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TABLE I
DT NODE BIT CONSUMPTION COMPARISON

dimension, this variation treats each filter as an integral ternary
bit string. Akin to Woo’s algorithm [8], any bit can be chosen to
split the filter set. However, our algorithm is significantly dif-
ferent from Woo’s algorithm. First, as we have discussed, the
high-level decision-tree construction approaches are different.
Second, our algorithm encodes multiple filter bits per DT node.
Third, the two algorithms use different preferences to choose
the bit for filter-set splitting. Our simulations show our algo-
rithm leads to better performance, which means our preference
metric is better than that used in [8].
To produce the CST at a DT node, we start from a single-node

CST and keep splitting some leaf node using a bit from the filter
string until we run out of the storage space at the DT node. At
each step, we evaluate the new preference values for all the leaf
nodes if they are split on any filter bit. The leaf node and the filter
bit that can minimize the preference value are actually used to
grow the CST. The final CST is encoded with a CSB. Each CST
node, except the leaf node, must record the filter bit used to split
the node, which takes bits, where is the filter length.
This information for the entire CST is encoded as a Cutting Bit
Vector (CBV) similar to the CDV in ABC-I. We use an EPB of
bits to indicate the presence of child DT nodes, where is the

number of leaf nodes in the final CST.
2) Decoding the CST: The CST decoding algorithm is sim-

ilar to that in the first variation.

D. Comparison

1) DT Node Capacity: Table I summarizes the bits used by
the data structures in a nonleaf DT node excluding the base
pointer.
The size of nonleaf DT nodes is fixed in real implementa-

tions. The decision tree performance is generally better if more
cuttings can be done at each DT node. Assume 128 bits are as-
signed to encode a DT node (excluding the base pointer) and
each filter consists of five fields (i.e., ) and 104 bits (i.e.,

). From Table I, we can derive that ABC-I supports at
most 22 cuts per DT node and ABC-III supports at most 13 cuts
per DT node. For ABC-II, the maximum number of cuts per DT
node is variable, but generally it can produce more cuts per DT
node than the other two variations due to the product effect.
2) Implementation Complexity: The second difference has

to do with the implementation. Since ABC-I and ABC-III gen-
erate a single CST per DT node and the CST can be very tall,
the DT node processing latency is typically larger than that for
ABC-II, in which all the CSTs can be decoded in parallel. In case
pipelines or multiple parallel lookup engines are used to fill the
memory bandwidth, ABC-II has smaller system complexity and
better performance. However, the preprocessing time of ABC-II
is the largest because it requires more computations to produce
the CSTs at each DT node.

Fig. 4. Decoding the DT node to find the child DT node address.

E. Implementation

TheABC algorithm can be implemented using the state-of-art
ASIC/FPGA hardware or NPU-based multithreading software.
Multiple lookup engines can work on different packets in par-
allel to fully utilize the available memory bandwidth. The core
component of the lookup engine is the CSB decoding logic. A
simple hardware implementation of the CSB decoding uses a
sequential circuit to compute the values of , ,
and the new bit index iteratively on successive clock ticks. For
ABC-I and ABC-III, this takes at most clock ticks. For
ABC-II, multiple copies of the circuit work in parallel, each for
one CSB. This takes at most clock ticks. We need an-
other one or two clock ticks to calculate the child DT node index
and add the offset to the base pointer for the next memory ac-
cess. Decoding a DT node does not need to access the main
memory. Assume we have enough on-chip resource, we can af-
ford a large number of lookup engines. Therefore, the time to
decode a DT node only affects the number of lookup engines
required. The throughput is merely a function of the available
memory bandwidth and the number of memory accesses needed
per packet lookup. A block diagram of the DT node decoding
circuit for ABC-II is shown in Fig. 4. Note that only one CSB
decoding block is required for ABC-I and ABC-III.
The data structure for the algorithm implementation is illus-

trated in Fig. 5. Note that the nonleaf DT nodes may also hold
some filters due to an optimization we adopt in Section V. To
save the memory, each filter is only stored once. When a filter
must be duplicated, we only duplicate the pointer to the filter
because the size of a pointer is much smaller than the size of
a filter. We also attach the priority value of each filter to its
pointer so that a lookup can determine if a filter needs to be com-
pared without actually reading the filter. A smaller priority value
means higher priority. If we have found a matching filter with
the priority value and by reading the filter pointer list, we find
a potential matching filter in the list has the priority value ,
we know immediately that the new filter and all the following
filters in the list cannot lead to a better match.
Table II shows the DT node encoding scheme of a reference

design inwhich eachDT node consumes 16B, each filter pointer
consumes 2 B, and each 5-tuple filter consumes 18 B.
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Fig. 5. Data structure of the algorithm implementations.

