting method is determined, we pick the rules
whose duplication counts are the largest among all the rules cov-
ered by the current node, and push them into the internal rule
list of the current node, until the internal rule list becomes full.
Fig. 4 shows the complete algorithm for building the decision
tree, where n denotes a tree node, f a packet header field, and
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Input: Rule set R.

Input: Parameters: split, listSize, depthBound.

Output: Decision tree 1" and the split-out set Reg.
1: Initialize the root node and push it into nodeList.

2: while nodeList # null do

n < Pop(nodeList)

if n.numRules < listSize then
n is a leaf node. Continue.

if n.depth == depthBound then
Assign to n the listSize most specified rules from
n.rules. Push remaining rules of n.rules into Re,.
n is a leaf node. Continue.

8. n.numCuts =1

9:  while n.numCuts < 64 do

10: f « ChooseField(n)

3

11: if f is SA or DA then

12: numCuts(f] + OptNumCuts(n, f)

13: n.numCuts *= numCuts|f]

14: else if f is SP or DP then

15: cut Point[f] < OptCutPoint(n, f)

16: n.numCuts *= 2

17: if split is TRUE then

18: r + Potential Duplicated Rule(n, numCuts)

19: Push r into R...

20: Update the duplication counts of all » € n.ruleSet:
r.dupCount < # of copies of r after cutting.

21: while n.internalList.numRules < listSize do

22: Find 1, which has the largest duplication count

among the rules in n.ruleSet\n.internal List.

23: Push r,, into n.internalList.

24: if All child nodes contain less than [istSize rules
then

25: Break.

26:  Push the child nodes into nodeList.

Fig. 4. Building the decision tree and the split-out set: {7, Rex}
BuildTree(R, split, listSize, depthBound).

SA: 2 cuts

DA: 2 cuts g
R4,R5R6 R7,R8,R9, R10
R3
DP: 2 cuts DA: 2 cuts
@8l9) i DP: 2 cuts 8]7) || 1O
R4 R5 R7 R8 R9

Fig. 5. Building the decision tree for the rule set given in Table 1. (The values
in parentheses represent the cut points on the port fields.)

r a rule. Fig. 5 shows the decision tree constructed for the rule
set given in Table I.

V. ARCHITECTURE

A. Overview

To achieve line-rate throughput, we map the decision forest
including P trees onto a parallel multi-pipeline architecture with
P linear pipelines, as shown in Fig. 6, where P = 2. Each
pipeline is used for traversing a decision tree as well as matching
the rule lists attached to the leaf nodes of that tree. The pipeline
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Fig. 6. Multi-pipeline architecture for searching the decision forest (1> = 2). The shaded blocks (i.e., rule stages) store the leaf-level rule lists while the tree

nodes are mapped onto plain-color blocks (i.e., tree stages).

stages for tree traversal are called the tree stages while those
for rule list matching are called the rule stages. Each tree stage
includes a memory block storing the tree nodes and the cutting
logic which generates the memory access address based on the
input packet header values. At the end of tree traversal, the index
of the corresponding leaf node is retrieved to access the rule
stages. Since a leaf node contains a list of /istSize rules, we need
listSize rule stages for matching these rules. All the leaf nodes
of a tree have their rule lists mapped onto these /istSize rule
stages. Each rule stage includes a memory block storing the full
content of rules and the matching logic which performs parallel
matching on all header fields.

Each incoming packet goes through all the P pipelines in par-
allel. A different subset of header fields of the packet may be
used to traverse the trees in different pipelines. Each pipeline
outputs the rule ID or its corresponding action. The priority re-
solver picks the result with the highest priority among the P
outputs from the P pipelines. It takes H + listSize clock cycles
for each packet to go through the architecture, where I{ denotes
the number of tree stages.

B. Pipeline

Like the HyperCuts with the push common rule upwards
heuristic enabled, our algorithm may reduce the memory con-
sumption at the cost of increased search time, if the process
to match the rules in the internal rule list of each tree node is
placed in the same critical path of decision tree traversal. Any
packet traversing the decision tree must perform: 1) matching
the rules in the internal rule list of the current node and 2)
branching to the child nodes, in sequence. The number of
memory accesses along the critical path can be very large in the
worst cases. Although the throughput can be boosted by using
a deep pipeline, the large delay passing the packet classification
engine requires the router to use a large buffer to store the
payload of all packets being classified. Moreover, since the
search in the rule list and the traversal in the decision tree have
different structures, a heterogeneous pipeline is needed, which
complicates the hardware design.