TABLE II
ABC DT NODE ENCODING SCHEME (# BITS)

Note that for ABC-II, 86 bits can be used by the CSBs and the
EPB. The assignment of these bits is dynamically determined by
the number of CSTs and the size of each CST.

V. ALGORITHM OPTIMIZATIONS

The redundant filter removal optimization introduced in Hi-
Cuts [6] and HyperCuts [7] is embedded in the ABC algorithm
by default. In this section, we discuss several new algorithm op-
timizations.

A. Reduce Filters Using a Hash Table

We can use a hash table to handle a portion of the filters so that
the number of filters handled by the decision tree is reduced. A
hash table uses prefix bits of the source IP field and
prefix bits of the destination IP field as the key. A filter is hashed
into if its source IP prefix specifies more than bits and
its destination IP prefix specifies more than bits. We test all
the possible values of and . Assume each hash table bucket
can hold filters. If more than filters are hashed to a same
bucket, only the filters with higher priority are inserted in the
hash table. We choose the hash table that can handle the most
filters. The filters in the hash table are removed from the filter
set. We evaluate some real filter sets and find that 18%–44% of
filters can be removed when , as shown in Fig. 6.

Fig. 6. Effect of filter reduction by using a hash table.

The lookup process needs to search the hash table first. If a
matching filter is found, we keep its priority value and continue
to search the decision tree. If a lower priority matching is found,
the search stops.

B. Filter Partition on the Protocol Field

In all the filter sets we examined, only eight unique protocol
values are specified. There are 13% of filters that have a wild-
card protocol specification on average.
The cutting does not work well on the protocol field. For

example, we need to examine five bits (i.e., produce at least
32 cuts) to differentiate the TCP (0 06) and the ICMP (0
01) protocols. Each cutting unavoidably duplicates all the filters
with the wildcard protocol specification. To solve this problem,
we build a decision tree for each specified protocol value. Each
decision tree handles the filters with the corresponding protocol
value as well as all the filters with the wildcard protocol value.
The lookup process examines a packet’s protocol value first and
then search the decision tree dedicated for it. If a dedicated deci-
sion tree does not exist, then any decision tree can be searched.
This optimization partitions the filters into a minimum

number of subsets and consumes the entire protocol field in just
one step. It can reduce the memory consumption and increase
the lookup throughput. In addition, it reduces the number of
dimensions that need to be considered in the decision trees. For
example, in ABC-I, each CST node now needs only two bits
rather than three to encode the cutting dimension. Therefore,
in the reference design as shown in Table II, a DT node can
support 19 child nodes rather than 16. This helps to improve
the performance further.
Since ABC-III takes a unified view of the filter bit string, we

do not need to apply this optimization to it.

C. Partitioning Filters Based on Duplication Factor

The cutting dimensions and the cutting shape are chosen in
favor of the majority filters at a DT node. Throughout the deci-
sion tree, some filters suffer more duplications than the others.
We profile the number of duplications of each filter for two filter
sets when running ABC-II. As shown in Fig. 7, most filters re-
ceive zero or very few duplications while a relatively small frac-
tion of filters receive a very large number of duplications. The
figure also shows that the higher-priority filters tend to receive
fewer duplications than the lower-priority filters.
We identify a filter as a spoiler if it results in excessive du-

plications. We remove a few top spoilers from the filter set
and then build the decision tree on the remaining filters. The
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Fig. 7. Filter duplication number distribution.

spoilers can be handled by a small on-chip TCAM. Our sim-
ulation shows that this optimization significantly improves the
algorithm performance.

D. Holding Filters Internally and Reversing Search Order

The HyperCuts algorithm [7] introduces an optimization
called filter pushing, which can reduce the filter duplications
but cannot change the tree size and the throughput. We modify
this optimization using a forward manner. At a DT node, if a
filter would otherwise be duplicated into all the child DT nodes,
we can keep it in the current DT node. This modification helps
to reduce the tree size as well.
Although efficient in storage, this method worsens the

throughput. Fig. 7 shows that the lower-priority filters tend to
receive a larger number of duplications. The large number of
duplications is largely due to the fact that these filters are less
specific, so they effectively overlap with a large number of
decision tree nodes. Using the filter pushing, these filters are
more likely to be held in nonleaf DT nodes. The low-priority
filters also tend to be held close to the DT root. However, the
decision tree can only be searched from root to leaf. Even if
we find a matching filter at an internal node, we cannot stop.
Indeed, we have a good chance to find a better matching filter
down to the search path.
We consider to improve the lookup throughput while re-

taining the gain on the storage. The above observation suggests
that we should search the filter lists using the bottom-up order.
When we find a stored filter list along the searching path, we
do not retrieve the filter list right away. Instead, we push its
pointer into a stack. We begin to pop the pointers in the stack
and search the filter lists only when we reach a leaf node. Using
this order, we search the filters in their natural priority order
and can avoid unnecessary memory accesses.

VI. PERFORMANCE EVALUATION

We are concerned with the two most important performance
characteristics of the ABC algorithm: storage and lookup
throughput. We also discuss the performance of preprocessing
and incremental updates. The storage is made up of two parts:
the decision tree and the filters. The storage of the decision tree
is determined by the number of DT nodes and the size of a DT
node. The storage of the filters is determined by the number
of original filters and the total number of duplicated filters
(recall that each duplicated filter only consumes a pointer). The
storage efficiency and scalability are evaluated by the number
of bytes consumed per filter. As for the throughput, the depth of
a DT branch and the number of filters stored along the branch
determine the worst-case performance on the branch. We use

Fig. 8. Algorithm scalability on filter set size.

the maximum number of bytes retrieved to classify a packet as
the worst-case performance measurement criterion. We use a
suite of synthetic filter sets generated by ClassBench [13]. For
each filter set, we also generate a packet header trace in which
the number of packets is ten times of the number of filters. We
run the lookup algorithm on these traces to collect the average
number of bytes retrieved per packet as the average-case per-
formance measure. The filter sets and the packet traces we used
are documented on a public accessible website [14].

A. Comparison of ABC Variations

1) Scalability on Filter Set Size: First, we assume all the
aforementioned optimizations are used with the exception of the
spoiler filter removal. The hash table bucket size is set to one.
The size of the filter sets ranges from 100 to 10 000 filters.

They are synthesized from an ACL seed filter set, an IP Chain
(IPC) seed filter set, and a firewall (FW) seed filter set. In the
simulation, we set the storage budget to be 100 B per filter. Fig. 8
shows the results.
The algorithm works best on the ACL filter sets. It is inter-

esting to note that memory consumption for the ACL filter set
is well below the budget. This means the algorithm has already
reached the limit of the decision tree. More storage cannot be
exchanged for higher throughput anymore. The algorithm per-
forms the worst for the FW filter sets because these filter sets
contain a lot of filters with wildcard specifications.
The worst-case throughput is two to four times worse than the

average-case throughput. This is mainly due to the imbalance
of the decision tree, although in our algorithm the decision-tree
shape has been adapted to the skewness of the filter distribution.
ABC-I and ABC-II show comparable performance. If we

optimize the DT node encoding scheme for ABC-I to allow
more cuts, ABC-I will outperform ABC-II. The performance
of ABC-III is only acceptable for the ACL and IPC filter sets.
Although ABC-III is the most flexible variation, it supports
the lowest DT node capacity and requires range-to-prefix
conversion. These two factors drag down its throughput.
Another interesting point is that the algorithm performs better

for the FW filter set with 10 000 filters than for the FW filter
sets with 1000–5000 filters. This artificial result is because the
ClassBench tool tends to generate more structured and specific
filters for larger filter sets.
To interpret the throughput performance, we consider a

single 500 MHz 36 QDR-III SRAM chip. It provides a
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Fig. 9. Tradeoff of storage and throughput.