FPGAs provide massive parallelism and high-speed dual-port
Block RAMs distributed across the device. We exploit these fea-
tures and propose a highly parallel architecture with localized

routing paths, as shown in Fig. 7. The design is based on the
following considerations.

1) The traversal of the decision tree can be pipelined. Thus
we have a pipeline for traversing the decision tree, shown
as light-color blocks in Fig. 7. We call this pipeline Tree
Pipeline.

2) Whether it is an internal or a leaf node, each tree node is
attached to a list of rules. Analogous to internal rule list,
the rule list attached to a leaf node is called a /eaf-level
rule list. Search in the rule lists is pipelined as well. We
call such a pipeline Rule Pipeline, shown in shaded blocks
in Fig. 7.

3) When a packet reaches an internal tree node, the search in
the internal rule list can be initiated at the same time the
branching decision is made, by placing the rule list in a
separate pipeline.

4) For the tree nodes mapped onto the same stage of the Tree
Pipeline, their rule lists are mapped onto the same Rule
Pipeline. Thus, there will be H + 1 Rule Pipelines if the
Tree Pipeline has H stages.

5) All Rule Pipelines have the same number of stages. The
total number of clock cycles for a packet to pass the ar-
chitecture is H + listSize, where listSize is the number of
stage in a Rule Pipeline.

6) Consider two neighboring stages of Tree Pipeline, denoted
A and B, where Stage B follows Stage A. The Rule Pipeline
attached to Stage A outputs the matching results one clock
cycle earlier than the Rule Pipeline attached to Stage B.
Instead of waiting for all matching results from all Rule
Pipelines and directing them to a single priority resolver,
we exploit the one clock cycle gap between two neigh-
boring Tree Pipeline stages, to perform the partial priority
resolving for the two previous matching results.

7) The Block RAMs in FPGAs are dual-port in nature. Both
Tree Pipeline and Rule Pipelines can exploit this feature to
process two packets per clock cycle. In other words, by du-
plicating the pipeline structure (i.e., logic), the throughput
is doubled, while the memories are shared by the dual
pipelines.

As shown in Fig. 7, all routing paths between blocks are lo-
calized. This can result in a high clock frequency even when the
on-chip resources are heavily utilized. The FPGA implementa-
tion of our architecture is detailed in Section VI.
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Fig. 7. Block diagram of the 2-D linear dual-pipeline architecture. H stages in the Tree Pipeline. /istSize stages in each Rule Pipeline.

C. Tree-to-Pipeline Mapping

The size of the memory in each pipeline stage must be de-
termined before FPGA implementation. However, as shown in
[29], when simply mapping each level of the decision tree onto
a separate stage, the memory distribution across stages can vary
widely. Allocating memory with the maximum size for each
stage results in large memory wastage. Baboescu et al. [29]
propose a Ring pipeline architecture which employs TCAMs
to achieve balanced memory distribution at the cost of halving
the throughput to one packet per two clock cycles, i.e., 0.5 PPC,
due to its non-linear structure.

Our task is to map the decision tree onto a linear pipeline
(i.e., Tree Pipeline in our architecture) to achieve balanced
memory distribution over stages, while sustaining a throughput
of one packet per clock cycle (which can be further improved
to 2 PPC by employing dual-port RAMs). The memory dis-
tribution across stages should be balanced not only for the
Tree Pipeline, but also for all the Rule Pipelines. Note that the
number of words in each stage of a Rule Pipelines depends on
the number of tree nodes rather than the number of words in the
corresponding stage of Tree Pipeline, as shown in Fig. 8. The
challenge comes from the various number of words needed for
tree nodes. As a result, the tree-to-pipeline mapping scheme
requires not only balanced memory distribution, but also bal-
anced node distribution across stages. Moreover, to maximize
the memory utilization in each stage, the sum of the number of
words of all nodes in a stage should approach some power of 2.
Otherwise, for example, we need to allocate 2048 words for a
stage consuming only 1025 words.

The above problem is a variant of bin packing problems, and
can be proved to be NP-complete. We use a heuristic similar
to our previous study of trie-based IP lookup [30], which al-
lows the nodes on the same level of the tree to be mapped onto

different stages. This provides more flexibility to map the tree
nodes, and helps achieve a balanced memory and node distribu-
tion across the stages in a pipeline, as shown in Fig. 8. Only one
constraint must be followed.

Constraint 1: If node A is an ancestor of node B in the tree,
then A must be mapped to a stage preceding the stage to which
B is mapped.

We impose two bounds, namely Bj; and By for the memory
and node distribution, respectively. The values of the bounds are
some power of 2. The criteria to set the bounds is to minimize
the number of pipeline stages while achieving balanced distri-
bution over stages. The complete tree-to-pipeline mapping al-
gorithm is shown in Fig. 9, where n denotes a tree node, H the
number of stages, S, the set of remaining nodes to be mapped
onto stages, M, the number of words of the ith stage, and N;
the number of nodes mapped onto the zth stage. We manage two
lists, ReadyList and NextReadyList. The former stores the nodes
that are available for filling the current stage, while the latter
stores the nodes for filling the next stage. We start with mapping
the nodes that are children of the root onto Stage 1. When filling
a stage, the nodes in ReadyList are popped out and mapped
onto the stage, in the decreasing order of their heights.2 After
a node is assigned to a stage, its children are pushed into Nex-
tReadyList. When a stage is full or ReadyList becomes empty,
we move on to the next stage. At that time, NextReadyList is
merged into ReadyList. By these means, Constraint 1 is met.
The complexity of this mapping algorithm is O(N ), where N
denotes the total number of tree nodes.

Our tree-to-pipeline mapping algorithm allows two nodes on
the same tree level to be mapped to different stages. We imple-
ment this feature by using a simple method. Each node stored in

2Height of a tree node is defined as the maximum directed distance from it to
a leaf node.
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Fig. 8. Mapping a decision tree onto pipeline stages (H = 4, listSize = 2).
The rounded nodes denote the tree nodes. The square nodes denote the rule lists.
The rectangle bars denote the registers.

Input: The tree 7.
Output: H stages with mapped nodes.
1: Initialization: ReadyList < ¢, NextReadyList < ¢,
Sy« T, H <+ 0.
2: Push the children of the root into ReadyList.
3: while S, # ¢ do
4:  Sort the nodes in ReadyList in the decreasing order of
their heights.
5: while M; < By AND N; < By AND Readylist 7é ¢
do
Pop node from ReadylList.
Map the popped node n, onto Stage H.
Push its children into NextReadyList.
M; < M; + size(n,). Update S,.
10 H+H+1L
11:  Merge the NextReadyList to the ReadyList.

Y ® 3

Fig. 9. Mapping the decision tree onto a pipeline.

the local memory of a pipeline stage has one extra field: the
distance to the pipeline stage where the child node is stored.
When a packet is passed through the pipeline, the distance value
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is decremented by 1 when it goes through a stage. When the
distance value becomes 0, the child node’s address is used to
access the memory in that stage.

External SRAMs are usually needed to handle very large rule
sets, while the number of external SRAMs is constrained by the
number of I/O pins in our architecture. By assigning large values
of By; and By for one or two specific stages, our mapping
algorithm can be extended to allocate a large number of tree
nodes onto few external SRAMs which consume controllable
number of I/O pins.

VI. IMPLEMENTATION

A. Pipeline for Decision Tree

As shown in Fig. 5, different internal nodes in a decision tree
may have different numbers of cuts, which can come from dif-
ferent fields. A simple solution is hard-wiring the connections,
which however cannot update the tree structure on-the-fly [24].
We propose a circuit design, where the child node pointer is
computed based on the cut information read from the memory.
Recall that we perform precise range cutting on port fields. We
store the cut points for SP/DP fields and the number of cut bits
for SA/DA fields. We can update the memory content to change
the number of bits for SA and DA to cut, and the cut enable bit
for SP and DP to indicate whether to cut SP or DP.