Fig. 10. Effect of filter reduction using a Hash table.

memory bandwidth of MHz B GB/s. For
the ACL filter set with 10 000 filters, a packet lookup needs
to retrieve 125 B on the average. Hence, we can classify
GB B million packets per second. A fully loaded

10-GbE link can see at most 15 million packets per second. For
the average case, the performance of our algorithm is more than
sufficient for two 10-GbE links when a single memory device
is used. The worst-case performance is two times worse than
the average-case performance, so our algorithm is still capable
of handling one fully loaded 10-GbE link at line speed.
2) Throughput and Storage Tradeoff: In this simulation,

we vary the storage and examine its effect on the lookup
throughput. The simulation runs on the synthetic IPC filter set
with 10 000 filters. We disable the filter reduction optimization.
Fig. 9 shows the results.
When more storage is granted, the lookup performance

steadily gets better. All three variations have the similar av-
erage-case throughput, but the worst-case throughput differs
significantly. ABC-I gives the best overall performance.
3) Sensitivity to Optimizations: Now we examine the algo-

rithm sensitivity to different optimizations. In the simulations,
we use the synthetic ACL filter set with 10 000 filters and an al-
lowance of 50 B per filter. We turn on one optimization a time
to compare to the baseline algorithm.
Fig. 10 shows the effect of the filter reduction using a Hash

table. This optimization significantly improves the worst-case
performance (almost 2 for ABC-II) and moderately improves
the average-case performance.
Fig. 11 shows the effect of performing the protocol field

lookup first. Note that this optimization is only applied to the
first two algorithm variations.
Fig. 12 shows the effect of holding filters internally and re-

versing the search order. We can see this algorithm optimization
only helps to improve the first two variations. It also has the
best effect compared to the other optimizations. The reason it
does not work for ABC-III is that the decision tree of ABC-III is

Fig. 11. Effect of looking up on protocol field first.

Fig. 12. Effect of holding filters internally and reversing search order.

Fig. 13. Effect of removing highly duplicated filters.

Fig. 14. Effect of changing DT node size.

near optimal and holding filters internally increases the lookup
overhead.
Finally, we examine the effect of removing some highly du-

plicated filters from the filter sets. The duplication statistics are
collected from an implementation of the HyperCuts algorithm.
Only 3–14 filters (0.1%–0.3%) are removed from the three filter
sets. However, Fig. 13 shows significant improvement.
4) Effect of DT Node Capacity: So far, the evaluations are

based on our reference design. Now we examine the algorithm
performance when different DT node sizes are used. We eval-
uate five cases with the DT node size of 8, 12, 16, 20, and 24 B.
We turn off all the optimizations and allow 50 B per filter. The
ACL filter set with 10 000 filters is used for this simulation.
As Fig. 14 shows, in the most cases, increasing the DT node

size actually decreases the throughput. This is because under
the same storage restriction, larger node size implies fewer
DT nodes can be supported. Larger DT node size can improve
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Fig. 15. Compare ABC to other DT-based algorithms.

TABLE III
DT NODE ENCODING SCHEME FOR OTHER ALGORITHMS (# BITS)

the throughput only if we also increase the storage budget
accordingly.

B. Comparison to Other DT-Based Algorithms

1) Implementation: It should be clear that for HiCuts [6] and
HyperCuts [7], the geometric cutting process is actually iden-
tical to the process of examining several prefix bits on some
packet header fields in sequence. Since the cuts are regular, no
CSB is needed. Each DT node only needs to record which di-
mension(s) is chosen and how many prefix bits are used. For
Woo’s algorithm [8], each DT node only needs to record which
filter bit is chosen.
We layout the DT node format that also consumes four 32-bit

memory words for HiCuts and HyperCuts. A DT node in Woo’s
algorithm requires only two 32-bit memory words. Just as in
the ABC algorithm, we use an EPB and a base pointer to com-
press the child DT node storage. Note that for HiCuts and Hy-
perCuts, the number of cuttings per DT node doubles for each
extra header bit consumed. A DT node supports at most 64 cuts
for HiCuts and HyperCuts, which means at most 6 bits can be
examined at each DT node. The DT node encoding schemes for
the three algorithms are summarized in Table III.
2) Performance Comparison: To make the fair comparison,