B. Pipeline for Rule Lists

When a packet accesses the memory in a Tree Pipeline stage,
it will obtain the pointer to the rule list associated with the cur-
rent tree node being accessed. The packet uses this pointer to
access all stages of the Rule Pipeline attached to the current
Tree Pipeline stage. Each rule is stored as one word in a Rule
Pipeline stage, benefiting from the large word width provided by
FPGA. Within a stage of the Rule Pipeline, the packet uses the
pointer to retrieve one rule and compare its header fields to find
a match. When a match is found in the current Rule Pipeline
stage, the packet will carry the corresponding action informa-
tion with the rule priority along the Rule Pipeline until it finds
another match where the matching rule has higher priority than
the one the packet is carrying.

C. Rule Update

The dual-port memory in each stage enables only one write
port to guarantee the data consistency. We update the memory
in the pipeline by inserting write bubbles [31]. The new content
of the memory is computed offline. When an update is initiated,
a write bubble is inserted into the pipeline. Each write bubble
is assigned an ID. There is one write bubble table in each stage,
storing the update information associated with the write bubble
ID. When a write bubble arrives at the stage prior to the stage
to be updated, the write bubble uses its ID to look up the write
bubble table and retrieves: 1) the memory address to be updated
in the next stage; 2) the new content for that memory location;
and 3) a write enable bit. If the write enable bit is set, the write
bubble will use the new content to update the memory location
in the next stage. Since the architecture is linear, all packets pre-
ceding or following the write bubble can perform their opera-
tions while the write bubble performs an update. In the worst
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case, a rule update may result in the change of all nodes in the
decision trees. Then we need insert O(N') write bubbles, where
N denotes the total number of tree nodes.

VII. EXPERIMENTAL RESULTS

We conducted extensive experiments to evaluate the perfor-
mance of our schemes including the algorithms and FPGA pro-
totype of the architecture for both traditional 5-tuple and next-
generation 12-tuple packet classification problems.

A. Experimental Setup

For traditional 5-tuple packet classification, we used the rule
sets from [32]. These synthetic rule sets are generated using
ClassBench [33], with parameter files extracted from real-life
rules. The size of the rule sets varies from hundreds of to tens
of thousands of rules.

Due to the lack of large-scale real-life OpenFlow rule sets, we
generated synthetic 12-tuple OpenFlow-like rules to examine
the effectiveness of our decision forest -based schemes for next
generation packet classification. Each rule was composed of 12
header fields that follow the current OpenFlow specification [3].
We used 6-bit field for the ingress port and randomly set each
field value. Concretely, we generated each rule as follows.

1) Each field is randomly set as a wildcard. When the field is

not set as a wildcard, the following steps are executed.

2) For source/destination IP address fields, the prefix length
is set randomly from between 1 and 32, and then the value
is set randomly from its possible values.

3) For other fields, the value is set randomly from its possible
values.

In this way, we generated four OpenFlow-like 12-tuple rule sets
with 100, 200, 500, and 1K rules, each of which is independent
of the others. Note that our generated rule sets include many
impractical rules because each field value is set at random.

B. Algorithm Evaluation

1) 12-Tuple Rule Sets: To evaluate the performance of the
algorithms, we use following performance metrics:

* Average memory requirement (bytes) per rule. It is com-
puted as the total memory requirement of a decision forest
divided by the total number of rules for building the forest.
It represents the scalability of our algorithms.

* Tree depth. It is defined as the maximum directed distance
from the tree root to a leaf node. For a decision forest
including multiple trees, we consider the maximum tree
depth among these trees. A smaller tree depth leads to
shorter pipelines and thus lower latency.

*  Number of cutting fields (denoted N¢cr) for building a de-
cision tree. The Ngp of a decision forest is defined as
the maximum N¢r among the trees in the forest. Using a
smaller number of cutting fields results in less hardware for
implementing cutting logic and smaller memory for storing
cutting formation of each node.

We set listSize = 64, depthBound = 16, and varied the
number of trees P = 1,2,3,4. Fig. 10 shows the average
memory requirement per rule, where logarithmic plot is used
for the Y -axis. In the case of P = 1, we observed memory
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Fig. 10. Average memory requirement with increasing P. (listSize = 64).

explosion when the number of rules was increased from 100 to
1K. On the other hand, increasing P dramatically reduced the
memory consumption, especially for the larger rule set. Almost
100-fold reduction in memory consumption was achieved for
the 1K rules, when P was increased just from 1 to 2. With
P = 3 or 4, the average memory requirement per rule remained
on the same order of magnitude for different size of rule sets.

As shown in Fig. 11(a) and (b), the tree depth and the number
of cutting fields were also reduced by increasing P. With P = 3
or 4, 6-fold and 3-fold reductions were achieved, respectively,
in the tree depth and the number of cutting fields, compared with
using a single decision tree.

2) 5-Tuple Rule Sets: We set P = 1 and evaluated the effec-
tiveness of our optimized decision-tree-based packet classifica-
tion algorithm, by conducting experiments on 4 real-life 5-tuple
rule sets of different sizes from [32]. The results are shown in
Table IV. In these experiments, we set listSize = 8, which was
optimal according to a series of tests where we found that a
larger listSize resulted in lower memory requirement but deeper
Rule Pipelines. The memory reduction became unremarkable
when listSize > 8. According to Table IV, our algorithm kept
the memory requirement to be linear with the number of rules,
and thus achieved much better scalability than the original Hy-
perCuts algorithm. Also, the depth of the decision tree generated
using our algorithm was much smaller than that of HyperCuts,
indicating a smaller delay for a packet to pass through the en-
gine. Note that the tree depth is determined by not only the size
of the rule set but also the characteristics of the rule set. All the
decision tree-based algorithms share this problem that the tree
depth is indeterministic.

According to Table IV, the Tree Pipeline needed at least 9
stages to map the decision tree for ACL_10K. We conducted a
series of experiments to find the optimal values for the memory
and the node distribution bounds, i.e., By; and Bpy. When
By €512 or By < 128, the Tree Pipeline needed more than
20 stages. When Bj; > 2048 or By > 512, the memory and
the node distribution over the stages was same as that using
static mapping scheme which mapped each tree level onto a
stage. Only when Bj; = 1024, By = 256, both memory and
node distribution were balanced, while the number of stages
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TABLE IV
PERFORMANCE OF ALGORITHMS FOR RULE SETS OF VARIOUS SIZES
Our algorithm Original HyperCuts
Rule set ] # of rules Memory (Bytes/rule) | Tree depth Memory (Bytes/rule) | Tree depth
ACL_100 98 29.31 8 52.16 23
ACL_1k 916 26.62 11 122.04 20
ACL_5k 4415 29.54 12 314.88 29
ACL_10k 9603 27.46 9 1727.28 29
Tree depth vs. P N
Memory distribution
14 2000 : : :
—o—Our mapping (BM=1024)
12 | 1506 // s +— Static mapping
8 e
10 4 3 1000 i vy, i
-
8 - 500 |- g
M 100 rules 9
6 200 rules 0, 11
M 500 rules Stage ID
41 = 1000 rules Node distribution
5 400 ' ‘ ' ’l —o—Our mapping (B, _256)
=l - 300 - Static mapping
0 , , : g
1 2 3 4 ;E 200 - f
P: # of trees 100 | / . D e Sas ol
(a) SR, S
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# of Cutting fields vs. P Stage ID
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9 4 Fig. 12. Distribution over Tree Pipeline stages for ACL_10K.
8 !}
7 - TABLE V
6 BREAKDOWN OF A P = 4-TREE DECISION FOREST (listSize = 32)
5 M 100 rules
= 200 rules Trees #of | #of Tree Memory Tree | # of Cutting
4 - Rules nodes (bytes/rule) | depth fields
B 500 ules Tree | | 712 545 7870 2 3
31| ree .
, L ] B N e Tree2 | 184 | 265 84.70 2 5
Tree 3 65 17 41.78 1 2
14 Tree 4 39 9 45.23 1 2
0 -+ T ; [ Overall | 1000 ] 836 [ 76.10 [ 2 ] 5 |
1 2 3 4
P: # of trees TABLE VI
(b) RESOURCE UTILIZATION (listSize = 32)
Fig. 11. (a) Tree depth and (b) # of cutting fields, with increasing I’. | | Available | Used [ Utilization |
(listSize = 64). # of Slices 30,720 | 11,720 38%
# of 36Kb Block RAMs 456 256 56%
# of User 1/Os 960 303 31%
needed was increased slightly to 11, i.e., H = 11. As Fig. 12
TABLE VII

shows, our mapping scheme outperformed the static mapping
scheme with respect to both memory and node distribution.

C. Implementation Results

1) 12-Tuple Rule Sets: To implement the decision forest for
1K 12-tuple rules in FPGA, we examined the performance re-
sults of each tree in a forest. Table V shows the breakdown with
P = 4, listSize = 32, depthBound = 4.