we apply the same set of algorithm optimizations to all the im-
plementations. Recall that the previous decision-tree-based al-
gorithms terminate the DT construction algorithm only if all
the leaf nodes contain fewer filters than a predefined bucket
size. Neither storage nor throughput can be fixed before fin-
ishing the DT construction. On the contrary, the ABC algo-
rithm allows us to preset one of the performance targets while
optimizing the other one. To set the basis for comparison, we
run the simulation with different parameter configurations for
the algorithms that covers a wide range of storage-throughput
tradeoff. Fig. 15 illustrates the results on three different filter
sets. The -axis stands for the storage and the -axis stands for

the lookup throughput. Since ABC-I has the best overall per-
formance, we only show the curve for ABC-I. The performance
is getting better when the data point is closer to the bottom left
corner. Clearly, the ABC algorithm outperforms all the other
algorithms.
3) Preprocessing Time: The preprocessing time differs

vastly for the previous algorithms. It depends not only on the
filter set size and structure, but also on the parameter settings.
For well-structured filter sets and slack parameter settings, the
preprocessing can finish within 1 s. However, in many cases,
the preprocessing will last much longer and even never end
(e.g., the number of overlapped filters in a region is greater
than the bucket size). The ideal values can only be determined
through multiple trials.
The preprocessing time of the ABC algorithm is linear to the

storage budget, and it is independent of the filter set structure.
The preprocessing seeks to consume the available memory for
the best throughput performance aggressively in a single run.
Because the DT node needs to generate and encode the CSTs,
it typically takes a few seconds to finish the preprocessing. For-
tunately, packet classification filter sets are relatively static and
the data structure reconstruction is rare.

C. Incremental Updates

Generally, decision tree does not support incremental updates
well due to the filter duplication. To insert a new filter, we may
need to push a filter to many leaf nodes. Filter deletion requires
a similar amount of work. More importantly, insertion and dele-
tion may lead to suboptimal performance of the data structure,
so we have to rebuild the decision tree from scratch at some
point. Since the filters can be stored in the nonleaf DT nodes,
this can help to reduce the number of duplications. That is to
say, if pushing a filter down to the leaf nodes makes too many
duplications, we can store it in some internal nodes to limit the
duplications. Of course, this should only be done with discre-
tion to avoid degrading the throughput.

VII. CONCLUSION

Decision-tree-based algorithms usually mimic the geometric
cutting process, but the decision is conducted in favor of the
evenness of the cut size rather than the evenness of the filter
distribution. Due to the skewness of the filter distribution found
in real filter sets, this approach exaggerates the filter duplication
and results in imbalanced decision trees. Woo’s algorithm aims
to split the filter set more evenly and keep the filter duplication to
a minimum. However, it can only produce a binary decision tree
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with a large tree depth. Moreover, all these algorithms use some
indirect criteria to guide the decision-tree construction process,
whichmakes the algorithm evaluation and implementation diffi-
cult. The effectiveness of the heuristics is hard to quantify. Both
throughput and storage cannot be constrained before the imple-
mentation, and the real performance can only be known after ex-
periments. They require a considerable amount of guesswork to
fine-tune multiple parameters in several trials for the best result.
We introduce a new degree of freedom to enable variable-

sized cuts per decision step in order to even the filter distribu-
tion and reduce the filter duplication. This results in a higher-
quality decision tree. A simple and compact encoding scheme
makes this feasible. The ABC algorithm ensures that all the DT
nodes have the same size and are fully utilized. Furthermore,
the algorithm applies a natural and performance-guided deci-
sion-making process. We preset the storage budget and then
look for the best achievable throughput. With just a single knob
to tune, our method allows better observability and control-
lability over the algorithm performance. Based on the similar
high-level idea, we derived three variations.
We compare the ABC algorithm to the other decision-tree-

based algorithms includingHiCuts, HyperCuts, andWoo’s algo-
rithm through extensive simulations. TheABC algorithm signif-
icantly improves the storage and throughput performance and is
scalable to large filter sets. The algorithm implementation is suf-
ficient to sustain the real-time packet classification for 10-GbE
lines. The simple implementation and the efficient memory use
make the ABC algorithm an ideal alternative to TCAMs and
other algorithms in many applications.
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