We mapped the above decision forest onto the 4-pipeline
architecture. Since Block RAMs were not used efficiently for
blocks of less than 1K entries, we merged the rule lists of the
first two pipelines and used distributed memory for the re-
maining rule lists. BRAM utilization was improved at the cost

RESOURCE UTILIZATION

[ | Used | Available | Utilization |

Number of Slices 10,307 30,720 33%
Number of bonded IOBs 223 960 23%
Number of Block RAMs 407 456 89%

of degrading the throughput to be one packet per clock cycle
while dual-port RAMs were used. We implemented our design
on FPGA using Xilinx ISE 10.1 development tools. The target
device was Virtex-5 XC5VFX200T with —2 speed grade. Post
place and route results showed that our design achieved a clock
frequency of 125 MHz. The resulting throughput was 40 Gbps
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TABLE VIII
PERFORMANCE COMPARISON

[ Packet classification engines | Platform [ # of rules | Total memory used (Kbytes) [ Throughput (Gbps) [[ Efficiency (Gbps/KB) |

Our approach FPGA 9603 612 80.23 1358.9
Simplified HyperCuts [25] FPGA 10000 286 10.84 (5.12) 379.0
BV-TCAM [7] FPGA 222 16 10 (N/A) 138.8
2sBFCE [10] FPGA 4000 178 2.06 (1.88) 46.3
Memory-based DCFL [15] FPGA 128 221 24 (16) 139
B2PC [9] ASIC 3300 540 13.6 83.1

for minimum size (40 bytes) packets. The resource utilization
of the design is summarized in Table VI.

2) 5-Tuple Rule Sets: Based on the mapping results, we ini-
tialized the parameters of the architecture for FPGA implemen-
tation. According to the previous section, to include the largest
5-tuple rule set ACL 10K, the architecture needed H = 11
stages in Tree Pipeline, and 12 Rule Pipelines each of which
had listSize = & stages. Each stage of Tree Pipeline needed
Bjar = 1024 words, each of which was 72 bits including base
address of a node, cutting information, pointer to the rule list,
and distance value. Each stage of Rule Pipeline needed By =
256 words each of which was 171 bits including all fields of a
rule, priority and action information.

We implemented our design in Verilog. We used Xilinx ISE
10.1 development tools. The target device was Xilinx Virtex-5
XCS5VFX200T with —2 speed grade. Post place and route re-
sults showed that our design could achieve a clock frequency
of 125.4 MHz. The resource utilization is shown in Table VII.
Among the allocated memory, 612 Kbytes was consumed for
storing the decision tree and all rule lists.

Table VIII compares our design with the state-of-the-art
FPGA-based packet classification engines. For fair compar-
ison, the results of the compared work were scaled to Xilinx
Virtex-5 platforms based on the maximum clock frequency.3
The values in parentheses were the original data reported in
those papers. Considering the time-space trade-off, we used a
new performance metric, named Efficiency, which was defined
as the throughput divided by the average memory size per rule.
Our design outperformed the others with respect to throughput
and efficiency. Note that our work is the only design to achieve
more than 40 Gbps throughput. Such high throughput is due to
our deeply pipelined architecture.

VIII. CONCLUSION

This paper presented a novel decision-tree-based linear
multi-pipeline architecture on FPGAs for wire-speed multi-field
packet classification. We considered the next-generation packet
classification problems where more than 5-tuple packet header
fields would be classified. Several optimization techniques
were proposed to reduce the memory requirement of the
state-of-the-art decision-tree-based packet classification algo-
rithm, so that 10K 5-tuple rules or 1K 12-tuple rules could
fit in the on-chip memory of a single FPGA. Our architec-
ture provided on-the-fly reconfiguration due to the linear
memory-based architecture. Extensive simulation and FPGA
implementation results demonstrate the effectiveness of our

3The BV-TCAM paper [7] does not present the implementation result about
the throughput. We use the predicted value given in [7].

solution. The FPGA design supports 10K 5-tuple rules or
1K OpenFlow-like complex rules and sustains over 40 Gbps
throughput for minimum size (40 bytes) packets. Our future
work includes porting our design into real systems and evalu-
ating its performance under real-life scenarios such as dynamic
rule updates.
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